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We report on numerically exact determinantal quantum Monte Carlo simulations of the onset of spin-density-
wave (SDW) order in itinerant electron systems captured by a sign-problem-free two-dimensional lattice model.
Extensive measurements of the SDW correlations in the vicinity of the phase transition reveal that the critical
dynamics of the bosonic order parameter are well described by a dynamical critical exponent z = 2, consistent
with Hertz-Millis theory, but are found to follow a finite-temperature dependence that does not fit the predicted
behavior of the same theory. The presence of critical SDW fluctuations is found to have a strong impact on the
fermionic quasiparticles, giving rise to a dome-shaped superconducting phase near the quantum critical point.
In the superconducting state we find a gap function that has an opposite sign between the two bands of the
model and is nearly constant along the Fermi surface of each band. Above the superconducting Tc, our numerical
simulations reveal a nearly temperature and frequency independent self-energy causing a strong suppression of
the low-energy quasiparticle weight in the vicinity of the hot spots on the Fermi surface. This indicates a clear
breakdown of Fermi liquid theory around these points.
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I. INTRODUCTION

Metallic spin-density-wave (SDW) transitions are ubiq-
uitous to strongly correlated materials such as the electron-
doped cuprates [1], the Fe-based superconductors [2], heavy
fermion systems [3], and organic superconductors [4]. In all
these materials, unconventional superconductivity is found to
emerge near the onset of SDW order, with the maximum of the
superconducting Tc occuring either at or near the underlying
SDW quantum phase transition (QPT). In addition, the vicinity
of the SDW transition is often characterized by strong
deviations from Fermi liquid theory—both in thermodynamic
and in single electron properties.

More broadly, understanding the properties of quantum crit-
ical points (QCPs) in itinerant fermion systems has attracted
much interest over the past several decades [5–29]. Unlike
thermal critical phenomena and QCPs in insulating systems,
here the critical order parameter fluctuations are strongly
interacting with low-energy fermionic quasiparticles near the
Fermi surface. In the traditional approach to this problem
due to Hertz [5], later refined by Millis [6], the fermions are
integrated out from the outset, leading to an effective bosonic
action for the order parameter fluctuations. The dynamics of
the order parameter is found to be overdamped due to the
coupling to the fermions, that act as a bath. The effective
bosonic action is then treated using conventional renormaliza-
tion group (RG) techniques. While physically appealing, this
approach has the drawback that integrating out low-energy
modes is dangerous, since it generates nonanalytic terms in
momentum and frequency that are difficult to treat within the
RG scheme. An alternative popular approach has been to use a
1/N expansion [8], where N is the number of fermion flavors.
However, in the important case of two spatial dimensions,
this approach turns out to be uncontrolled, as well [12,15].
Alternative expansion parameters have been introduced in
order to control the problem [13,18], or have been proposed to
emerge naturally [29]. A fully controlled analytical treatment
of QCPs in itinerant electron systems has remained one of the
grand challenges in strongly correlated electron physics.

In addition to the bosonic critical fluctuation dynamics,
an important open question regards the behavior of the
fermionic quasiparticles in the vicinity of the transition.
The exchange of SDW critical fluctuations can mediate a
superconducting instability; however, the same fluctuations
also strongly scatter the quasiparticles, causing them to lose
their coherence and leading to the formation of a non-Fermi
liquid metal. It is not clear which of these effects dominates,
i.e., is there a well-defined non-Fermi liquid regime that
precedes superconductivity, or does pairing always preempt
the formation of a non-Fermi liquid [30]?

In this work, we perform extensive numerically exact
determinantal quantum Monte Carlo (QMC) simulations [31–
35] of a metallic system in the vicinity of an SDW transition.
We use the approach of Refs. [17,28], that introduced a
two-dimensional multiband lattice model that captures the
generic structure of the “hot spots”—points on the Fermi
surface where quasiparticles can scatter off critical SDW
fluctuations resonantly. The universal properties of metallic
SDW transitions are believed to depend only on the vicinity
of the hot spots. At the same time, the model is amenable
to QMC simulations without a sign problem [17]. Our
goal here is both to understand the generic properties of
the transition, and to provide a controlled benchmark to
analytic theories. We present detailed information about the
bosonic and fermionic correlations and the interplay with
unconventional superconductivity in the vicinity of the QCP.

Previously, the finite-temperature phase diagram of the
model has been characterized, and a dome-shaped supercon-
ducting phase peaked near the SDW transition was found
[28,36]. Here, we measure the SDW correlations in the vicinity
of the transition, above the superconducting Tc. We find that,
over a broad range of parameters, the SDW susceptibility is
well described by the following form:

χ0(q,ωn,r,T )

= 1

aq(q − Q)2 + aω|ωn| + ar (r − rc0) + f (r,T )
. (1)
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Here, Q is the ordering wave vector [chosen to be (π,π ) in
our model], ωn = 2πnT is a Matsubara frequency, and r is a
parameter used for tuning through the SDW QCP, while aq ,
aω, ar , and rc0 are nonuniversal constants. The function f (r,T )
extrapolates to 0 as T → 0. Importantly, Eq. (1) captures
the behavior of both the bosonic SDW correlations and the
susceptibility of a fermion bilinear operator with the same
symmetry, establishing the consistency of our analysis.

Interestingly, χ0(q,ωn,r,T → 0) has precisely the form
predicted by Hertz and Millis; in particular, the bosonic critical
dynamics are characterized by a dynamic critical exponent
z = 2. The function f (r,T ) does not follow the predicted
behavior, however. In a window of temperatures above Tc, we
find a power-law dependence f (r ≈ rc0,T ) ∝ T α with α � 2,
in contrast to the linear behavior predicted by Millis [6,37].

The single-fermion properties above Tc are found to depend
strongly on the distance from the hot spots. Away from the
hot spots, a behavior consistent with Fermi liquid theory
is observed. At the hot spots, a substantial loss of spectral
weight is seen upon approaching the QCP. In a temperature
window above Tc, the fermionic self-energy is only weakly
frequency and temperature dependent, corresponding to a
nearly-constant lifetime of quasiparticles at the hot spots. This
behavior indicates a strong breakdown of Fermi liquid theory
at these points. It is not clear, however, whether it represents
the asymptotic behavior at the putative underlying SDW QCP,
since superconductivity intervenes before the QCP is reached.

Finally, in order to probe the interplay between magnetic
quantum criticality and superconductivity, we measure the
superconducting gap, �k, and the momentum-resolved su-
perconducting susceptibility, Pk,k′ , across the phase diagram.
No strong feature is found in �k at the hot spots. Rather,
�k and Pk,k′ vary smoothly on the Fermi surface. While the
pairing interaction may be strongly peaked at wave vector
Q, the resulting gap function does not reflect such a strong
momentum dependence.

This paper is organized as follows. In Sec. II, we describe
the model and review its phase diagram. Section III presents
a detailed analysis of the SDW susceptibility across the phase
diagram. In Sec. IV, we study the single-fermion properties,
providing evidence for the breakdown of Fermi liquid theory
in the vicinity of the hot spots. Section V analyzes the gap
structure in the superconducting state. The cumulative results
are put into perspective in Sec. VI. Supplementary data sets
and some technical details are presented in the appendices.

II. THE MODEL AND THE PHASE DIAGRAM

Our lattice model is composed of two flavors of spin- 1
2

fermions, ψx and ψy , that are coupled to a real bosonic vector
field �ϕ, which represents fluctuations of a commensurate SDW
order parameter at wave vector Q = (π,π ). The two types
of fermions exhibit quasi one-dimensional dispersions along
momenta kx and ky , respectively, which in the absence of
intreractions give rise to the Fermi surfaces illustrated in Fig. 1.
It is precisely this two-flavor structure that fundamentally
allows us to set up an action completely devoid of the fermion
sign problem in QMC simulations [17]. Yet, the Fermi surfaces
of this model capture the generic structure of the hot spots,

FIG. 1. Noninteracting Fermi surfaces of the ψx and ψy fermions.
Hot spots (indicated by the black dots) are linked by the vector Q =
(π,π ) with points on the other band. The ψx and ψy fermions have
stronger dispersion in direction kx and ky , respectively.

which is generally believed to determine the universal physics
near the QCP.

As in our previous work on this model [28], we assume
an O(2) symmetric SDW order parameter, i.e., �ϕ is restricted
to the XY plane. In contrast to the case of an O(3) order
parameter (studied in Refs. [17,36]), the easy-plane order
parameter implies the existence of a finite-temperature SDW
phase transition of Berezinskii-Kosterlitz-Thouless (BKT)
character, which we can track in our numerics. In addition,
the reduced dimensionality of the order parameter brings a
welcome computational benefit as it enables a reduction of
the dimensions of all single-fermion matrices by half, greatly
improving the efficiency of the numerical linear algebra.

Our lattice model is given by the action S = SF + Sϕ =∫ β

0 dτ (LF + Lϕ) with1

LF =
∑
i,j,s

α = x,y

ψ
†
iαs[(∂τ − μ)δij − tαij ]ψjαs

+ λ
∑
i,s,s ′

[�s · �ϕi]ss ′ψ
†
ixsψiys ′ + H.c.,

Lϕ = 1

2

∑
i

1

c2

(
d �ϕi

dτ

)2

+ 1

2

∑
〈i,j〉

(eiQ·ri �ϕi − eiQ·rj �ϕj )2

+
∑

i

[
r

2
�ϕ2
i + u

4

( �ϕ2
i

)2
]
. (2)

This action is defined on a square lattice with sites labeled
by i,j = 1, . . . ,Ns , where 〈i,j 〉 are nearest neighbors. The
two fermion flavors are indexed by α = x,y, while s,s ′ = ↑,↓
index the spin polarizations and �s are the Pauli matrices.
Imaginary time is denoted by τ and β = 1/T is the inverse
temperature. The fermionic dispersions are implemented by

1Note a slight change in notation compared to our previous
publication [28].
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FIG. 2. Finite-temperature phase diagram of model (2) for three different values of the Yukawa coupling λ and bare bosonic velocity c = 3.
Shown are the transition temperature TSDW to magnetic spin density wave (SDW) order as well as the estimated location of the zero-temperature
phase transition point rc (indicated by the red star). The superconducting (SC) transition temperature Tc is shown where applicable. In the same
units the Fermi energy is EF = 2.5. Dashed lines are a guide to the eye.

setting different hopping amplitudes along the horizontal and
vertical lattice directions. For the ψx fermions they are given by
tx,h = 1 and tx,v = 0.5, respectively, and for the ψy fermions
by ty,h = 0.5 and ty,v = 1. Note that our model is fully
C4-symmetric with a π/2 rotation mapping the ψx band to
the ψy band and vice versa. The tuning parameter r allows
to tune the system to the vicinity of an SDW instability.
In an experimental system, r could be proportional to a
physical tuning parameter such as pressure or doping. We
set the chemical potential to μ = −0.5, such that the Fermi
energy, measured relative to the band bottom, is EF = 2.5. The
quartic coupling is set to u = 1. The second term in Lϕ favors
commensurate antiferromagnetic order in �ϕ with Q = (π,π ).
In the following we mostly focus on the case of a bare bosonic
velocity of c = 3 and a Yukawa coupling between fermions
and bosons of λ = 1.5. Occasionally, we also consider other
values of c and λ.

Our numerical analysis of model (2) is based on exten-
sive finite-temperature DQMC [31–35] simulations. For the
general setup and technical details on the implementation of
our DQMC simulations, we refer to our earlier paper [28]
and its detailed supplemental online material. Here we want
to single out a few conceptual aspects of our setup, which
have allowed to push our simulations down to temperatures of
T = 1/40 for system sizes up to 16 × 16 sites. First, using
a replica-exchange scheme [38,39] in combination with a
global update procedure [28] thermal equilibration of our
simulations is decidedly improved. Most of our simulations
were performed in the presence of a weak fictitious perpen-
dicular “magnetic” field (designed not to break time-reversal
symmetry), which serves to greatly speed up convergence
to the thermodynamic limit for metallic systems [28,40,41].
Since this technique breaks translational invariance of the
fermionic Green’s function, we cannot make use of it to
study k-resolved fermionic observables. For this reason we
have carried out additional simulations without the magnetic
flux, but with twisted boundary conditions, which allows to
increase the momentum space resolution. We give details on
these procedures in Appendix A.

To set the stage for our discussion in the following
sections, we summarize the finite-temperature phase diagram
of model (2) for c = 3 and three different values of the
Yukawa coupling λ = 1, 1.5, and 2 in Fig. 2. Besides a

paramagnetic regime for sufficiently high temperature, the
dominant feature of these phase diagrams is a quasi-long-range
ordered SDW phase whose transition temperature TSDW is
suppressed with increasing tuning parameter r . Extrapolating
the SDW transition down to the zero temperature provides
an estimate of the location of the quantum phase transition
at r = rc (indicated by the red star). At low temperatures,
the SDW transition may become weakly first order [28].
However, in the temperature range considered here, the
transition is either continuous or (possibly) very weakly first
order. While for λ = 1, this SDW phase is the only ordered
phase down to temperatures of T = 1/40, there is an additional
superconducting phase emerging in the vicinity of the QPT for
the two larger values of the Yukawa coupling. For λ = 1.5, we
barely observe the tip of this quasi-long-range ordered phase
with a maximum critical temperature of T max

c ≈ 1/40, which
is our numerical temperature limit. For λ = 2, we can clearly
map out a superconducting dome with the maximum of the
critical temperature T max

c ≈ 1/20.
At finite temperatures, both the SDW and the SC finite-

temperature transitions are expected to be of BKT type.
The SDW susceptibility χ = ∫

dτ
∑

i e
iQ·ri 〈 �ϕi(τ ) �ϕ0(0)〉 is

found to follow a scaling law χ ∝ L2−η with a continuously
changing exponent η. We identify the transition temperature
TSDW with the point where the exponent takes the universal
value η = 1/4. The SC transition temperature can be both
determined via a similar η fit or by the point where the
superfluid density ρs obtains the universal value of 2Tc/π .
Both estimates are found to agree. The error bars in Fig. 2
are mostly due to finite-size effects. For further details on the
procedures employed to identify the different phase transitions
see Ref. [28] and its accompanying supplementary online
material.

A common feature to all three phase diagrams is a change
of slope of the SDW phase boundary curve at low temperatures
(T ≈ 0.07). This apparent “bending” is more pronounced at
larger Yukawa coupling λ. Such behavior is generally expected
to occur at the onset of superconductivity [28,42]. Here,
however, the bending does not visibly track the SC transition
temperature. The curvature of the TSDW line is also reflected
in the SDW susceptibility in the paramagnetic region of the
phase diagram, see Fig. 3 for λ = 1 and Fig. 18 in Appendix B
for λ = 1.5,2.
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FIG. 3. Inverse SDW susceptibility χ−1 across the phase diagram
for λ = 1. We show numerical data obtained at L = 14 at the
temperatures that are indicated by the ticks on the inside of the plot.
Intermediate temperatures are interpolated linearly, while the high
resolution in the tuning parameter r is achieved by reweighting.
Contour lines of χ−1 are marked gray.

Over a broader range of parameters, the maximum SC
transition temperature T max

c grows monotonically with in-
creasing of either the Yukawa coupling or the boson velocity
c, as illustrated in Fig. 4. Up to an intermediate coupling
strength λ ≈ 3, T max

c rapidly grows as T max
c ∝ λ2, eventually

saturating at stronger coupling. Qualitatively, these trends are
in agreement with results from Eliashberg theory [43].

III. MAGNETIC CORRELATIONS

We start our discussion of the quantum critical behavior
of model (2) with an examination of magnetic fluctuations
across its entire finite-temperature phase diagram. We probe
the formation of magnetic correlations both through the
susceptibility of the bosonic order parameter, �ϕ, and through
a fermionic bilinear of the same symmetry, which we evaluate
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FIG. 4. The maximal superconducting transition temperature
T max

c for different values of the Yukawa coupling λ and (bare)
boson velocity c. The hatched gray region indicates temperatures
T < 0.025, which are beyond our numerically accessible temperature
range.

independently in the same numerical simulations of the action
(2). As we show below, both susceptibilities exhibit the same
behavior, supporting the robustness of our conclusions to be
presented.

A. Bosonic SDW susceptibility

We first consider the bosonic susceptibility calculated from
the SDW order parameter �ϕ in action (2)

χ (q,iωn,r,T ) =
∑

i

∫ β

0
dτeiωnτ−iq·ri 〈 �ϕi(τ ) · �ϕ0(0)〉 (3)

for a given momentum q and Matsubara frequency ωn =
2πnT . The expectation values are estimated in a DQMC
simulation run at finite temperature T and for a specific value
of the tuning parameter r , indicated here as explicit parameters.
At low temperature, we use the following form to fit the data,
inspired by Hertz theory [5]:

χ−1
0 (q,iωn,r,T → 0)

= aq(q − Q)2 + aω|ωn| + ar (r − rc0), (4)

where aq, aω, and ar are nonuniversal fitting parameters that
describe the momentum dependence in the vicinity of the
ordering wave vector Q = (π,π ), Landau damping, and the
dependence on the tuning parameter r , respectively. The fitting
parameter rc0 indicates the location of the divergence of χ0.
Due to the appearance of a superconducting phase at low
temperatures, rc0 may differ from the actual location of the
QPT at r = rc. However, within our numerical resolution,
we find rc0 ≈ rc, where rc is obtained by extrapolating the
finite-temperature transition line TSDW → 0, as shown in the
phase diagrams of Fig. 2.

Running extensive DQMC simulations for system sizes
L = 8,10, . . . 14, we have evaluated χ across the three
principal phase diagrams of Fig. 2 for different values of
the Yukawa coupling λ = 1, 1.5, 2 and bare bosonic velocity
c = 3. Restricting our analysis to the magnetically disordered
side for each coupling and to temperature scales above the
superconducting phase, we find that our calculated susceptibil-
ities are in good agreement with the functional form of Eq. (1).
The consistency with Eq. (4) is illustrated in the panels of
Fig. 5, which show data collapses for a range of small momenta
q − Q, small Matsubara frequencies, low temperatures T �
0.1 and tuning parameters r � rc0. Finite-size effects are rather
small. Considering the variation of the Yukawa coupling λ, we
find that the fit to the functional form (4) is slightly worse
for stronger coupling λ, which is also indicated by the larger
spread of the data points. This decreasing fit quality may be
a consequence of the smaller temperature window available
above the superconducting Tc, as well as the associated
regime of superconducting fluctuations at T � Tc [28], which
increases with Yukawa coupling (see also Fig. 4).

With the data collapse of Fig. 5 asserting the general validity
of the functional form (4), we now take a closer look at its
individual dependence on tuning parameter, frequency, and
momentum. First, the dependence on the tuning parameter r is
illustrated for the inverse susceptibility χ−1(q = Q,iωn = 0)
in Fig. 6 (for λ = 1.5 and T = 0.1). For tuning parameters
r � rc0 = 0.6 we find that the data for different system sizes
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FIG. 5. Comparison between the inverse SDW susceptiblity χ−1

and the functional form χ−1
0 = aq (q − Q)2 + aω|ωn| + ar (r − rc0),

which has been fitted for small frequencies ωn and momenta q − Q at
low temperatures T and tuning parameters r > rc0 in the magnetically
disordered phase, for (a) λ = 1, (b) 1.5, and (c) 2. Data inside
the superconducting phase have been excluded from the fit. For
temperatures T � 2T max

c we restrict the fit to finite frequencies |ωn| >

0. The correspondence of χ−1 with the fitted form is shown in the form
of 2D histograms over all data points, which are normalized over the

total area. In each fit we have minimized χ 2
dof = 1

Ndof

∑
[

χ−1−χ−1
0

ε
]
2
,

where Ndof is the number of degrees of freedom of the fit and ε is the
statistical error of the data.

follows a linear dependence. The moderate deviation from a
perfect kinklike behavior at rc0 is likely a combination of finite-
size and finite-temperature effects (see also the finite-size trend
shown in the inset of Fig. 6). A very similar picture emerges
for the two other coupling parameters λ = 1 and λ = 2, for
which we show analogous plots in Fig. 19 of Appendix B.

Turning to the frequency dependence of χ−1(q,iωn) next,
we find that for a range of values r � rc0 the frequency
dependence is linear for small Matsubara frequencies ωn with
an apparent cusp at ωn = 0, signaling overdamped dynamics
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FIG. 6. Bosonic SDW susceptibility χ−1(q = Q,iωn = 0) as a
function of the tuning parameter r for λ = 1.5 at T = 0.1. The black
line is a linear fit for r > 0.7 and L = 14. Continuous colored lines
through data points have been obtained by a reweighting analysis.

of the order parameter field. This holds both for q = Q and for
small finite momentum differences q − Q. See Fig. 7 for an
illustration at λ = 1.5 and Appendix B with Fig. 20 for λ = 1
and λ = 2. At finite Matsubara frequencies ωn, finite-size
effects are negligibly small, as evident in the data collapse
of χ−1 for different system sizes in the left panel in Fig. 7.

To establish the presence of a |ωn| term in χ−1, we fit it
at low frequencies to the form b0 + b1|ωn| + b2ω

2
n. The fits

are shown in Fig. 7. The |ωn| contribution is clearly dominant
in this frequency range. Inside the superconducting phase, the
|ωn| term is suppressed (see Fig. 24 in Appendix B). This is
presumably due to gapping out of the fermions.

Third, for the same range of r , the momentum dependence
of χ−1(q,iωn) is consistent with a quadratic form in q − Q,
which holds both for ωn = 0 and small finite frequencies ωn.
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FIG. 7. Frequency dependence of the inverse bosonic SDW
susceptibility χ−1 for λ = 1.5 at T = 1/40 (a) shown at r ≈ rc0

for various momenta q = Q + q̃ and (b) shown at various values
r > rc0 for q = Q. The black line is the best fit of a second degree
polynomial b0 + b1|ωn| + b2ω

2
n to the q = Q, L = 14 low-frequency

data, yielding a basically straight line.
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momentum q = Q + q̃ for λ = 1.5 at T = 1/40 (a) shown at r ≈ rc0

for various frequencies ωn and (b) shown at various values r � rc0

for ωn = 0. The black line is the best fit of a0 + a2q̃2 to the ωn = 0,
L = 14 small-momentum data.

(See Fig. 8 for λ = 1.5 and Appendix B with Fig. 21 for λ = 1
and λ = 2.) Note that due to the discretization of the Brillouin
zone, finite-size effects are more pronounced here than for the
frequency dependence.

B. Fermion bilinear SDW susceptibility

An important independent confirmation that the form (4)
is generic to the quantum critical regime is to affirm that it
also holds for other SDW order parameters that have the same
symmetry. We have examined the correlations of a fermion
bilinear order parameter:

Sxx(q,iωn,r,T ) =
∑

i

∫ β

0
dτeiωnτ−iq·ri

〈
Sx

i (τ )Sx
0 (0)

〉
. (5)

In the estimation of Sxx , we make use of spin rotational
symmetry around the z axis, 〈Sx

i (τ )Sx
0 (0)〉 = 〈Sy

i (τ )Sy

0 (0)〉.
Here, Sx

i and S
y

i are interflavor fermion spin operators, which
are given by

�Si = (
Sx

i ,S
y

i ,Sz
i

) =
∑
s,s ′

�sss ′ψ
†
xisψyis ′ + H.c. (6)

Indeed, we find that at small frequencies and momenta, the
fermion bilinear SDW susceptibility Sxx follows the same
functional form (4) as the bosonic SDW susceptibility χ

discussed above. The momenta and frequency dependencies
of the fermionic bilinear susceptibility at λ = 1.5 are shown
in Fig. 9, with the respective dependencies of the bosonic
susceptibility appearing in Figs. 7 and 8. Additional data for
the fermionic SDW susceptibility at λ = 1 and λ = 2 is given
in Fig. 22 of Appendix B. In summary, the dependence of both
the bosonic and fermionic SDW susceptibilities on the tuning
parameter, frequency, and momentum stand in good agreement
with the form (4).
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FIG. 9. Inverse fermionic SDW susceptibility S−1
xx for λ = 1.5 at

T = 1/40 and r = 0.7 ≈ rc0. (Left-hand side) Frequency dependence
for various momenta q = Q + q̃. The black line is a fit of the second
degree polynomial b0 + b1|ωn| + b2ω

2
n to the q = Q, L = 14 low-

frequency data, yielding a basically straight line. (Right-hand side)
Momentum dependence for various frequencies ωn. The black line is
a fit of a0 + a2q̃2 to the ωn = 0, L = 14 small-momentum data.

C. Temperature dependence

We now turn to the temperature dependence of the nu-
merically computed bosonic and fermionic SDW susceptibil-
ities χ−1 and S−1

xx . Our numerical data for the temperature
dependence of χ−1 and S−1

xx are shown in Fig. 10 for fixed
Yukawa coupling λ = 1.5 and two different values of the
tuning parameter on the paramagnetic side of the QCP, i.e.,
for r > rc0. These data are complemented with similar results
for λ = 1 and 2 in Fig. 23 of Appendix B.

Evidently, the data show different scaling regimes with
increasing temperature. At sufficiently high temperatures, T �
0.35, the susceptibilities χ−1(q = Q,iωn = 0) and S−1

xx (q =
Q,iωn = 0) are approximately linearly dependent on temper-
ature, as shown in the insets of Fig. 10. In an intermediate
temperature regime, however, we observe a crossover to a
different functional temperature dependence as shown in the
main panels of Fig. 10. In this intermediate temperature
window 0.05 � T � 0.35, our numerical data are found to
reasonably fit functions of the quadratic form a0 + a2T

α with
α � 2 ± 0.3. Unlike the leading dependencies on the tuning
parameter, frequency and momentum discussed in the previous
section, this power-law dependence is not as robust. Note
that the crossover temperature between the high-T linear and
intermediate-T quadratic behaviors does not depend strongly
on the tuning parameter r . Notably, even for r ≈ rc0, this
intermediate regime does not disappear.

At still lower temperatures T � 0.05, our data might
indicate a second crossover to yet different behavior. With
the tuning parameter r tuned close to its critical value rc0

both χ and Sxx are found to be nonmonotonic for the smallest
temperatures and largest system sizes accessed in this study.
The apparent upturn, whose precise location is hard to deter-
mine due to finite-size effects (which are strongest for r ≈ rc0)
and the enhanced statistical uncertainty at low temperatures, is
most likely a precursor effect of superconductivity [28], which
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FIG. 10. Inverse bosonic SDW susceptibility χ−1(q = Q,iωn =
0) and inverse fermionic SDW susceptibility S−1

xx (q = Q,iωn = 0) as
a function of temperature for λ = 1.5 at (a) r = 0.7 ≈ rc0 and at (b)
r = 1.0 > rc0. Solid lines indicate fits of a0 + a2T

2 to the L = 14
data at intermediate temperatures. Dashed lines are linear fits to the
high-temperature data. In each figure the inset shows the same data
as the main plot over a more extended temperature range.

for λ = 1.5 sets in just at the lowest temperature we have
accessed in this work, Tc ≈ 1/40. For larger Yukawa coupling
λ = 2, where Tc is higher, this nonmonotonic behavior is
indeed found to be more pronounced as shown in Fig. 23
of Appendix B.

Note that over the range of temperatures displayed in Fig. 3
the leading temperature dependence of χ−1 is quadratic. This
is reflected in the contour lines of χ−1 in the r-T plane, which
have a form T ∼

√
χ−1 − ar (r − rc0), approaching infinite

slope at low temperatures.
Since the data do not allow us to identify a simple functional

form for the temperature dependence of χ−1, we have opted
against taking into account any temperature dependence in the
fits for the data collapses shown in Fig. 5. Instead we have
constrained the included data to T < 0.1 where the overall
temperature dependence is rather weak.

IV. SINGLE-FERMION CORRELATIONS

We now turn to examine the fermionic spectral properties
in the metallic state above the superconducting Tc. As our
DQMC simulations are performed in imaginary time, there

is an inherent difficulty in probing real-time dynamics. To
partially circumvent this issue, we use the relation [44]

Gk(τ ) =
∫ ∞

−∞
dω

e−ω(τ−β/2)

2 cosh βω/2
Ak(ω) , (7)

which connects the readily available imaginary-time ordered
Green’s function Gk(τ ) = 〈ψk(τ )ψ†

k(0)〉, where 0 � τ � β,
with the spectral function Ak(ω) of interest. Here and in
the following, we focus on a single flavor of fermions ψy ,
suppressing band and spin indices. Close inspection of (7)
reveals that the behavior of the Green’s function Gk(τ ) at long
times, i.e., for imaginary times close to τ = β/2, provides
information about the spectral function integrated over a
frequency window of width T .

In Fig. 11, we present the evolution of the Fermi surface
across the phase diagram. For orientation, the Fermi surfaces
of the noninteracting system are shown in panel (a). In
panels (b)–(d) we show Gk(τ = β/2) across a quadrant of the
Brillouin zone for a low temperature T = 0.05 ≈ 2T max

c . Near
the magnetic QCP (panel c), there is a clear loss of spectral
weight in the immediate vicinity of the hot spots, as compared
to the magnetically disordered phase (panel d). Upon entering
the magnetic phase (panel b), a gap opens around the hot spots.
In this section we focus on the parameter set λ = 1.5 and c = 3.
The DQMC simulations are carried out with different sets of
twisted boundary conditions (see Appendix A for details),
providing a four-fold enhancement in k-space resolution.

A Fermi liquid is usually characterized by the quasiparticle
weight ZkF

and the Fermi velocity vkF
. We note that these

quantities are only strictly defined at zero temperature. Given
that the zero-temperature ground state of our model is probably
always superconducting, our strategy is to consider finite-
temperature proxies for ZkF

and vkF
, and study their behavior

over an intermediate temperature range EF > T > Tc. Such
proxies, Zτ

kF
(T ) and vτ

kF
(T ), can be extracted by considering

the imaginary time dependence of Gk(τ ) near τ = β

2 and fitting
it to the Fermi liquid form [41]

Gk(τ ∼ β/2) = Zτ
k(T )

e−εk(τ− β

2 )

2 cosh
(

βεk
2

) , (8)

where εk = vτ
kF

(T ) · (k − kF ).
In a complementary approach we consider the Matsubara

frequency dependence of the Green’s function Gk(ωn) =∫ β

0 dτ eiωnτGk(τ ). In a Fermi liquid at low temperatures, we
have [45]

Gk(ωn) ≈ Zk[iωn − vkF
· (k − kF )]−1 (9)

up to higher-order terms in temperature, frequency, or the
distance from the Fermi surface. It is then natural to define the
finite-temperature quantities

Zω
kF

(T ) = ω1

Im G−1
kF

(ω1)
(10)

and

vω
kF

(T ) = ω1
∂

∂k

Re Gk(ω1)

Im Gk(ω1)

∣∣∣∣
k=kF

, (11)

where ω1 = πT is the first Matsubara frequency at tem-
perature T . In the zero-temperature limit, Zω

kF
(T → 0) =
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FIG. 11. (a) Noninteracting Fermi surfaces. A pair of hot spots is connected by the magnetic ordering wave vector Q. The dashed curve
corresponds to the Fermi surface of the ψx band, shifted by Q, with a hot spot now at the intersection with the ψy band. (b)–(d) Color-coded
Green’s function Gk(τ = β/2) evaluated for the ψy fermions on a quadrant of the Brillouin zone, dotted in (a), for three values of the tuning
parameter r . The dashed curve in panel (c) corresponds to the shifted noninteracting ψx Fermi surface. The parameters used here are L = 16,
T = 0.05, λ = 1.5, and c = 3. Results of simulations with different boundary conditions are combined for enhanced momentum resolution.

Zτ
kF

(T → 0) = ZkF
, and similarly for vkF

. We therefore use
the finite-temperature observables (10) and (11) as alternative
proxies for the quasiparticle spectral weight and Fermi
velocity, respectively.

Figure 12 shows the momentum dependence of Zτ
k for

temperature T = 1/20. With r tuned close to the location of
the QCP at rc, Zτ

k is suppressed in the vicinity of the hot spots,
as shown for one quadrant of the Brillouin zone in Fig. 12(a)
and along the Fermi surface in Fig. 12(c). This stands in sharp
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FIG. 12. (a) and (b) The quasiparticle weight Zτ
k(T = 0.05) in

a quadrant of the Brillouin zone. The dashed line in panel (a)
corresponds to the noninteracting Fermi surface of the ψx fermions,
shifted by Q. (c) and (d) The quasiparticle weights Zτ

k(T = 0.05)
and Zω

k (T = 0.05) along the Fermi surface. The location of the hot
spot is indicated by the red marker. Here, we show data obtained for
L = 16.

contrast to the featureless behavior of Zτ
k in the magnetically

disordered phase, as shown in Figs. 12(b) and 12(d). We find
qualitative agreement between the two proxies Zτ

k and Zω
k

throughout, as illustrated in panels (c) and (d) of Fig. 12. Here,
we numerically identify and track the Fermi surface as the
maxima of Gk(τ = β/2) at fixed kx .

The temperature dependence of Zτ
k(T ) is shown in Fig. 13.

For momenta away from the hot spots, we find Zτ
k(T ) to

be nearly flat in temperature and to approach a constant as
T → 0. A different picture emerges at the hot spots, i.e., for
k = khs . Here, Zτ

k=khs
(T ) remains flat only in the magnetically

disordered phase r > rc, whereas the quasiparticle weight
Zτ

k=khs
(T ) decreases substantially at the critical coupling

rc ≈ 0.7 as the temperature is lowered towards the QCP, see
Fig. 13(a). While our numerical data do not allow for a simple
extrapolation towards T = 0, the results are not inconsistent
with a vanishing of Zk=khs

, indicating a breakdown of Fermi-
liquid behavior at this point.

Figure 14 shows the velocity vkF
(T = 0.05) along the

Fermi surface. The qualitative behavior of the velocity does
not differ substantially between r = 0.7 ≈ rc [Fig. 14(a)]
and r = 1 > rc [Fig. 14(b)]. The insets show the ratio
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FIG. 13. Temperature dependence of the quasiparticle weight
Zτ

k(T ) for different momenta kx along the Fermi surface (a) in the
vicinity of the QCP at rc and (b) in the disordered side. Here we show
data obtained for L = 16.
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the red marker. Here we show data obtained for L = 16 at T = 0.05.

vkF
(T = 0.05)/vnonint

k , where vnonint
k is the Fermi velocity of

the noninteracting system. A small feature might be visible in
the vicinity of the hot spot, but there is certainly no evidence
of a substantial suppression of vkhs

close to rc.
Having found a substantial suppression of the quasiparticle

weight tuned close to the QCP, we now directly examine the
frequency dependence of the self-energy, �k(ωn), defined via
Gk(ωn) = (iωn − εk − �k(ωn))−1. The imaginary part of the
self-energy is shown in Fig. 15. With r = 0.7 ≈ rc tuned close
to the QCP, see Fig. 15(a), the self-energy close to the hot spots
is found to be nearly frequency independent, consistent with
a constant, yet small, scattering rate γ = − Im �khs

(ωn →
0+) ≈ 0.13, which is only weakly dependent on temperature.
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FIG. 15. The imaginary part of the Matsubara self-energy Im �

for different temperatures and two momenta along the Fermi surface,
(a) in the vicinity of the QCP at rc and (b) on the disordered side.
Here we show data obtained for L = 14. The data for k = khs are
indicated by full circles, the momentum away from the hotspot is
indicated by empty squares.

Away from the hot spot the self-energy is linear with frequency,
with a substantially smaller intercept. Moving away from
the critical point [Fig. 15(b)], the self-energy at all momenta
decreases rapidly as the frequency is lowered.

V. SUPERCONDUCTING STATE

After concentrating our discussion on the manifestation of
quantum critical behavior in the normal state, we now consider
the effect of the QCP on the superconducting state that emerges
in its vicinity. We begin by considering the fermionic Green’s
function for temperatures T � Tc. In this regime, the single-
particle excitation energy Ek can be extracted, as demonstrated
in Appendix D, from the decay of the single-particle Green’s
function at intermediate times τ0 < τ < β/2 (where τ0 is a
microscopic scale). The so-extracted excitation energy Ek is
plotted in Fig. 16, which shows that, across the Brillouin zone,
Ek has a broad minimum in the vicinity of the noninteracting
Fermi surface. From these momentum-resolved energy bands,
we extract the superconducting gap �kx

as the minimum of Ek
with respect to ky . As seen in Fig. 16(b), the superconducting
gap �kx

varies smoothly across momentum space, without any
significant features at the hot spots. In this section we choose
parameters λ = 3 and c = 2, as in Ref. [28]. The maximal
Tc for this value of λ is high enough to allow us to explore
properties of the superconducting state significantly below Tc.

At higher temperatures, close to Tc, additional information
can be obtained by considering the momentum-resolved
superconducting susceptibility

Pkα;k′α′ =
∫ β

0
dτ 〈�kα(τ )�†

k′α′ (0)〉, (12)

where �kα = 1
2 (ψkα↑ψ−kα↓ − ψkα↓ψ−kα↑) is the singlet su-

perconducting pair amplitude on the band α = x,y. Here we
focus on the intraband, spin-singlet channel since it is the
leading instability [17,28]. Figure 17 shows the optimal pair
amplitude �

opt
kα , corresponding to the maximal eigenvalue of

the matrix Pkα;k′α′ at a temperature slightly above Tc. The pair
amplitude of the band α = y, shown in Fig. 17(a), is of the
opposite sign to the amplitude on the band α = x, shown in
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FIG. 16. (a) Single-particle excitation energy Ek of the ψy

fermions, as extracted from the imaginary-time evolution of the
Green’s function Gk(τ ) across the Brillouin zone, cf. Fig. 26 of the
appendix. (b) Single-particle gap �kx

. For both panels, data are for
parameters λ = 3, c = 2, r = 10.2 and T = 0.025 ≈ 0.3Tc [28] and
a system size of L = 12. Several twisted boundary conditions were
combined for a fourfold enhancement of the resolution in k space,
see Appendix A.
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FIG. 17. Optimal pair amplitude �
opt
kα with the band α = y shown

in (a) and the band α = x shown in (b). Data are calculated for
parameters λ = 3, c = 2, r = 10.2, and T = 0.1 ≈ 1.2Tc and system
size L = 14.

Fig. 17(b). In fact, the two amplitudes are related precisely
by a π/2 rotation, highlighting the d-wave symmetry of the
superconducting order parameter. The optimal pair amplitude
is found to be maximal around the (noninteracting) Fermi
surface. The variation of �

opt
kα along the Fermi surface is weak,

again showing no strong features at the hot spots.

VI. DISCUSSION

In this work, we have explored the properties of a metal
on the verge of an SDW transition. We focused on the critical
regime upon approaching the transition, characterized by a
rapid growth of the SDW correlations, but still above the
superconducting transition temperature. Our main conclusion
is that, in this regime, the SDW correlations are remarkably
well described by a form similar to that predicted by Hertz-
Millis theory, Eq. (1) (although the temperature dependence
of the SDW susceptibility deviates from the expected form).
This holds both for the correlations of the bosonic SDW
order parameter field, and for an SDW order parameter
defined in terms of a fermion bilinear. In the same regime,
we find evidence for strong scattering of quasiparticles near
the hotspots, leading to a breakdown of Fermi liquid theory
at these points on the Fermi surface. The scattering rate
at the hotspots (extracted from the fermion self-energy) is
only weakly temperature and frequency dependent, down to
T ≈ 2Tc, where we suspect that superconducting fluctuations
begin to play a role; it is out of this unusual metallic state that
the superconducting phase emerges.

In addition, we have studied the structure of the super-
conducting gap near the SDW transition. Unlike the single-
fermion Green’s function in the normal state, it does not have
a sharp feature at the hot spots; rather, it is found to vary
smoothly across the Fermi surface. Experimentally, a broad
maximum of the superconducting gap near the hot spots was
observed in a certain electron doped cuprate [46]. Eliashberg
theory predicts a peak of the gap function at the hot spots at
weak coupling [47] and it remains to be seen whether such
behavior appears in our model at weaker coupling.

It is interesting to discuss our results in the context of the
existing theories of metallic SDW transitions. First, the fact
that Hertz-Millis theory successfully describes many features
of our data is nontrivial, in view of the fact that it has
no formal justification, even in the large N limit [12,14].
However, as we saw, an extension of the Hertz-Millis analysis

to finite temperature predicts that at criticality, χ (T ) ∼ 1/T , in
apparent disagreement with our data. This may be due to the
limited temperature window we can access without hitting
the superconducting Tc, or to effects beyond the one-loop
approximation.

An important conclusion of our study is that the SDW
critical point is always masked by a superconducting phase.2

As a result, it seems likely that the critical metallic regime
is never parametrically broad, and one cannot sharply define
scaling exponents within the metallic phase.3 As mentioned
above, the SDW correlations follow a Hertz-Millis form—and
hence it is tempting to associate with them critical exponents,
i.e., a mean-field value ν = 1/2 for the correlation length
exponent, and a dynamical critical exponent z = 2. The
fermionic quasiparticles at the hot spots, however, do not
exhibit this scaling behavior. In particular, the expected scaling
law �(ωn) ∼ √

ωn for the fermion self-energy at the hot spots
is not seen within our accessible temperature range.

One can imagine trying to access the “bare” metallic
quantum critical point by suppressing the superconducting
transition. Presumably, this can be done by adding to the model
a term that breaks time-reversal and inversion symmetries
(such a term would lift the degeneracy of fermionic states with
opposite momenta, and hence remove the Cooper instability).
Breaking time-reversal symmetry, however, gives rise to a sign
problem, so it is not clear whether the critical behavior can be
accessed within the QMC technique.

Alternatively, one could try to understand the metallic
regime above Tc in our model as a crossover regime of
an underlying “nearby” metallic critical point, where some
correlators already exhibit their asymptotic behavior (such
as the SDW order parameter correlations), while others do
not (e.g., the single-fermion Green’s function). Interestingly,
a simple, non-self-consistent one-loop calculation of the
fermionic self-energy in our model does show a broad range of
temperature and frequency where the self-energy at the hot spot
is nearly constant, before eventually settling into the expected√

ωn behavior (see Appendix C). This calls for a more detailed
comparison between our numerically exact DQMC results
and a detailed self-consistent one-loop analysis. Preliminary
results show that this approximation is surprisingly successful
in capturing at least some of the physics of our model [43].

To what extent such a crossover behavior, characterized
by a nearly-constant fermionic lifetime at the hotspots, is
ubiquitous across different models, as well as in real materials,
remains to be seen. It is interesting to note, however, that
a similar behavior has been observed in a study of a
nematic transition in a metal [48]. It would be interesting
to systematically look for such behavior in angle-resolved
photoemission spectroscopy in the electron-doped cuprates,
where anomalously large broadening of the quasiparticle peaks
is seen near the hot spots [49].

2Even for the smallest value of λ that we have studied, where the
maximal Tc is smaller than the lowest temperature in our study, we
see enhancement of diamagnetic fluctuations, indicating that we are
not too far above Tc.

3In the superconducting phase, we expect criticality of the d =
2 + 1 XY universality class, since the Fermi surface is gapped.
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Another important aspect of the metallic state in the
critical regime, which we have not addressed in this work,
is the electrical conductivity. The optical conductivity may be
strongly affected by the presence of an SDW critical point, even
without quenched disorder [16,50]. Extracting the conductivity
from quantum Monte Carlo simulations requires an analytic
continuation, and is therefore intrinsically more difficult (and
involves more uncertainties) than calculating thermodynamic
and imaginary-time quantities. Nevertheless, we have obtained
preliminary results showing strong effects of the critical
fluctuations on the low-frequency optical conductivity [51].
A full analysis of the conductivity is deferred to future work.
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APPENDIX A: DQMC SIMULATIONS

In this appendix, we elaborate on a number of specific
technical aspects of our numerical implementation of the
determinantal quantum Monte Carlo (DQMC) approach. We
refer readers looking for a more comprehensive discussion of
the general DQMC setup to our previous paper [28] and in
particular its supplementary online material.

We study the lattice model described by the action (2)
at finite temperature in the grand canonical ensemble. After
discretizing imaginary time and integrating out the fermionic
degrees of freedom, the partition function reads

Z =
∫

D �ϕ e−�τ
∑

τ Lϕ (τ ) det G−1
ϕ , (A1)

where Gϕ is the equal-time Green’s function matrix for a
fixed configuration of the bosonic order parameter field �ϕ. We
use an imaginary time step of �τ = 0.1 in all calculations.
The DQMC method samples configurations of �ϕ according
to their weight exp (−�τ

∑
τ Lϕ(τ )) · det G−1

ϕ . For efficient
Monte Carlo sampling, is it highly advantageous to consider
models in which the determinant in (A1) is guaranteed to be
positive, thereby avoiding the notorious fermion sign problem.
For the two-band model that has been proposed in Ref. [17] this
is ensured by an antiunitary symmetry of the action [52–54],
written in first quantization as

U = isyτzK with U2 = −1 . (A2)

Here, K is the complex conjugation operator and sy (τz) are
Pauli matrices acting in spin (flavor) space, respectively.

In this manuscript we have modified the model of Ref. [17]
in two regards. First, as in our previous paper [28], we consider
an easy-plane SDW order parameter, rather than an O(3)
symmetric order parameter used in [17]. Second, we couple
the system to a fictitious, spin and band dependent orbital
“magnetic” field, whose flux through the system is given
by ��α,s = �(x)

α,s �e x + �
(y)
α,s �e y + �(z)

α,s �e z. Here, we place the
two-dimensional lattice (x,y directions) on a torus. The x and
y components of the flux twist the boundary conditions along
the y and x directions, respectively, while the z component acts
as an orbital magnetic field with a uniform flux per plaquette
through the torus. As in the definition of the action (2), α = x,y

is a fermion flavor index and s = ↑,↓ is a spin index. The flux
�z is restricted to be an integer multiple of the flux quantum
�0.

In order to preserve the symmetry (A2), fermions of
different spin and flavor are coupled to this fictitious flux as

��α,↑ = − ��α,↓ and

��x,s = − ��y,s, (A3)

with ��x,↑ = ��. Note that the interband sign change is not
strictly necessary to avoid the fermion sign problem. Impor-
tantly, in the thermodynamic limit L → ∞ the fictitious field
vanishes. In our previous paper [28] and for some of the results
in the present one, we have chosen �� = (0,0,�0). Although
such a flux is useful in reducing spurious finite-size effects at
low temperatures [40,41], it also breaks lattice translational
symmetry, hampering the analysis of nonlocal, fermionic
correlation functions such as the momentum-resolved Green’s
function. In order to measure such quantities, for the present
paper, we have run additional simulations without applying a
perpendicular flux �(z), but instead with in-plane fields, such
that �� = (nx,ny,0)�0

4 , where ni = 0,1,2,3. This procedure is
equivalent to having twisted boundary conditions, such that
the allowed momenta for the ψx,↑ fermions are

k = 2π

4L
(4jx − ny,4jy + nx), (A4)

where jx , jy are integers, thereby enhancing the momentum-
space resolution of fermionic observables fourfold.

APPENDIX B: MAGNETIC CORRELATIONS FOR λ = 1
AND λ = 2, AND INSIDE THE
SUPERCONDUCTING PHASE

In this appendix, we present additional data for the
bosonic and fermionic SDW susceptibilities χ (q,iωn,r,T )
and Sxx(q,iωn,r,T ). We begin with Fig. 18, which shows
χ−1(q = Q,iωn = 0) across the phase diagrams for λ = 1.5
and λ = 2. It illustrates how the bending of the SDW finite-
temperature transition line is also visible in χ−1 for r > rc0,
similarly to the behavior for λ = 1 in Fig. 3, where, however,
no superconducting phase has been observed within our
temperature resolution.

Next, to complement the discussion in Sec. III, where we
have focused on the Yukawa coupling λ = 1.5 and a bosonic
velocity of c = 3, we here show detailed data for values λ = 1
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FIG. 18. Companion figure to Fig. 3 for (a) λ = 1.5 and (b) λ = 2.

and 2 at the same velocity c. In Fig. 19, we show χ−1(q =
Q,iωn = 0) as a function of r for constant T = 0.1, where the
same linear dependence as for λ = 1 (Fig. 6) is apparent. As
we show in Fig. 20 both for r ≈ rc0 and a range of r > rc0

the leading frequency dependence of χ−1 is clearly linear,
similarly to λ = 1.5 (Fig. 7), whereas the leading momentum
dependence shown in Fig. 21 is quadratic in q − Q, which
is again comparable to λ = 1.5 (Fig. 8). Note that for λ = 2

we show data at a higher temperature T = 1/20 rather than
at T = 1/40, because otherwise the system would be in the
superconducting phase, where the frequency dependence is
significantly altered. For small frequencies and momenta the
fermionic susceptibility S−1

xx in Fig. 22 behaves similarly to the
bosonic χ−1 (see Fig. 9 for λ = 1.5).

The temperature dependence of both χ−1 and S−1
xx is

demonstrated in Fig. 23. As in the case of λ = 1.5 (Fig. 10),
we observe a linear regime at high temperatures, shown in the
insets, and a crossover region, where we can fit a quadratic
law. For λ = 1, this second region extends down to lower
temperatures than for λ = 1.5, where Tc is higher. At λ = 2, the
data for T < 0.05 are from within the superconducting phase.
Moreover, at r = 3.1 ≈ rc0 the system is partially inside the
magnetic quasi-long-range order phase (cf. the phase diagram
in Fig. 2).

Finally, to illustrate the influence of superconductivity on
the frequency dependence of the SDW susceptibility, we show
data from deep within the superconducting phase in Fig. 24.
Here we have chosen a data set with different values of the
Yukawa coupling λ = 3 and the bosonic velocity c = 2 (as
in Ref. [28]) since T max

c ≈ 0.08 is about twice as high for
these parameters as for λ = 2, c = 3. In contrast to the data at
T > Tc shown in Figs. 7 and 20, the low-frequency behavior
is clearly no longer purely linear—indicative of a suppression
of Landau damping in the superconducting phase.

APPENDIX C: COMPARISON WITH A ONE LOOP
APPROXIMATION FOR THE FERMION SELF-ENERGY

In this Appendix, we consider the fermionic self-energy
in a one-loop approximation. To this order, the self-energy is
given by

�k,α=y(ωn) = λ2

βL2

∑
q,m

χq(�m)G0
k+q,α=x(ωn + �m), (C1)

where G0 is the noninteracting Green’s function and �m =
2πmT is a bosonic Matsubara frequency. Deferring more
systematic calculations for future work, here we do not attempt
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FIG. 19. Companion figure of Fig. 6 for Yukawa couplings (a) λ = 1 and (b) λ = 2. The black lines are linear fits of the L = 14 data for
(a) r > −1.2 and (b) r > 3.2.
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FIG. 20. Companion figure of Fig. 7 for Yukawa couplings λ = 1 at T = 1/40 (left) and λ = 2 at T = 1/20 (right).

a full, self-consistent solution of the coupled Eliashberg
equations [8] for the SDW correlations and the fermionic
Green’s function. Instead, we use the noninteracting Green’s
function and χ taken from a lattice, discretized imaginary time
version of Eq. (4):

χ−1
q (�m) = ar (r − rc)

+ 4aq

[
sin2

(
qx − Qx

2

)
+ sin2

(
qy − Qy

2

)]

+ 2aω

�τ

∣∣∣∣ sin

(
�τ�m

2

)∣∣∣∣, (C2)

where the parameters ar,aq,aω are taken from a fit to the
DQMC data, see Section III A. Strictly speaking, this proce-
dure is not justified. However, since within a self-consistent
Eliashberg theory, χ has the form (4, C2), we expect our
simplified approximation to capture the general behavior of
the self-consistent theory.

In Fig. 25, we show the imaginary part of the self-energy.
The results bear some similarities to the DQMC data, shown in

Fig. 15. Whereas at moderate r − rc or away from the hotspots
the self-energy is rapidly diminished as the frequency ωn is
lowered, the behavior at the hotspots as r approaches rc is
different. There, as a function of temperature, a change of slope
occurs in the frequency dependence of the self-energy, where
at intermediate temperatures T ≈ 0.1 the self-energy is nearly
frequency independent. Only at lower temperatures, �khs

(ωn)
starts resembling the expected

√
(ωn) form. In comparing with

the DQMC results in Fig. 15, we note the similar magnitude
of the self-energy. However, the DQMC results show a far
weaker temperature dependence at the hotspots for r close
to rc.

APPENDIX D: EXTRACTING THE SUPERCONDUCTING
GAP

In this appendix, we provide a detailed description of the
procedure by which we extract the single-particle excitation
energy Ek in the superconducting state, which we discuss in
Sec. V of the main text. The single-particle Green’s function
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FIG. 21. Companion figure of Fig. 8 for Yukawa couplings λ = 1 at T = 1/40 (left) and λ = 2 at T = 1/20 (right).
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FIG. 22. Companion figure of Fig. 9 for Yukawa couplings λ = 1 at T = 1/40 (left) and λ = 2 at T = 1/20 (right).

Gk(τ ) is found to exhibit a characteristic imaginary-time
evolution as shown in Fig. 26. At intermediate times, τ0 <

τ < β/2, where τ0 ∼ 1 is some microscopic time scale, the
single-particle Green’s function decays exponentially as

Gk(τ ) ∝ e−E
p

k τ , (D1)

and similarly, for times τ0 < β − τ < β/2,

Gk(τ ) ∝ e−Eh
k (β−τ ) . (D2)

At long times, τ ≈ β/2 the Green’s function is substantially
suppressed and statistical errors dominate the signal. We
extract the decay constants E

p

k and Eh
k from appropriate
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exponential fits and define the single-particle excitation energy
as their minimum Ek = min {Ep

k ,Eh
k}.

For a qualitative understanding of these results, we consider
the behavior of the Green’s function in a Fermi liquid and in
a Bardeen-Cooper-Schrieffer (BCS) superconductor. The fact
that Gk(τ ) exhibits exponential behavior can be interpreted as
arising from a peak in the spectral function Ak(ω), occurring
at a nonzero frequency, as can be seen from (7). In a Fermi
liquid, the spectral function at a given momentum has a
single, sharp peak at the energy of the quasiparticle. It then
follows that Gk(τ ) has the form of a single exponential,
with holelike quasiparticles obeying (D2) and particlelike
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FIG. 25. Imaginary part of the self-energy (C1), calculated within
a one-loop approximation for several temperatures for two momenta
on the Fermi surface and (a) close to the QCP at r = rc + 0.05, (b)
further away from the QCP. An SDW correlator of the form (C2) was
used, with the parameters taken from the fit to the DQMC data for
λ = 1.5, c = 3, with �τ = 0.1, and L = 200, as shown in Fig. 5(b).
The data for k = khs are indicated by full circles, the momentum
away from the hot spot is indicated by empty squares.
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FIG. 26. Imaginary time evolution of the single-particle Green’s
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Fermi surface and (b) several momenta along a cut perpendicular
to the Fermi surface. Here, L = 12, T = 1/40, λ = 3, and c = 2.
Shaded regions indicate the statistical uncertainty. The solid lines are
exponential fits.

quasiparticles obeying (D1). Indeed, in our simulations in the
normal state we find monotonic behavior of Gk(τ ) (not shown).
It is illuminating to contrast this behavior with the BCS state,
where a superposition of holelike and particlelike excitations
is allowed. In this case, the spectral function consists of
two delta-function peaks at ω = ±Ek, such that the Green’s
function takes the form

Gk(τ ) = 1

1 + e−βEk

(
u2

ke
−Ekτ + v2

ke
−Ek(β−τ )

)
. (D3)

Here, Ek =
√

�2
k + ε2

k with the quasiparticle dispersion εk

and the gap �k, and uk, vk are particle and hole amplitudes,
respectively. The resulting Green’s function is nonmonotonic,
showing a minimum at a finite imaginary time.

While our numerical data below Tc share some similarities
with the BCS form (D3), they differ in two notable ways.
First, clear exponential behavior is not seen at short times
τ � τ0 ∼ 1. Second, the particle and hole excitation energies
differ, i.e., E

p

k �= Eh
k , with the difference more pronounced

away from the Fermi surface, as illustrated in Fig. 26(b).
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