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Nonperturbative emergence of the Dirac fermion in a strongly correlated composite Fermi liquid
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The classic composite fermion field theory [B. I. Halperin, P. A. Lee, and N. Read, Phys. Rev. B 47, 7312
(1993)] builds up an excellent framework to uniformly study important physical objects and globally explain
anomalous experimental phenomena in fractional quantum Hall physics while there are also inherent weaknesses.
We present a nonperturbative emergent Dirac fermion theory from this strongly correlated composite fermion
field theory, which overcomes these serious long-standing shortcomings. The particle-hole symmetry of the
Dirac equation resolves this particle-hole symmetry enigma in the composite fermion field theory. With the help
of presented numerical data, we show that for main Jain’s sequences of fractional quantum Hall effects, this
emergent Dirac fermion theory in mean field approximation is most likely stable.
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I. INTRODUCTION

The emergent relativistic fermions are ubiquitous in con-
densed matter systems [1–6]. Most of them are derivatives of
the free nonrelativistic electrons that are subject to various
influences, such as a special periodic potential from the
underlying lattice, flux attaching, or spin-orbital couplings,
and so on. The derivatives from strongly correlated systems
were rarely seen and often emit completely new phenomena or
concepts. Majorana fermion in ν = 5

2 fractional quantum Hall
effects (FQHE) was an excellent example [7]. This results in
the birth of the concepts of non-Abelian fractional statistics
[8] and topological quantum computer [9].

There was an ambiguity in introducing the Majorana
fermion at ν = 5

2 . While the Majonara fermion is a fully
relativistic object [7], Moore-Read Pfaffian is the variational
ground state wave function of a two-dimensional nonrelativis-
tic electron gas in a strong external magnetic field [8]. The
seminal Halperin-Lee-Read (HLR) composite Fermi liquid
(CFL) theory [1] furnished a good venue to study this p-wave
pairing state [10] but the nonrelativistic nature of HLR theory
and the breakdown of the particle-hole symmetry (PHS)
[11,12] block clarifying this ambiguity. Therefore, a relativistic
CFL theory is eagerly called together with the following facts:
the PHS of Jain’s sequences of FQHE [13], the PHS wave
function for the ν = 5

2 state shown by numerical calculations
[14], as well as the requirement of the universal origin for 1

2
anomalous Hall conductivity in ν = 1

2 CFL [11,12].
Recently, the enthusiasm of research for reexamining

the CFL theory was aroused by experiments [15–17]. A
careful experiment of the composite fermion (CF) Fermi wave
vector measurement through commensurability effects in the
presence of a periodic grating suggests the breakdown of
the PHS in FQHE [15], while theoretical explanation for the
experiment must arise from PHS models [18,19]. Furthermore,
the PHS breaking CFL state is not energetically favored as
shown by numerical simulations [20].

Two proposals were newly made in order to try to reveal
this PHS enigma. Barkeshli et al. construct an anti-CF theory

which is particle-hole conjugate to HLR theory [19]. Son’s
dual neutral Dirac CF (DCF) theory is based on a duality
between a charged free Dirac fermion with a single cone
in an external magnetic field and a neutral DCF coupled
to a gauge field, a 2+1 electrodynamics (QED3) [21]. A
semion-anti-semion bound state interpretation of CF for Son’s
model was put forward [22,23]. Several subsequent works
appeared [20,24–31]. An application of this duality to the
surface state of a 3+1 dimensional topological insulator was
described [24,25], and the analogy to the CF of half-filled
Landau level was exploited [20]. A Hamiltonian version of CF
theory was updated to a PHS one [26]. An explicit derivation of
Son’s duality was provided [27]. For more recent progresses,
see the latest review [32].

The CF in FQHE is a composite object of an electron
with an attached even number of flux quanta [13]. Based
on the observation that the external magnetic field is exactly
canceled at the half-filled Landau level by the average value
of a fictitious statistical magnetic field which arises from
the flux attachment, HLR [1] developed the CFL theory
near ν = 1

2 . The success of explaining many experiments
[33–35] indicated the powerfulness of HLR theory. The energy
gap from activation energy measurement which is linearly
proportional to the reduced residual magnetic field shows
the existence of the CF Landau levels [36]. With a CFL,
the Moore-Read Pfaffian state [8] becomes natural because
it is nothing but a px + ipy-wave pairing state of CFs [7].
However, the lacking of the PHS leads to the anti-Pfaffian; the
particle-hole conjugation of Pfaffian is not simply defined in
HLR’s framework [19,37,38].

There seems to be a barrier between the microscopic model
and the CFL theory: The free flux attached CF has the same
mass as the band mass of electron while the CFL theory
phenomenologically replaces it with an effective mass which
is in Coulomb energy scale [1]. The effective mass cannot be
obtained by the declared mass renormalization in a perturbative
calculation of the CFL theory. Later a Hamiltonian formalism
calculation [39] and the temporal gauge calculation in one-loop
level [40] can have a cancellation of the band mass while an
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artificial cutoff was introduced. These hint at a need for a
nonperturbative method.

Learning from the recent progresses and the seminal HLR
theory, we see that a DCF theory has a priority for a PHS
theory. But the questions waiting for reply are: (i) Can we
give a straightforward relation between the DCF model and
a two-dimensional nonrelativistic interacting electron gas in a
strong external magnetic field? (ii) How can we have a DCF
whose Landau level gap ∝B∗ as measured experimentally [36],
instead of the well-known ∝√

B∗ ?
In this paper, we try to give such a DCF model at the

mean field level that may answer these two questions from the
interacting CFL theory. Our starting point is the mean field
theory of the composite fermion field theory. The spinless
nonrelativistic CFs are subject to a residual magnetic field and
can be transformed into a Dirac fermion, but the pseudospin-
down component plays a role of an auxiliary particle with no
dynamics [41].

In fact, if the CF wave function is in the ν∗th CF Landau
level, the auxiliary particle wave function is in the ν∗ − 1th CF
Landau level, which implies the mixing of adjacent FQH states
(or the mixing between adjacent DCF Landau levels). The
interaction between CFs induces the dynamics of the auxiliary
particle. As a result, a modified DCF theory emerges. We show
that this emergent DCF theory is perturbatively unstable in the
sense that the DCF collapses in a weak repulsive interaction
while it is stable when the interaction is strongly repulsive.
With the help of existing numerical data, we find that the DCF
model applied to Jain’s sequence is most likely stable, and the
model parameters such as the “speed of light” of the theory
can be fixed. We then build a DCF theory which reveals the
enigma of PHS.

This paper is organized as follows: In Sec. II, we propose
a modified Dirac equation to show the nonperturbative emer-
gence of the DCF. In Sec. III, we discuss the consequences of
this DCF theory. We will show that the DCF Landau level gap
is proportional to the effective magnetic field B∗; the duality
between DCF and QED3 and the stability of Jain’s sequence
are also studied. Section IV is our conclusion.

II. EMERGENCE OF DIRAC COMPOSITE FERMIONS

The CFL theory we would like to reformulate is described
by the Hamiltonian

HCF = 1

2mb

∑
i

[
−i�∇i + e

c
A(xi) − e

c
a(xi)

]2

+
∑
i<j

V (xi − xj ), (1)

where V (x) = e2

ε|x| is the Coulomb interaction and the neu-
tralized background potential is omitted. The statistical gauge
field a(xi) is the gradient of the singular phase of the many
body CF wave function and ∇ × a = 4π

e/�c

∑
i δ(x − xi). For

GaAs, the dielectric constant ε = 12.6 and the electron band
mass mb = 0.07me.

We would like to study the FQHE in the lowest Landau level
of electrons. Our starting point is the mean field approximation
which means that a is approximated by ā that satisfies ∇ × ā =

B 1
2
, where B 1

2
is a magnetic field corresponding to a half-

filled Landau level, i.e., 2πl2
B 1

2

ρe = 1
2 ; lB = √

�c/eB is the

magnetic length. The mean field Hamiltonian reads

HMF = 1

2mb

∑
i

P2
i +

∑
j<i

V (xi − xj )

=
∑

i

h0(xi) +
∑
j<i

V (xj − xi), (2)

where P = −i�∇i + (e/c)A∗ with A∗ = A − ā; ∇ × A∗ =
B∗ is the reduced residual magnetic field.

We look at the single CF problem:

h0ϕ(x) = ENRϕ(x). (3)

A special solution is ϕ = χ , a CF wave function of the ν∗
Landau level. Jain’s sequences [13] give rise to the electron
Hall coefficients found in experiments

ν = νparticle = ν∗

2ν∗ + 1
, ν = νhole = ν∗ + 1

2ν∗ + 1
, (4)

with ν∗ = 1,2, · · · . The former is the ν < 1
2 sequence for

electrons and the latter is ν > 1
2 for holes. The meaning of

Jain’s sequence is that the integer quantum Hall effects of CFs
correspond to the FQHE of electrons.

A. DCF equation

As mentioned in the introduction, the DCF theory has a
natural advantage in solving the problems encountered in the
HLR theory, such as the particle-hole symmetry and the 1

2
anomalous Hall conductivity in ν = 1

2 CFL [11,12]. Therefore
we would like to propose a DCF theory with the property
that it reduces to the nonrelativistic CFL in some limit of
the parameters. Using (2+1)-dimensional gamma matrices
γ 0 = σ z, γ 1 = σ zσ x = iσ y , and γ 2 = σ zσ y = −iσ x where
σa are Pauli matrices, we examine the following modified
Dirac equation,[

Cγ 0i�
∂

∂t
− vγ aPa − 2mbv

2

]
ψ(x,t) = 0, (5)

where C = diag(1 − C, − C) is a 2 × 2 diagonal constant

matrix and the pseudospinor ψ(x,t) = e−iEt/�ψ(x) = (
χ

φ
);

v, different from that in Ref. [41], may not be the genuine
speed of light c but a constant with a dimension of speed (see
below). When C = 0, φ is an auxiliary field with no dynamics
[41], i.e.,

φ = P+χ/(2mbv), (6)

where P± = Px ± iPy and χ obeys

Eχ = 1

2mb

(
p2

x + p2
y − �eB∗

c

)
χ + 2mbv

2χ.

This is the nonrelativistic Schrodinger equation (3) but ENR =
E − 2mbv

2. As P+ is the lowering operator of the CF Landau
level, if χ is the CF wave function of the ν∗th CF Landau level,
the auxiliary field φ is the CF wave function in the ν∗ − 1th
CF Landau level [see Eq. (6)]. Therefore, if we only count the
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interaction within the intra-Landau level and adjacent Landau
levels of CFs, the interaction can be approximated as

∑
j<i

V (xi − xj ) ≈
∑
x,x′

ψ†(x)ψ†(x′)
e2

ε|x − x′|ψ(x′)ψ(x). (7)

B. Dynamical φ field

Notice that because Jain’s sequence (4) does not include
ν = 1 integer quantum Hall effect, ν∗ = 0 will not be taken
by χ , i.e., φ may not be meaningless and at least is the wave
function of the CF lowest Landau level. (Do not confuse with
the lowest Landau level of electrons.) The interactions between
φ as well as between φ and χ are also of the order of the
Coulomb potential. In the lowest Landau level of electrons, all
electron’s dynamics can come from the interaction. Namely,
the interaction (7) can supply φ with dynamics, i.e., C �= 0
in Eq. (5). The scale of a CF energy E is of the order of the
Coulomb scale e2

εlB
, the average Coulomb potential per particle.

We thus take a mean field approximation for the interaction

∑
x′

ψ†(x)ψ†(x′)
e2

ε|x − x′|ψ(x′)ψ(x) ≈ ψ†(x)CEψ(x), (8)

i.e., we use CE to approximate the interaction potential that
a CF feels and assume it differs by a real number factor C(ν)
from E. In this way, φ becomes dynamical. As P∓ raises
and lowers DCF Landau level, the “speed of light” v couples
the wave functions in adjacent DCF Landau levels and then
it reflects the strength of the adjacent Landau level mixing of
DCFs. Also because of in the lowest Landau level of electrons,
v is governed by the Coulomb scale, i.e., one can take

v ≡ D(ν)�

mclB
= D(ν)

α

ε
c, (9)

with mc = ε�
2/e2lB being the Coulomb mass and α = e2

�c
≈

1
137 the fine structure constant. The filling factor dependent
constants C(ν) and D(ν) will be determined later.

C. Nonperturbative DCF

We now are ready to solve Eq. (5). Writing the equation as

(1 − C)Eχ = v�

lB∗

√
2a†φ + 2mbv

2χ, (10)

−CEφ = v�

lB∗

√
2aχ − 2mbv

2φ, (11)

where we have taken the symmetric gauge A∗ = (B∗
2 y,−B∗

2 x)
with B∗ in the negative z direction, lB∗ = √

�c/eB∗ and
z = (x + iy)/lB∗ . The lowering and raising operators of the
CF Landau levels are given by a = −i(∂z̄ + z

2 )/
√

2,a† =
−i(∂z − z̄

2 )/
√

2, with [a,a†] = 1. Though the interaction
induced C matrix in Eq. (5) may damage the hermiticity
of its Hamiltonian, we will show that when the energy is
real, the corresponding eigenstates are orthogonal, norm unity,
complete and closed, namely, they share the same properties
as the eigenstates of a Hermitian Hamiltonian. Besides this
nice property, other non-Hermitian systems have been studied
theoretically and experimentally [42]. Therefore we believe

the non-Hermitian Hamiltonian under consideration is not an
obstacle as long as we remain in the real energy region.

Substituting Eq. (11) into Eq. (10), we obtain an algebraic
equation for the spin component χ ,

l∗2
b

(v�)2
(2mbv

2 − CE)[(1 − C)E − 2mbv
2]χ = 2a†aχ. (12)

Therefore the eigen wave function of χ (z; ν∗) is the same as
that of the ν∗th Landau level, namely,

χ (z,ν∗) = 1√
ν∗!

(a†)ν
∗
χ (z,0), (13)

with

χ (z,0) = 1√
2πl∗B

e− z∗z
4 . (14)

From Eq. (11), we know that φ ∝ aχ , and then the solutions
of Eq. (5) are of the form,(

χ

φ

)
= 1

Ñ

(
χ (z,ν∗)

bχ (z,ν∗ − 1)

)
, (15)

with Ñ being the normalizing factor and b =
√

2ν∗v�

(2mbv2−CE(ν∗))l∗b
is some constant given by Eq. (11). In terms of the structure
of the eigen wave functions, the orthogonality, completeness,
and closeness are obvious.

Defining ω∗
c = √

eB∗c/� which is the relativistic cyclotron
motion frequency and ω̃∗

c = v
c
ω∗

c , the CF Landau levels are
determined by

E(ν∗) = ±
√

2ν∗�2ω̃∗2
c + M2

b v4

C(C − 1)
− mbv

2

C(C − 1)
, (16)

where a†aχ = ν∗χ and M2
b = (2C−1)2

C(C−1) m
2
b. We see that E

diverges at C = 0,1 and is real only when

C <
1

2
− 1

2

√
1 − 4m2

bv
2

4m2
bv

2 + 2ν∗�2ω̃∗2
c

or

C >
1

2
+ 1

2

√
1 − 4m2

bv
2

4m2
bv

2 + 2ν∗�2ω̃∗2
c

.

In the zero band mass limit (mb → 0), this implies that the
DCF ψ is not stable for 0 � C � 1. With a weak repulsive
interaction, the dynamic DCF collapses to a nonrelativistic
CF. In this sense, the DCF can only emerge nonperturbatively.

III. CONSEQUENCES OF DCF

A. Gap ∝B∗

In the lowest Landau level of electrons, the electron
cyclotron motion energy is much larger than the Coulomb
energy scale. Notice that both factors, v and ω∗

c , in ω̃∗
c are

proportional to
√

B∗. In the zero band mass limit, hence, the
CF Landau level energy (16) tends to

E = ±�ν∗ eB∗

Fmcc
, (17)
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where F (ν∗) =
√

νC(C−1)√
2D

so that m∗ = F (ν∗)mc is the CF
effective mass [1,36,43]. Thus, the DCF Landau level gap is
basically linearly dependent on B∗. This shows a crucial dif-
ference between the spectrum of this DCF and a conventional
Dirac fermion Landau level which is proportional to the square
root of the external magnetic field,

√
B∗. Experimentally,

the energy gaps from activation energy measurements is
� ∼ �

eB∗
m∗c − � with a small broadening factor � ∼ 2K [36].

B. Dual to QED3

We rescale χ , φ, and v by

φ′ = G−1φ,χ ′ = Gχ,v′ = − v√
C(C − 1)

,

for a real G = [(C − 1)/C]1/4 and Eq. (5) becomes

Eχ ′ = v′P−φ′ + 2Cmbv
′2χ ′,

Eφ′ = v′P+χ ′ − 2(C − 1)mbv
′2φ′. (18)

If we take v′μ = (1,v′,v′), Eq. (18) is nothing but the free Dirac
equation with an external field,[

γ μv′μ
(

i�∂μ − e

c
A∗

μ

)
− Mbv

′2
]
ψ ′ = 0, (19)

where the mass matrixMb = −2mbdiag(C,C − 1). In the zero
band mass limit, as the amount of recent researches showed,
the free Dirac equation (19) is dual to a QED3 for a neutral
DCF ψ̃ [20–22,24–27], whose Lagrangian is given by

L̃ =
∫

dxdt

[
¯̃ψγ μcμ

(
i�∂μ + g

c
ãμ

)
ψ̃

+ eg

4π�c
εμνρA

∗μ∂νãρ + · · ·
]
,

where cμ = (1,c,c) and g is the coupling constant of the QED3;
“· · ·′′ includes the Maxwell term of ã with a v′-dependent
coupling constant [27].

C. Stability for Jain’s sequence

Our theory is a mean field approximation of the microscopic
model of the two-dimensional electron gas in a strong magnetic
field. There are two model parameters, C and D. While the
former connects the mean field CF Coulomb energy with the
mean field energy per DCF, the latter is essentially equivalent
to the CF effective mass m∗. To self-consistently determine the
parameters, one needs a couple of mean field equations. We
can use the DCF wave function to calculate the DCF Coulomb
potential and then let it relate to the DCF energy (16). This
obtains one of the mean field equations. Solving this equation
gives rise to a relation between C and m∗. However, due to the
strongly correlated nature, it is difficult to get another mean
field equation to solve this relation. On the other hand, there
were many numerical calculation results of the ground state
energy and the effective mass of the CF for the microscopic
model [43–51]. Thus, we can use these presented numerical
calculation results to input either C or m∗ and then the other
one is determined by the mean field equation.

Applying the mean field approximation to Jain’s sequences,
we find that with the help of these numerical data, Jain’s

2 4 6 8
C

0.1

0.2

0.3

0.4

E e2 ∋lB

FIG. 1. The energy E(C) is determined through Eqs. (20) and
(22) for the real C. The blue (thick) line is for ν∗ = 1, the purple
(solid) line is for ν∗ = 2, and the yellow (dashed) line is for ν∗ = 3.

sequences are most likely stable, at least for ν = 1
3 , 2

5 , 3
7 and 4

9 .
This is what we will do in this subsection.

Using our mean field approximation (8), the energy E and
the typical Coulomb potential per DCF are related to one
another by

|E| ∼
〈

e2

ε|x|
〉
/C, (20)

where 〈 e2

ε|x| 〉 is the expectation value of the Coulomb potential
for the CF eigenstates. In the zero band mass limit mb → 0,
the eigen wave function (15) becomes,(

χ

φ

)
ν∗

=
√

C − 1

2C − 1

(
−

√
C

C−1χ (z,ν∗)

χ (z,ν∗ − 1)

)
. (21)

Therefore the expectation value of the mean field Coulomb
potential of the single particle wave function can be approxi-
mated as〈

e2

ε|x|
〉
ν∗

=
(

C

2C − 1

(2n − 1)!!

2nn!

+ C − 1

2C − 1

(2n − 3)!!

2n−1(n − 1)!

)√
π

2

e2

εl∗B
. (22)

Eqs, (20) and (22) give rise to a relation between E and C for
a given ν∗, which are plotted in Fig. 1 for the first three ν∗ and
C > 1. We also notice that if we determine C according to
E, C becomes complex if E exceeds the maximal magnitude
in Fig. 1 for a given ν∗, say, E > 0.36 e2

εlB
for ν∗ = 1. We can

also estimate E(C) through Eq. (17) if the CF effective mass is
inputted. We use the numerical estimation to the CF effective
mass for the ν∗th Landau level by Morf et al. [43]

m∗(ν∗) = �
2ε

e2lB

2

π
( ln(2ν∗ + 1) + 4.11). (23)

The intersection between these two E(C) curves determines
C(ν∗) for a given ν∗. Taking ν∗ = 1 as an example, the
effective mass data leads to the intersection at E = 0.101 e2

εlB

and C = 5.21. For the filling factor ν = 2
5 , 3

7 , and 4
9 , the
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TABLE I. * are taken from [43], � are from Fig. 2 and Fig. 4 of
[48], ♠ are from Fig. 2 of [49], ♣ are from Fig. 2 and Fig. 3 of [50],
and ♥ are from Table I of [51]. |v|/c is determined through Eq. (9).
“complex” means that C has a nonzero imaginary part, i.e., for the
corresponding numerical data, there is no stable solution in this C.
The notation “&” in the first column stands for that the C in that row
is determined from the effective mass, otherwise it’s from the ground
state energy.

ν Eg/
(

e2

εlB

)
C F D |v|/c

1
3 0.10∗ 5.23 3.33 0.58 3.34 × 10−4

1
3 (&) 0.101 5.21 3.32∗ 0.58 3.34 × 10−4

1
3 0.41� complex 0.81 X X
1
3 0.41♣ complex 0.81 X X
1
3 0.41♥ complex 0.81 X X
1
3 (&) 0.05 10.7 6.67♠ 0.62 3.61 × 10−4

2
5 0.15∗ 1.52 2.67 0.15 0.86 × 10−4

2
5 (&) 0.11 2.13 3.64∗ 0.19 1.10 × 10−4

2
5 0.43♥ complex 0.93 X X
2
5 0.06 3.74 6.25♠ 0.23 1.33 × 10−4

3
7 0.185∗ complex 2.32 X X
3
7 (&) 0.11 1.39 3.86∗ 0.09 0.51 × 10−4

3
7 0.44♥ complex 0.97 X X
3
7 (&) 0.07 2.17 5.88♠ 0.13 0.73 × 10−4

4
9 0.212∗ complex 2.10 X X
4
9 (&) 0.11 1.04 4.02∗ 0.024 0.14 × 10−4

corresponding values of E(ν∗),C(ν∗) are listed in Table I
(marked by &, the dielectric constant ε = 12.6 for GaAs). The
corresponding magnitudes of Eg , D, and the Fermi velocity v

are also calculated. We see that all values of C for these filling
factors are real and larger than 1. This indicates the stability of
the Jain’s sequences in this DCF mean field theory. For C < 1,
Eq. (17) gives an imaginary E which does not coincide with
Eq. (20) and means that there is no such mean field solution.

On the other hand, if we know the ground state energy
Eg and take E = Eg in Eq. (20), C can be determined by
solving

〈
e2

εx

〉
ν∗

/|C| ∼ |Eg|. (24)

For example, if we use the HRL nonrelativistic energy gap
�(ν) to estimate Eg [1], say for ν = 1

3 (or ν∗ = 1),

Eg(ν∗ = 1) = �

(
ν = 1

3

)
= 0.1

e2

εlB
, (25)

where �(ν = 1
3 ) is a numerical result chosen from Ref. [43].

Therefore the corresponding C(ν = 1
3 ) = 5.24. Many numer-

ical calculations for the ground states existed [43,48–51]. We
list our calculation results of the parameters C,F, and D as well
as the Fermi velocity according to the existing numerical data

of Eg in Table I. Notice that some of C are complex numbers
because Eg is too large as explained before. This indicates that
either the estimation of C through Eq. (24) merely is not a
reliable way, or the mean field theory is not stable.

We summarize and discuss the previous results:
(i) Although C in Table I are only rough estimations for

Jain’s sequence ν∗
2ν∗+1 with ν∗ = 1,2,3,4, we see that many

numerical results support that the DCF is stable in the mean
field approximation because the magnitudes of C are real and
larger than 1. Since these states are gapped, the Chern-Simons
gauge fluctuation and the residual interaction will not severely
alter these mean field results.

(ii) For a given ν∗, while the effective mass to estimate
C gives a real number for ν∗ = 1,...,4, it may be complex
by using the ground state energy. In fact, both methods to
determine C may be false if the numerical magnitude of the
energy is too large so that it exceeds the maximum given by
Fig. 1. With the former, the requirement is to match two mean
field energies (20) and (17) while the mean field energy (20) is
directly identical to the numerical ground state energy with the
latter. Obviously, the former way should be more consistent.
Moreover, in the numerical calculations of the ground state
energy, there were many uncertainty conditions to confine
the precision of the numerical data such as the type of the
interactions, the finiteness scalings, the boundary conditions,
and so on.

(iii) Due to the PHS of the Dirac equation, the particle-hole
transformation gives rise to

(1 − C)Eχh = vP+φh + 2mbv
2χh,

−CEφh = vP−χh − 2mbv
2φh. (26)

The difference from the particle’s equation is only in ex-
changing P+ ↔ P−. This results in E(ν∗) → E(ν∗ + 1) in
Eq. (16) and gives the Jain’s sequence ν∗+1

2ν∗+1 for hole. We
expect our theory is also stable because the experimental data
showed a nearly symmetric CF Landau level gap between ν and
1 − ν [36].

(iv) In the estimation of the Coulomb energy 〈 e2

ε|x| 〉, we only
considered single particle contribution. If we take the many
body effects into account, then it will change the expectation
values of the Coulomb energy, thus changing C. For example,
if we consider a two-body wave function,

�1 = ψn(x1)ψm(x2), �2 = ψm(x1)ψn(x2), (27)

where ψn is the wave function for the nth Lan-
dau level. The Coulomb energy between x1 and x2 is
e2

∫
1

r12
|ψn|2|ψm|2dr1dr2. In our mean field approximation, we

only considered the case when n = m. If n �= m, this term will
increase the Coulomb energy and then enlarges C. The ex-
change energy is e2

∫
1

r12ψ∗
n (x1)ψm(x1)ψn(x2)ψ∗

m(x2)dr1dr2,
which in general will decrease the Coulomb energy and gives
a smaller C. Besides the many body effects, we also assumed
zero band mass limit mb → 0. If the band mass is small but
nonzero, it will also increase C. These uncertainties will leave
to further studies.

(v) For ν∗ = ∞, i.e., ν = 1/2, the system becomes gapless
and C → 1/2 by using the effective mass m∗(ν = 1/2). Then,
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the mean field theory is not stable for ν = 1/2 and 5/2. How-
ever, we emphasize that the mean field estimation of C in these
filling factors may be altered by the strong gauge fluctuation.
We thus expect the DCF theory might still work for these even
denominator filling factors. Further study is required.

D. Anomalous Hall conductivity − 1
2

e2

h

For a given ν, we have fixed C and v with the ground state
energy or the effective CF mass. However, the topological
properties will not change as C varies if we keep C > 1. For
a large C, C − 1 ≈ C, we obtain the standard Dirac equation,

(iṽμγ μDμ − m̃bṽ
2)ψ = 0,

where ṽ0 = 1,ṽa = ṽ = −v/C and m̃b = −mb/C. m̃b has an
opposite sign to mb. Although we do not yet prove this DCF
is stable for ν = 1/2, there is an axial anomaly and then an
anomalous Hall effect σCF

xy = sgn(m̃b)
2

e2

h
= − 1

2
e2

h
once C > 1

is real for ν = 1/2. One can also arrive at this consequence
according to Eq. (19).

IV. CONCLUSIONS

We presented a nonperturbatively emergent DCF theory
from the CFL theory. In this strong correlated theory, the PHS
of FQHE, i.e., ν and 1 − ν symmetry of Jain’s sequences,
is restored. We showed that this DCF is most likely stable
for Jain’s sequence. The energy gap is linearly dependent on
the effective residual magnetic field for the CFs. The dual to
Son’s QED3 was proved and the mystery of minus one-half
anomalous Hall conductivity was revealed. We expect this
DCF theory is stable for ν = 1/2 or ν = 5/2 and then give rise
to the origin of the anomalous Hall conductivity for ν = 1/2
and the relativistic Majorana fermion in ν = 5

2 .
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