
PHYSICAL REVIEW B 95, 035119 (2017)

Full counting statistics in the Haldane-Shastry chain
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We present analytical and numerical results regarding the magnetization full counting statistics (FCS) of
a subsystem in the ground state of the Haldane-Shastry chain. Exact Pfaffian expressions are derived for the
cumulant generating function, as well as any observable diagonal in the spin basis. In the limit of large systems,
the scaling of the FCS is found to be in agreement with the Luttinger liquid theory. The same techniques are also
applied to inhomogeneous deformations of the chain. This introduces a certain amount of disorder in the system;
however we show numerically that this is not sufficient to flow to the random singlet phase, that corresponds to
XXZ chains with uncorrelated bond disorder.
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I. INTRODUCTION

A. Full counting statistics and the Haldane-Shastry chain

Fluctuations of macroscopic observables in quantum sys-
tems provide useful information about their underlying phys-
ical properties: correlations, excitations, transport, to name a
few. One example is that of charge fluctuations in mesoscopic
systems such as (fractional) quantum Hall samples [1,2]. From
a theoretical perspective, the object of interest is the full
distribution of transmitting charges, known as the full counting
statistics (FCS). Such an object encodes the information
about charge fluctuations—that are sometimes experimentally
accessible—but also all higher order correlations. The FCS for
a charge operator Q is defined as

χ (λ) = 〈eiλQ〉 =
∞∑

m=0

(iλ)m

m!
〈Qm〉, (1)

where λ is a counting parameter. It is nothing but the generating
function for all the moments of the charge fluctuations.
It is also extremely useful to consider the logarithm of
χ , which is a generating function for the cumulants. The
physically most important is the second cumulant, 〈Q2〉c =
〈Q2〉 − 〈Q〉2. All these concepts can also be applied to
many body systems where a global conserved quantity (not
necessarily charge) is measured in a subsystem. The study of
such “bipartite fluctuations” has mainly been put forward in
Refs. [3,4].

In the context of mesoscopic systems, Levitov and Lesovik
found [5] a simple determinant formula for the FCS, that
triggered an intense theoretical interest in the subject [6]. The
FCS turns out to also be an important tool in the study of the
Fermi edge problem [7], as well as cold atom systems [8,9].
For physical setups that boil down to free fermionic problems,
the FCS can always be expressed in determinant or Pfaffian
form (see Ref. [10] for a general discussion). This result carries
through for spin chains that can be mapped onto free fermions
through a Jordan-Wigner transformation.

Another motivation to study fluctuations lies in the relation
with the entanglement entropy. For free fermions there is
a precise correspondence between the two [3,4,11]. This
however does not survive when adding interactions (see, e.g.,
Ref. [12]). While both quantities diverge logarithmically at low
energies for spin chains described by a Luttinger liquid (LL)

theory, the coefficient with the entanglement entropy (EE)
is controlled by the central charge in general, while the
coefficient of the FCS is essentially the Luttinger parameter.

Full counting statistics may also be used to track disorder
[3]. For example, it is well known that Heisenberg type
chains with random bonds are effectively described by an
infinite disorder critical point, the random singlet phase
(RSP) [13]. In that case the second cumulant also diverges
logarithmically (with a different coefficient), but so do all
even order cumulants. Hence the FCS provides a simple way
of distinguishing between the LL and RSP phases in spin
chains. Fluctuations have also been used as a reliable way to
locate many-body localization transitions [14,15].

Despite all that, general analytical results are difficult
to obtain in the presence of interactions. From a techni-
cal perspective, computing the FCS typically requires the
knowledge of all correlation functions in a certain spatial
region, which is a formidable task even for integrable systems.
We demonstrate here that these difficulties can be overcome
in the Haldane-Shastry (HS) model, a chain with SU(2)
symmetry and long range interactions that still exhibits Lut-
tinger liquid physics. The HS Hamiltonian takes the peculiar
form

H =
L∑

i �=j=1

Si .Sj(
L
π

sin π(i−j )
L

)2 , (2)

for a chain of L sites with periodic boundary conditions.
From a low energy field theory perspective, this model lies
in the same universality class as the Heisenberg chain, a
Luttinger liquid at the self-dual point, also known as the SU(2)1

Wess-Zumino-Witten (WZW) conformal field theory (CFT).
Such Hamiltonians and generalizations have received renewed
attention over the last few years, as they can be constructed
in a rather systematic way by discretizing conformal field
theories (CFT) [16–20]. Alternative derivations are also pos-
sible [21,22]. Similar constructions may be applied to higher
dimensions, and can be used to mimic chiral topological phases
similar to fractional quantum Hall states in two dimensions
[23,24]. In all cases, the corresponding states can be seen as
matrix product states with an infinite bond dimension; hence
they are often dubbed infinite matrix product states (IMPS)
[16].
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The purpose of this paper is to study the FCS in this
system, as well as inhomogeneous generalizations of it. For
the sake of simplicity, we will focus on ground-state physics.
A remarkable property of the HS chain is that its ground-state
wave function takes a particularly simple Jastrow-type form,
after mapping the spins onto hardcore particles (the down
spins are then holes). The number of particles is fixed by the
magnetization sector, for example, at zero magnetization there
are N = L/2 particles. In fractional quantum Hall language,
this is a lattice discretization of the (bosonic) Laughlin ν = 1/2
state on a ring. For other values of ν these variational states
are Luttinger liquids provided ν > 1/4 [25].

Alternatively, such states can be represented using a
discrete lattice gas picture on a ring, with two-dimensional
(2d) Coulomb interactions between the particles. In the
limit L → ∞ with N fixed, this gas coincides with the
(continuous) Dyson gas [26], familiar in the study of random
matrices [27,28] and the Calogero-Sutherland model [29–31].
Correlations in this limit are exactly those of the circular
ensemble for symplectic matrices; it has been long known
that they are given by Pfaffians [27]. Similar Pfaffian formulas
also hold in the discrete case [32], and such formulas can be
used to reconstruct the multispin correlation functions of the
Sz

j . Here we will use such methods to compute exactly the
FCS in Pfaffian form; this allows for large scale numerical
computations as well as analytical asymptotic results. We will
also provide a generalization to systems with open boundary
conditions.

As we shall see, these technical results can be generalized
to a certain class of inhomogeneous states, where the particles
need not be regularly spaced on the circle. Such states are still
“integrable,” in the sense that correlations and fluctuations can
still be computed exactly. This makes it natural to consider the
effect of disorder in such HS-type chains. While it is possible
to disorder the XX chain without breaking the free fermionic
nature of the system, one conclusion of our study will be that
it is not so easy for HS type chains. In particular all natural
integrable inhomogeneous versions that we will study will
still lie in the Luttinger liquid universality class, because of
the heavily correlated nature of the disorder.

B. Organization of the manuscript

The manuscript is organized as follows. We start by a
detailed study of the clean case in Sec. II. We first recall
the Luttinger liquid description of the HS chain and use it to
compute the FCS in the continuum. We then present exact
determinant formulas for the fluctuations in a subsystem of
arbitrary size, before analyzing their asymptotic behavior.
The results are found to be in agreement with Luttinger
liquid predictions. In particular, it is shown that only the
second cumulant diverges logarithmically, a clear signature
of a Gaussian effective theory.

In Sec. III we focus on inhomogeneous versions of the
the HS chain, Eq. (2). It is shown that such inhomogeneous
integrable modifications of the HS chain/ground-state still lie
in the LL universality class. We end up by a general discussion
of all the results in Sec. IV. Most technical details regarding
the derivation of our formulas for correlations and fluctuations
are gathered in the Appendix.

II. CLEAN CASE

A. Relation with SU(2)1 Wess-Zumino-Witten

Perhaps one of the most striking property of the HS chain
is the exceedingly simple form of its energy spectrum. The nth
energy state is [33,34]

En − E0 = 2πv qn

L
, (3)

where v is a velocity, and the qn are rational numbers. Such
a result is typical for spin chains described by a CFT [35,36];
however there are usually finite-size effects, that produce
higher order (typically in powers of L) corrections. Here
the conformal spectrum is exact on the lattice. This property
holds because the chain has an infinite dimensional Yangian
symmetry [37]: in a sense the HS chain is as close as can be
to a pure CFT on a lattice.

The ground-state wave function also takes a simple form.
Let us map each spin configuration onto hardcore particles
positions x1, . . . ,xN in the set {1,2, . . . ,L}. Each site is
occupied by a particle if the spin is up, unoccupied if the spin
is down. There are N = L/2 particles since the ground state
lies in the sector with zero magnetization. The ground state
reads |�gs〉 = ∑

{x} ψ({x})|{x}〉, where the sum runs over all
allowed positions of the particles, and the amplitude is, up to
a sign,

ψ({x}) = ψ(x1, . . . ,xN ) = 1

Zβ

∏
i<j

(
sin

π (xi − xj )

L

)β/2

,

(4)

with β = 4 (in FQH language β = 2/ν). In this paper we need
not worry about various phase factors in the amplitudes, as we
focus on the statistics of the magnetization, which is diagonal
in the Sz

j or particle basis. It is also good to keep in mind that
the case β = 2 corresponds to the ground state of another well
known spin chain, the XX spin chain.

Each amplitude in (4) may be represented as a gas of N

particles on a ring, as is shown in Fig. 1. Such a drawing will
be extremely useful in the remainder of the paper.

Here our aim is to focus on correlations, which do have
finite-size effects. For example the following formula〈

Sz
x1

. . . Sz
xn

〉 = Pf
1�i,j�n

[a(xi − xj )] Pf
1�i,j�n

[d(xi − xj )] (5)

FIG. 1. Representation of a particular amplitude ψ(1,2,5,7,8,10)
in the ground-state wave function (4). Here the system is of size
L = 12, with N = L/2 = 6 particles (up spins). The particles at sites
1,2,5,7,8,10 are shown as filled blue circles, and the holes at positions
0,3,4,6,9,11 as empty circles.
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holds for the n-point function of the third component of the spin
operator (recall Sα

j = 1
2σα

j , where the σα
j are the usual Pauli

matrices at site j, α = x,y,z). Here the auxiliary functions a

and d are given by

a(x) =
L/2∑
k=1

sin (2k−1)πx

L

π (2k − 1)
, (6)

d(x) = (−1)x

2L
π

sin πx
L

, (7)

with the convention d(0) = 0. Such a result is implicit in the
random matrix literature (see, in particular, Ref. [32]); how-
ever, we present a self-contained derivation in the Appendix.

Let us now discuss the form of this correlator. The second
Pfaffian in (5) is exactly the SU(2)1 CFT correlator for vertex
operators, and the first encodes finite-size effects. For n = 2
this reduces to the result of Refs. [17,38], 〈Sz

x1
Sz

x2
〉 = a(x1 −

x2)d(x1 − x2), obtained with different methods. Note that such
formulas can sometimes be useful to benchmark numerical
techniques in long range systems [39], which are typically
quite challenging.

B. FCS for Luttinger liquids

The generating function can be evaluated in the continuum
limit using bosonization, as was done in Refs. [4,40]. For
the sake of completeness, we recall here the result and the
derivation. First, the HS chain is described in the continuum
limit by the Euclidean action

S = 1

8πK

∫ L

0
dx

∫ ∞

−∞
dτ (∇ϕ)2 + irr, (8)

where ϕ = ϕ(x,τ ) lives on an infinite cylinder of circum-
ference L. The field is compactified on a circle of radius 1,
ϕ = ϕ + 2π . The Luttinger parameter is K = 1/2 for the HS
chain, but we leave it unspecified for now. In the right-hand
side of (8), irr denotes a set of irrelevant terms that do not
affect the long-distance properties of the system. The total
magnetization operator in a subsystem of size  becomes in
the continuum limit,

M =
L∑

j=1

Sz
j →

∫ 

0
[ρ(x) − 〈ρ(x)〉]dx, (9)

where ρ(x) measures the particle density at position x. In
bosonization language the density is the derivative of the field
ϕ, ρ(x) − 〈ρ(x)〉 = 1

π
∂xϕ. Hence the generating function is

given by

χ(λ) = 〈eiλM〉 (10)

= 〈
ei λ

π
[ϕ()−ϕ(0)]

〉
(11)

= e
− λ2

2π2 〈[ϕ()−ϕ(0)]2〉. (12)

Equation (12) follows from (11) by applying Wick’s theorem.
Therefore, the calculation boils down to that of a two point

function 〈ϕ(,0)ϕ(0,0)〉 on the cylinder, which is a standard
CFT exercise [41]. We finally obtain [4]

− ln χ(λ) = K
λ2

2π2
ln

(
L

π
sin

π

L

)
+ cst(λ) + o(1). (13)

This result is valid in the limit L → ∞, with fixed aspect ratio
/L, but also captures the L → ∞, and only then  → ∞
limit. To the leading order, the cumulant FCS is proportional
to λ2 ln . Therefore only the second cumulant is diverging
logarithmically, with a universal coefficient. This property
reflects the fact that the most relevant part of the action (8)
is purely Gaussian. The irrelevant operators in (8) contribute
to O(1) and lower order terms, so that all higher (even)
order cumulants saturate to some finite nonuniversal value
as  → ∞.

C. Finite-size Pfaffian formula for the FCS

Similar to the case of free fermions, the FCS for the HS
chain can also be obtained in a closed compact Pfaffian form
for all filling fractions. The technical details are gathered
in the Appendix. At half filling the result takes the elegant
form

χ(λ) = Pf
1�i,j�

(
2 sin λ

2 a(i − j ) cos λ
2 δij

− cos λ
2 δij 2 sin λ

2 d(i − j )

)
(14)

for a subsystem of  consecutive spins. Here a and d are given
by Eqs. (6) and (7), respectively. Recall that the Pfaffian of an
antisymmetric matrix K = (Kij )1�i,j�n is defined as

Pf K = 1

2nn!

∑
σ∈S2n

(−1)P Kσ (1)σ (2) · · · Kσ (2n−1)σ (2n), (15)

where the sum runs over all permutations of {1,2, . . . ,2n}.
The Pfaffian satisfies the important property (Pf K)2 = det K .
The expression (14) is extremely useful, both analytically and
numerically. Let us first discuss the second cumulant C2. We
have

C2 = − d2 ln χ

dλ2

∣∣∣∣
λ=0

(16)

= 

4
+ 2

∑
j=1

( − j )a(j )d(j ). (17)

The asymptotics (L → ∞, /L fixed) converge to

C2 = 1

2π2
ln

(
L

π
sin

π

L

)
, (18)

compatible with the cumulant obtained from the bosonization
result (13). While we were not able to derive the full generating
function (13) from the lattice result (14), it is straightforward
to evaluate the FCS numerically for various values of λ and
very large system sizes. Assuming (13), the normalized FCS
X(λ) = −(π2/λ2) ln[χ(λ)/χL/2(λ)] converges to a universal
scaling function

X(λ) = K ln

(
sin

π

L

)
+ o(1) (19)
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FIG. 2. Convergence of X(λ) to the universal scaling function of
Eq. (19) with K = 1/2 (black thick line). Numerical values for L =
4096 and λ = 1/2,1,3/2 are shown. The inset shows the difference
with the Luttinger liquid prediction. As can be seen, the finite size
effects are small but become bigger as λ is increased. This is due to the
periodicity χ(λ + 2π ) = χ (λ) of the FCS, which is not obeyed by
the asymptotic expansion (13). We refer to Ref. [42] for a discussion
in the case of free fermions.

that becomes independent on λ. Some numerical results are
presented in Fig. 2 for a chain of length L = 4096, and confirm
the validity of (13) in the HS chain.

We finally comment on the case of open chains [43,44],
which have similar behavior. We consider an open HS chain
of length L, and measure the fluctuations in a subsystem that
consists of the first  spins on the left. The predictions of the
Luttinger liquid theory are reduced by a factor of one-half
in this case, so we can make the substitution K → K/2 in
(13). Correlations may also be computed on the lattice in this
case. For example the two point function has been recently
derived [20] using the null vector construction mentioned in
the Introduction. Our method can also be applied to derive all
(diagonal) correlations, as well as the FCS. Once again these
are given by the Pfaffian; we refer to the Appendix, Subsec. 4,
for the expressions and the derivation. With these formulas at
hand we also checked that the predictions of Luttinger liquid
also hold in the open case (not shown).

D. Infinite system and block Toeplitz Pfaffian

We now specialize to the limit L → ∞, but at any
filling fraction ρ = N/L. We get the block Pfaffian χ(λ) =
Pf([g]i−j ), where

[g]k =
(

sin
(

λ
2

) cos 2πρk

πk
e−i λ

2 δk0 + i sin
(

λ
2

) sin 2πρk

πk

−(. . .) sin
(

λ
2

)
Si(2πρk)

)
(20)

and −(. . .) means that the two by two matrix is antisymmetric.
Si(x) = ∫ x

0 dt t−1 sin t denotes the sine integral. Such determi-
nants (Pfaffians) whose matrix elements only depend on i − j

are called Toeplitz determinants (Pfaffians). Here the [g]k can
be interpreted as the kth Fourier coefficient [45] of the 2×2

matrix function

g(θ ) =
(

sin
(

λ
2

)
θ cos λ

2

− cos λ
2 sin λ

2 pv
(

1
θ

)
)

(21)

for |θ | < 2πρ, and

g(θ ) =
(

sin
(

λ
2

)
(θ − π sgn θ ) e−i λ

2

−e−i λ
2 0

)
(22)

otherwise. pv( 1
θ
) = 1

2 ( 1
θ+i0+ + 1

θ+i0− ) denotes the Cauchy
principal value.

We are interested in the asymptotics of ln χ(λ), when
 → ∞. Such questions have been widely studied in the math-
ematical literature [46], in part motivated by the celebrated
Ising spontaneous magnetization problem (see Ref. [47] and
references therein). In the block matrix case fewer general
theorems are available, and these typically require regularity
assumptions that are not satisfied here. Ignoring this problem
and applying nevertheless a formula of Widom’s [48,49], the
leading  term is given by

ln χ(λ) ∼ 

2π

∫ π

−π

dθ ln det g(θ )

∼ iλ(ρ/2 − 1/4). (23)

This result is compatible with the naive argument〈
eiλ

∑
j Sz

j

〉 ≈ eiλ〈∑j Sz
j 〉 = eiλ(ρ−1/2)/2 (24)

for large . We also observe numerically

ln χ(λ) = iλ(ρ − 1/2)


2
− λ2

4π2
ln  + O(0), (25)

which is the expected result from bosonization. As empha-
sized before the coefficient of the logarithmic divergence is
universal.

III. INHOMOGENEOUS CHAINS
OF THE HALDANE-SHASTRY TYPE

A. Moving the particles on the circle

Our exact formulas for the FCS and fluctuations can be
generalized to any discrete set of allowed positions on the
circle [see Eqs. (A26), (A24), and (A12) in the Appendix].
This makes it natural to consider the analogous wave function
where the allowed positions on the circle are not regularly
spaced anymore. Such inhomogeneities are a simple way of
introducing some disorder into the system, as was pointed out
in Ref. [16]. To be more precise, we consider the two classes
of variational states

ψ(x1, . . . ,xN ) = 1

Zβ

∏
1�j<k�N

|eiθxj − eiθxk | β

2 (26)

and

ψ̃(σ1, . . . ,σL) = 1

Z̃β

∏
1�j<k�L

|eiθj − eiθk | β

8 σj σk , (27)

but where the angles θj are no longer regularly spaced as
integer × 2π

L
. As before we mainly focus on β = 4. The state

(26) is pictured in Fig. 3(a); the physical degrees of freedom

035119-4



FULL COUNTING STATISTICS IN THE HALDANE- . . . PHYSICAL REVIEW B 95, 035119 (2017)

(a) Particles (b) Spins

FIG. 3. (a) Representation of a particular amplitude ψ(1,2,5,7,

8,10) in (26), in an inhomogeneous system of size L = 12, N =
L/2 = 6. (b) The analogous configuration in (27) may be obtained
by assigning a + spin to the particles (filled in blue) and a − spin to
the holes.

are the particle positions. The other, (27), is slightly different,
as all sites are now occupied by spins that can be either up
(σj = +1) or down (σj = −1). Of course, we are still in the
zero-magnetization sector, so that there are as many (L/2)
spins up as spins down. This is represented in Fig. 3(b). Once
again we only study diagonal observables in the z (or particle)
basis, so we need not be too careful about the respective phases
of the amplitudes; they will be canceled when evaluating
expectation values.

In a clean system both states (26) and (27) turn out to
be identical [16], as can be seen by mapping the up spins
in (27) to particles, the down spins to holes, and performing
some algebra. This equality holds only when the eiθj are Lth
roots of unity, and so breaks down in the inhomogeneous
case. Therefore we study them separately, even though they
are quite similar. To avoid any confusion we dub (26) the
inhomogeneous (bosonic) Laughlin state. The state (27) can
be shown to be the exact ground state of the following
generalization of the HS Hamiltonian:

H = −
∑
j �=k

tjk Sj .Sk, (28)

where

tjk = zj zk

(zj − zk)2
+ wjk(αj − αk)

12
, (29)

and zj = eiθj , wjk = zj +zk

zj −zk
= −i cot ( θj −θk

2 ), and αj = ∑
j �=k

wjk . Despite the use of complex numbers, one can check that
the couplings tij in the Hamiltonian are all real.

From now on we revisit the following problem [16]. We
treat the angles θj as random variables

θj = 2π

L
(j + δj ), (30)

where the δj are uniformly distributed in [−δ; δ]. Since the set
of couplings in the Hamiltonian (28) is uniquely determined
by the set of angles {θj }, we are now effectively studying
a Haldane-Shastry-type model with random bonds. Such
random bonds spin chains have been widely studied in the
case of nearest neighbor hoppings. For example, the XXZ

spin chain with random bonds and −1/2 < � � 1,

H =
∑

j

tj
(
Sx

j Sx
j+1 + S

y

j S
y

j+1 + �Sz
jS

z
j+1

)
, (31)

is known [13] to flow to a random singlet phase (RSP) if the
tj are independent, and their distribution sufficiently regular.
In the following we will only consider box distributions in
the range [1 − δ; 1 + δ]. The important point is that provided
these two conditions are fulfilled, any amount of disorder
will destabilize the Luttinger liquid. Note that despite being
essentially localized, the random singlet phase still has critical
correlations when averaged over the disorder (we refer to
Ref. [50] for a review).

The question we wish to address here is the following: Are
the inhomogeneous states [(26), (27)] in the random singlet
phase or still in the Luttinger liquid universality class? The
FCS offers a simple way to distinguish between the two phases.
Indeed it also diverges logarithmically in the random singlet
phase, but with a different prefactor [10]:

ln χ(λ) = 1

3
ln

(
cos

λ

2

)
ln  + O(1), (32)

where Ā denotes the disorder averaged observable A in the
ground state. Since the full finite size dependence is known
only approximately [51] for the RSP, we will consider only
the simple situation of a periodic chain cut into two equal
halves, which has the scaling shown in Eq. (32), with  = L/2.
Typically, checking formula (32) requires one to compute the
FCS of a large system for a particular disorder configuration,
and repeating this procedure many times to access a truly
disorder-averaged quantity. For most systems, especially with
long-range interaction, this is computationally extremely
costly. The states [(26), (27)] are a notable exception, the
other being, of course, the case of free fermions. We use it
to answer our question numerically below, starting with the
second cumulant, which is simplest.

B. Second cumulant

The expected scaling of the second cumulant in our setup
can be summarized by the two formulas

C
(LL)
2 = K

π2
ln L + O(1), (33)

C2
(RSP) = 1

12
ln L + O(1), (34)

where LL stands for Luttinger liquid, and RSP stands for
random singlet phase. Here K is the Luttinger parameter.
K = 1 for free fermions, and K = 1/2 for the HS chain. In
the RSP phase there is no free parameter. We mainly consider
the two states (26) and (27). The second cumulant is evaluated
using the results in the Appendix, Subsec. 2, for the state
(26), and using the method of Ref. [17] for the state (27).
For comparison, we also show data for the XX chain with
and without disorder, as well as the Heisenberg chain, with
and without disorder. For the former we use the free fermions
structure to access very large system sizes with a large number
of disorder realizations; the computations for the latter are
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FIG. 4. Coefficient of the logarithm in the bipartite fluctuations
C2(L) for several chains cut into two halves. Each data point is
obtained by computing [C2(L) − C2(L/2)]/ ln 2 for a given L. The
horizontal axis is shown in logarithmic scale. Blue circles represent
the clean XX chain, red squares the disordered XX chain (105

disorder realizations), brown cross circles the clean Heisenberg chain,
orange stars the disordered Heisenberg chain (103 realizations),
blue lozenges the clean HS chain, and dashed red circles the
inhomogeneous HS chain (105 realizations). As can be seen the
inhomogeneous HS chain still follows the Luttinger liquid prediction,
contrary to the disordered XX and Heisenberg chains, that flow to the
RSP phase (shown in dashed green). For the nonclean points we
choose δ = 0.5.

performed using the density matrix renormalization group
(DMRG) [52] method.

An extraction of the coefficient of the logarithm in Eqs. (33)
and (34) is shown in Fig. 4 for all these models, and δ = 0.5.
In the free fermions case, the slope is clearly different with
and without disorder: it goes from K/π2 = 1/π2 � 0.1013 to
the RSP value 1/12 � 0.0833. No such thing happens in the
inhomogeneous HS states: the slope remains the same within
our numerical accuracy, and the disorder only seems to affect
the subleading term of order 1. Given the very large system
sizes considered, and the large number of disorder realizations,
this data is strong evidence that the two inhomogeneous
states are still in the Luttinger liquid universality class. For
comparison, some data for the random Heisenberg chain is
shown. The smaller accessible system sizes and statistical
resolution makes it difficult to show convergence to the RSP
value. The behavior we find is, however, consistent with a
convergence to the RSP prediction. We also checked that all
these behaviors remains true for any value δ < 1 of the disorder
strength.

C. Full counting statistics

To confirm the results of the previous subsection, we turn
our attention to the full generating function (1), still for
a subsystem of L/2 consecutive spins in a periodic chain
of length L. We use the same procedure as before, but
perform fits to extract the coefficient of the logarithm. For
each value of λ we fit ln χ (iλ) or ln χ (iλ) to a ln L + b for
L = 256,384,512 and extract the resulting coefficient a. The

0 0.5 1 1.5

0.05

0.1

λ

−
lo

g
χ

�
(i

λ
)

XX (clean)
XX (dis)

RSP
LL (K = 1)
LL (K = 1

2 )
Laughlin (inh)

FIG. 5. Coefficient of the logarithm for the FCS generating
function ln χ (iλ). Data are for the clean XX chain (green triangles),
the disordered XX chain (red circles), and the inhomogeneous
Laughlin state (blue stars). Predictions for the Luttinger liquid and
RSP universality class are shown for comparison. As can be seen,
the bond disordered XX curve flows to the RSP prediction, while the
inhomogeneous Laughlin does not.

reason we choose iλ instead of λ is mainly convenience, as it
enhances the difference between clean and disordered systems.
The predictions can be deduced by just plugging in iλ instead
of λ in formulas (13) and (32). The expected behavior in the
two phases is given by

ln χ (iλ)(LL) = Kλ2

2π2
ln L + O(1), (35)

ln χ (iλ)
(RSP) = 1

3
ln cosh

(
λ

2

)
ln L + O(1). (36)

Our numerical results are shown in Fig. 5, and show essentially
the same behavior as in the previous subsection. The clean
XX chain follows the LL prediction, whereas the XX chain
with random bonds behaves as expected in the RSP phase.
Once again, the inhomogeneous Laughlin state behaves as
expected for a Luttinger liquid. Note that we did not consider
the inhomogeneous spin systems here, as the calculation of
the full generating function is more complicated. However,
we expect it to behave in the same way as its particle
counterpart.

D. Interpretation

Let us now try to interpret the numerical results of
Secs. III B and III C. As we have already mentioned, for spin
chains with finite-range interactions (e.g., XXZ, J1-J2, etc.),
any finite amount of (bond) disorder is sufficient to destabilize
the Luttinger liquid and produce a flow to the RSP. Such
a phenomenon may be understood with a simple real space
renormalization group (RG) picture (see Ref. [13]): What one
does is identify the strongest bond in the chain and form
a spin singlet between the two lattice sites involved. These
two are then effectively removed from the chain, and one
computes the new coupling between the two sites that become
nearest neighbors in the process. This is done using (second
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2 13 24

−0.4

−0.2

0

r

t1,2tr,r+1 − t1,2 tr,r+1

t1,2t1,r+1 − t1,2 t1,r+1

FIG. 6. Two examples of correlations between bond amplitudes
tj,k for a chain of size L = 24. Blue circles represent correlations
between two nearest neighbor hoppings t1,2tr,r+1 − t1,2 tr,r+1 as a
function of their distance r . As can be seen these tend to decay rapidly;
however neighbor hoppings are strongly anticorrelated. Red squares
are the correlations between hoppings emerging from the same site
t1,2t1,r+1 − t1,2 t1,r+1, one being nearest neighbor, the other of range
r , as a function of r . In both examples the average is performed over
106 realizations of the disorder.

order) perturbation theory. The process is then repeated several
times; after many RG steps what one finds is a collection of
spin singlets, some of which are long range. This explains the
critical correlations, when averaged over disorder.

One obvious issue with our class of variational states is that
they correspond to Hamiltonians with long-range interactions,
and tracking this analytically using the RG method mentioned
above is not straightforward. It is then a priori not obvious
whether or not such systems can be driven to the RSP.
Presumably the physics might also depend on the exponent
governing the decay of the couplings in the Hamiltonian.
We note that there are only a few studies of disorder in
systems with long-range interaction in the literature (see,
however, Ref. [53]). A systematic study of the interplay
between disorder and the range of interactions goes beyond
the scope of the present work and is left as an important open
problem.

There are however cases, even with finite range interactions,
where the Luttinger liquid does not flow to the RSP. This can
happen when the disorder is correlated, as was pointed out in
Ref. [54] for locally correlated disorder. This observation has
been later confirmed in other systems (see, e.g., Ref. [55]).
Here we argue that the bond disorder in the Hamiltonian (28)
is, in fact, highly correlated, even though the angles θj in the
variational states [(26), (27)] are by definition independent
and identically distributed. The reason is the complicated
nonlinear mapping between the angles θj given by (30), and
the couplings tjk in Eq. (29), which introduces complicated
correlations. To illustrate this we show in Fig. 6 a few examples
of correlations between the couplings tj,k . We also observed
that the couplings can sometimes even become negative.

In case of uncorrelated hoppings it becomes very difficult
to perform numerical computations for large systems using

12 16 24 32 48

0.24

0.26

0.28

0.3

L

C
2

HS (clean)
HS (dis)

third n.n. (clean)
third n.n. (dis)

FIG. 7. Second cumulant for the fluctuations in the ground state
of the Hamiltonian (37) with disorder strength δ = 0.5 (red squares).
The clean case is also shown for comparison (blue circles). We also
present data for a truncated version where all couplings further than
next-next nearest neighbors are set to zero for clean (brown circles)
and disordered (green stars). The last two data sets are shifted by
a constant offset −0.015 to improve readability. Each data point is
averaged over at least 103 realizations of the disorder, and the ground
state is found with DMRG for each realization.

DMRG. To illustrate this we considered the Hamiltonian

H =
∑
i �=j

tij Si .Sj

sin2 π(i−j )
L

, (37)

where the tij are again independent random numbers uniformly
distributed in [1 − δ,1 + δ]. Some numerical results are shown
in Fig. 7 for system sizes up to L = 24, and show a slight
increase in the fluctuations compared to the clean HS case. This
suggests that adding disorder in this way might be sufficient to
drive the system away from the Luttinger liquid, but the present
data is clearly insufficient to draw any conclusion. To illustrate
why it is risky to extrapolate from such small system sizes, we
consider a truncated version of (37) where all couplings for
|i − j | > 3 are removed. In that case adding disorder increases
the fluctuations for small system sizes but not for large sizes,
at this level of statistical resolution (103 realizations of the
disorder). Even though both scaling behaviors seem to follow
a logarithmic scaling, it is not guaranteed that this remains
correct when L → ∞. For example a truncation to next nearest
neighbors without disorder is known to be gapped with a very
large but finite correlation length [56].

IV. CONCLUSION

In this paper, we have studied the full counting statistics
in ground states of spin chains of the Haldane-Shastry type.
These wave functions can be seen, roughly speaking, as
one-dimensional (1d) discretizations of Laughlin states. They
are also good variational Ansätze for ground states of spin
chains in the LL universality class.

Our results may be summarized as follows. First, we
provided a few finite-size formulas for correlations and the
full (magnetization) counting statistics. These results were
derived using random matrix theory techniques. Aside from
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free fermions, this provides another case where such exact
formulas can be derived. We have also checked the scaling of
fluctuations and the FCS as the system size is increased, both
analytically and numerically. The results were in excellent
agreement with the prediction of Luttinger liquid theory.
In particular, the FCS diverges logarithmically with the
subsystem size , the prefactor being proportional to the
Luttinger parameter, as well as the variable λ2 where λ is
the counting parameter. This implies that only the second
cumulant diverges, a clear signature of a Gaussian effective
theory in the continuum limit.

Second, we showed that the aforementioned formulas can
be generalized to inhomogeneous versions of our variational
Jastrow-type state, where the particles need not be regularly
spaced on the circle. The only additional requirement is the
diagonalization/inversion of an ∼L × L matrix, which can
be performed relatively fast for very large systems, using
standard linear algebra routines. This result motivated us to
revisit the problem of disorder in such states. We performed
large scale simulations, averaged over many realizations of the
disorder. Our results showed that disorder introduced in such
a way is essentially irrelevant: The inhomogeneous versions
of the Haldane-Shastry chain still lie in the Luttinger liquid
universality class. The interpretation is that such disorder
(preserving integrability) is heavily correlated. This prevents
any flow to the random singlet phase, notwithstanding possible
issues with the effect of long-range interactions, which are
currently not well understood. The situation is very different
from the case of free fermions, which can easily be driven to
the random singlet phase, without breaking integrability.

A few issues are left as important open problems. The main
one is that of disorder in systems with long-range interactions.
In our case the real space renormalization group treatment is
not straightforward, and it is unclear whether the Haldane-
Shastry chain can be truly disordered. We note also that the
idea of moving the particles on the circle bears some similarity
to certain Bethe Ansatz calculations, where inhomogeneities
are introduced to make certain complicated expressions more
tractable. Our results suggest that those inhomogeneities do not
affect the long-distance properties of the system, for example,
the fact that the XXZ spin chain is in the Luttinger liquid
universality class.

Another intriguing question is that of the relation between
fluctuations and entanglement. For free systems both can
be computed in closed form, and there is a exact relation
between the two [3,4,11]. However the relation does not
survive in interacting systems, as was confirmed numerically
in fractional quantum Hall states [12]. In the XXZ chain both
fluctuations and entanglement are very difficult to compute
using integrability techniques [57].

In the Haldane-Shastry chain, we have shown that the
fluctuations can be computed exactly. However, an exact
closed form expression for the entanglement is not known,
even though we speculate that such a calculation might be
possible.

For a clean system it would be interesting to determine
whether our results for finite systems can be further gen-
eralized. For example, one could think of studying correla-
tions of other observables such as Sx or Sy . For two-point
correlations these can easily be deduced using the SU(2)

symmetry; however higher order correlations should become
more complicated. Another interesting direction would be to
try and extend our results to variational states with higher
symmetries, such as SU(n)1 or SU(2)2.
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APPENDIX: CORRELATIONS AND FLUCTUATIONS

In this Appendix we study the following variational state

ψ(θ1,θ2, . . . ,θN ) ∝
∏

1�j<k�N

(eiθj − eiθk )2

∝
∏

1�j<k�N

sin2

(
θj − θk

2

)
, (A1)

where θj = 2πxj/L, and the xj ’s are a set of L positions for
the N particles, in the range [0,L]. When the xj are integers and
N = L/2, this is the ground state of the Haldane-Shastry chain,
but we keep a general N � L/2 in the following (The case
N > L/2 follows from the particle-hole symmetry). Since we
are only interested in correlations which are diagonal in the
particle basis, the extra phase factors which are present in (A1)
can be safely discarded. We will mostly use θ variables, so that,
e.g., the spin operator at site xj becomes Sz

θj
. Our main result

will be a (square root) determinant formula for the diagonal
correlations in the state (A1). Before going any further, let us
note that the result is known in case θ is a continuous variable
[27]—this corresponds to the limit L → ∞ with N fixed—or
for discrete but regularly spaced (xj = j ) particles [32]. In the
former case the correlations are essentially that of the circular
ensemble for random matrices with a symplectic symmetry
(β = 4). We extend here the calculation to a case where
the particles can only occupy L different boxes with angles
{θj , j = 1, . . . ,L}, not necessarily regularly spaced on the
circle; it turns out this amounts only to minor complications.
We also provide generalizations to open systems.

Our method will follow closely Refs. [58,59], and uses only
elementary techniques. The Appendix is organized as follows.
In Subsec. 1, we explain how the norm of the state (A1) may
be computed. In Subsec.2, we turn to the actual computation
of the correlation functions. The results are then compared in
Subsec. 3 to the predictions of conformal field theory. Finally,
the case of open Haldane-Shastry chains is investigated in
Subsec. 4.

1. Warm-up exercise: The normalization

Let us first consider the normalization Z(L,N ) of the state
(A1). We have

Z(L,N ) = 1

N !

∑
{θ}

|ψ(θ1, . . . ,θN )|2. (A2)

The N ! accounts for the fact that the positions of the
particles/angles are now unordered. Now recall the following
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Vandermonde identity

V (z1,z2, . . . ,zN ) = det
1�i,j�N

(
z
j−1
i

) =
∏

1�i<j�N

(zj − zi).

(A3)

What matters to compute the norm and the correlations is the
square of |ψ(θ1, . . . ,θN )|, which is the fourth power of the
Vandermonde determinant with zj = eiθj . Crucially, it may be
obtained as the limit

V (z1,z2, . . . ,zN )4 = lim
{wi }→{zi }

V (z1,w1, . . . ,zN ,wN )

(w1 − z1) · · · (wN − zN )
.

(A4)

By appropriate row-column manipulations on the determinant,
one can then show

V (z1,z2, . . . ,zN )4 = det
1 � j � N

1 � k � 2N

(
zk−1
j

(k − 1)zk−2
j

)
, (A5)

an identity sometimes referred to as “confluent Vandermonde”
[60]. Using

|eiθ − eiφ| = ie−i
θ+φ

2 (eiθ − eiφ), (A6)

we obtain

|ψ({θj })|2 = 1

2N

∑
P∈S2N

(−1)P Aθ1
p1p2

Aθ2
p3p4

· · · AθN

p2N−1p2N
,

(A7)
where the sum runs over all permutations of the half integers
(−N + 1/2,−N + 3/2, . . . ,N − 1/2), (−1)P is the signature
of the permutation, and

Aθ
pq = (q − p)eiθ(p+q). (A8)

Let us now perform the sum over the positions of the particles.
We have

Z = 1

N !

∑
{θ}

|ψ(θ1, . . . ,θN )|2

= 1

2NN !

∑
{θ}

∑
P

(−1)P Aθ1
p1p2

· · · AθN

p2N−1p2N

= 1

2NN !

∑
P

(−1)P Ap1p2Ap3p4 · · ·Ap2N−1p2N
(A9)

with

Apq =
∑

θ

Aθ
pq = (q − p)

∑
θ

eiθ(p+q). (A10)

Equation (A9) is nothing but the Pfaffian of the antisymmetric
matrix A = (Apq)1�p,q�N ,

Z(N,L) = Pf A. (A11)

This is quite useful, as the square of the Pfaffian is the
determinant, and this makes numerical computations easy. For
a clean system (corresponding to regularly spaced angles), the

matrix elements (A10) simplify greatly:

Apq = (q − p)
∑

θ

eiθ(p+q) = (q − p)
L∑

x=1

e2iπ(p+q)x/L

= L(q − p)δp,−q, (A12)

and A is antidiagonal. The computation of the Pfaffian then
trivializes, and we finally obtain

Z(L,N ) = LN (2N − 1)!!, (A13)

where !! denotes the double factorial, (2N − 1)!! = 1×3×5×
· · · × (2N − 1). This is an old result by Gaudin [58].

2. Correlations

We have seen that the norm is given by

Z(L,N ) = Pf
p,q

(∑
θ

Aθ
pq

)
. (A14)

We wish to study m-point correlators, involving the sites
θ1, . . . ,θm. To do that, let us introduce α(θ ) = ∑m

i=1 uiδθ,θi

and consider the ratio

C(u1, . . . ,um) =
Pf
p,q

(∑
θ [1 + α(θ )]Aθ

pq

)
Pf
p,q

(∑
θ Aθ

pq

) . (A15)

It turns out C(u1, . . . ,um) generates all correlation functions
relevant to our study. Say we are interested in the multipoint
density correlations 〈ρ(θ1)ρ(θ2) · · · ρ(θm)〉, namely, the joint
probability that these sites be occupied by a particle (spin up
here). One can check that the coefficient of u1u2 · · · um in
C(u1, . . . ,um) is∑

θm+1,θm+2,...,θN

∑
P (−1)P Aθ1

p1p2
· · ·AθN

p2N−1p2N∑
θ1,θ2,...,θN

∑
P (−1)P A

θ1
p1p2 · · ·AθN

p2N−1p2N

=
∑

θm+1,θm+2,...,θN
|ψ(θ1, . . . ,θN )|2∑

θ1,θ2,...,θN
|ψ(θ1, . . . ,θN )|2 , (A16)

which is exactly 〈ρ(θ1) · · · ρ(θm)〉. Said differently,

〈ρ(θ1) · · · ρ(θm)〉 = d

du1
· · · d

dum

C(u1, . . . ,um). (A17)

Since Sz
θ = ρ(θ ) − 1/2, the spin correlations are given by〈
Sz

θ1
· · · Sz

θm

〉 = (−2)−mC(−2, . . . ,−2), (A18)

and the FCS for the set of spins θ1, . . . ,θm is〈
e
iλ

∑m
j=1 Sz

θj

〉 = e−iλm/2C(eiλ − 1, . . . ,eiλ − 1). (A19)

The expression (A15) can be further simplified. Suppose we
are able to invert the matrix A = (Apq). In the clean case this
is trivial, as A is antidiagonal, but for the inhomogeneous case
this can always be achieved numerically. With � = A−1, and
using Pf2 = det, we obtain

C(u1, . . . ,um)2 = det
p,q

(
δpq +

∑
θ

∑
k

α(θ )�pkA
θ
kq

)
. (A20)
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The key observation is that the sum over k in the determinant
can be rewritten as a scalar product

L2
∑

k

�pkA
θ
pq = (

i
∑

k �pkkeikθ
∑

k �pke
ikθ

)( ieiqθ

qeiqθ

)
.

(A21)

Using (A21), (A20) becomes

C(u1, . . . ,um)2 = det (1 + PQ), (A22)

where P is a 2N×2L matrix, and Q is a 2L×2N matrix. Even
though these are rectangular, the product is square and the
identity det(1 + PQ) = det(1 + QP ) holds. QP is an L × L

block matrix, given by

QP =
(

α(φ) ∂f (θ,φ)
∂φ

α(φ)f (θ,φ)

−α(φ) ∂2f (θ,φ)
∂θ∂φ

−α(φ) ∂f (θ,φ)
∂θ

)
θ=θ1 ,...,θL
φ=φ1 ,...,φL

, (A23)

with

f (θ,φ) = i

L2

∑
p,k

�pke
i(pθ+kφ), � = A−1. (A24)

Notice that since A is antisymmetric, so is �, and f (θ,φ) =
−f (φ,θ ). The point of this manipulation is that now all
columns in QP are proportional to α(φ) = ∑m

i=1 uiδφ,θi
, and

so each column corresponding to a site not in {θ1, . . . ,θm} is
identically zero. Hence, C(u1, . . . ,um) reduces to the square
root of a smaller 2m×2m determinant:

C(u1, . . . ,um)2 = det
1�i,j�m

[(
δij 0
0 δij

)
+ ujK(θi,θj )

]
,

(A25)

with a kernel

K(θ,φ) =
(

∂f (θ,φ)
∂φ

f (θ,φ)

− ∂2f (θ,φ)
∂θ∂φ

− ∂f (θ,φ)
∂θ

)
. (A26)

The spin correlations and FCS are then recovered using
Eqs. (A18) and (A19). All these results can alternatively be
written as Pfaffians. For example one gets

〈
Sz

θ1
· · · Sz

θm

〉 = Pf
1�i,j�m

⎛
⎝ f (θi,θj ) ∂f (θi ,θj )

∂θi
+ δij

2

∂f (θi ,θj )
∂θj

− δij

2
∂2f (θi ,θj )

∂θi∂θj

⎞
⎠
(A27)

for the m point function.

3. Clean case, and connection with conformal field theory

As was already mentioned, for regularly spaced particles
on the circle, A is antidiagonal, Apq = q−p

L
δp,−q , so �pq =

(A−1)pq = − L
q−p

δp,−q and the ancillary function (A24) can
be computed explicitly. We obtain

f (θ,φ) = 1

L

∑
p>0

sin p(θ − φ)

p
, (A28)

where the sum runs over the half integers p = 1/2,3/2, . . . ,

N − 1/2. From this all derivatives can easily be obtained. The

result can be recast as a Pfaffian:〈
Sz

θ1
· · · Sz

θm

〉 = Pf
1�i,j�m

(GN (θi,θj )), (A29)

where the 2 × 2 kernel is given by

GN (θ,φ) =
(

aN (θ − φ) fN (θ − φ) − δθ,φ/2

δθ,φ/2 − fN (θ − φ) dN (θ − φ)

)
.

(A30)

fN (θ ) is given by

fN (θ ) = sin Nθ

2L sin θ
2

. (A31)

Note fN (0) = N/L. The two others are

aN (θ ) =
∫ θ

0
fN (φ)dφ = 1

L

N∑
k=1

sin [(k − 1/2)θ ]

k − 1/2
, (A32)

dN (θ ) = dfN (θ )

dθ
= 2N cos Nθ − cot θ

2 sin Nθ

4L sin θ
2

(A33)

and are antisymmetric, so that the Pfaffian makes sense. Note
that from our analysis〈

Sz
θ1

〉 = N/L − 1/2, (A34)

which is obvious due to translational invariance. Nice sim-
plifications occur at half-filling N = L/2 because half the
matrix elements in (A29) are now zero. It is then possible to
reorganize the aN and dN separately, and get a product of two
smaller Pfaffians

〈
Sz

x1
Sz

x2
· · · Sz

xm

〉 =
[

Pf
1�i,j�m

(
(−1)xi−xj

L
π

sin π
L

(xi − xj )

)]

×
[

Pf
1�i,j�m

(
L/2∑
k=1

sin
[ (2k−1)π(xi−xj )

L

]
2π (2k − 1)

)]
,

(A35)

where we have put back the positions of the spins, θ = 2xπ/L.
Specifying m = 2 in (A35) reproduces the result of Ref. [38]
(see also Refs. [17,61]),

〈
Sz

x1
Sz

x2

〉 = (−1)x1−x2

2L sin π
L

(x1 − x2)

L/2∑
k=1

sin
[ (2k−1)π(x1−x2)

L

]
2k − 1

. (A36)

For odd m the Pfaffian always gives zero, consistent with
the fact that the ground state is in the sector with zero
magnetization. Now let us check that the long distance limit
|xi − xj |  1, L  1 is consistent with known conformal
field theory (CFT) results. It turns out the first Pfaffian on the
left in (A35) is exactly the CFT correlator of vertex operators
for SU(2)1. All finite-size effects are therefore encoded in the
second Pfaffian. Indeed, one can check that

L/2∑
k=1

sin
[ (2k−1)πx

L

]
π (k − 1/2)

= sgn x

2
− (−1)x

L
π

sin πx
L

+ O(1/L2), (A37)

so the second Pfaffian only contributes a constant term
to the leading order in the correlator. (We have used
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Pf [sgn(j − i)] = 1). Another interesting limit is that of an
infinite system, in which case we obtain

〈
Sz

x1
Sz

x2
· · · Sz

xm

〉 =
[

Pf
1�i,j�m

(
(−1)xi−xj

xi − xj

)]

×
[

Pf
1�i,j�m

(
Si (π [xi − xj ])

4π

)]
. (A38)

Si denotes the integral sine, Si u = ∫ u

0
sin t

t
.

Note that such a decoupling as a product of two m×m

Pfaffians does not seem to occur away from half-filling. Instead
we keep a bigger 2m×2m Pfaffian similar to (A29).

4. Open systems

Similar results can also be established for the ground state
of the HS chain with open boundary conditions [20,43,44]. We
study the (unnormalized) state

ψ(θ1, . . . ,θN ) =
N∏

j=1

sinα+1 θj

N∏
k=j+1

(cos θj − cos θk)2, (A39)

where the θj are now a set of N angles in (0; π ), and α is left as
a generic parameter for now. This amplitude may be rewritten
as

ψ(θ1, . . . ,θN ) ∝
N∏

j=1

(1 − e2iθj )α+1
N∏

k=j+1

(eiθj − eiθk )2

× (1 − ei(θj +θk))2. (A40)

For correlations in the particle basis, what matters is once again
the square of this amplitude. To treat it we make use of the
identities

det
1�j,k�N

(
zk
j − z−k

j

)

=
N∏

j=1

z−N
j

(
1 − z2

j

) N∏
k=j+1

(zj − zk)(1 − zj zk) (A41)

and

det
1�j�N

1�k�2N

(
zk
j − z−k

j

kzk−1
j + kz−k−1

j

)

=
[

det
1�j,k�N

(
zk
j − z−k

j

)]4 N∏
j=1

(
z2
j − 1

)−1
, (A42)

which may be proven in similar fashion as their periodic
counterparts (A3) and (A5). We find that the norm of the
state (A39) is

1

N !

∑
{θ}

ψ(θ1, . . . ,θN )2 = Pf
1�p,q�2N

(Apq), (A43)

where

Apq =
∑

θ

Aθ
pq (A44)

and

Aθ
pq = (sin θ )2α−1

22n−1
[p cos pθ sin qθ − q sin pθ cos qθ ]

= (sin θ )2α−1

22n
[(p−q) sin(p + q)θ − (p + q) sin(p−q)θ ].

(A45)

The generating function C(u1, . . . ,um) is now given, in block
form, by

C(u1, . . . ,um)2 = det
1�i,j�m

[(
δij 0
0 δij

)
+ ujK(θi,θj )

]
,

(A46)

with a kernel

K(θ,φ) = (sin φ)2α−1

(− ∂g

∂φ
−g

∂2g

∂θ∂φ

∂g

∂θ

)
,

g(θ,φ) =
2N∑
p=1

2N∑
k=1

�kp sin pθ sin kφ, � = A−1. (A47)

The correlations of interest are then reconstructed as

〈ρ(θ1 · · · θm)〉 = d

du1
· · · d

dum

C(u1, . . . ,um)

=
[

det
1�i,j�m

[K(θi,θj )]

]1/2

, (A48)

〈
Sz

θ1
· · · Sz

θm

〉 = (−2)−mC(−2, . . . ,−2), (A49)

〈
e
iλ

∑m
j=1 Sz

θj

〉 = e−imλ/2C(eiλ − 1, . . . ,eiλ − 1). (A50)

All these can also be rewritten as Pfaffians. Of course,
such expressions are only fully explicit if the matrix A

can be inverted exactly. This is the case for regularly
spaced angles θj and some simple integer values of α. For
example when α = 0, all three cases θj = (j−1/2)π

L
, θj =

jπ

L+1 , θj = 2jπ

2L+1 for j ∈ {1, . . . ,L}, lead to a matrix Apq ∝
sin2 π(p−q)

2 [p − q − (p + q) sgn(p − q)] which can be in-
verted. These are, respectively, dubbed open Haldane-Shastry
chains of types (I), (II), and (III) in Ref. [44]. Our formula also
reproduces the result of Ref. [20] when specified to the type
(I) two-point function. The value α = 1 is also interesting,
as the wave function amplitude turns out (in case II) to
be exactly the square of the ground-state amplitude of the
XX chain with open boundary conditions, which lies in the
same universality class. For all three types we get a matrix
Apq ∝ (p + q)[δp,q+1 − δp+1,q ] [up to an extra boundary term
for type (I) and N = L/2] which can also be inverted, leading
to explicit expressions for all correlations.
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