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Recently, Tao and Mo developed a semilocal exchange-correlation density functional. The exchange part
of this functional is derived from a density-matrix expansion corrected to reproduce the fourth-order gradient
expansion of the exchange energy in the slowly-varying-density limit, while the correlation part is based on the
Tao-Perdew-Staroverov-Scuseria (TPSS) correlation functional, with a modification for the low-density limit.
In the present paper, the Tao-Mo (TM) functional is assessed by computing various properties of solids and
jellium surfaces. This includes 22 lattice constants and bulk moduli, 30 band gaps, seven cohesive energies, and
jellium surface exchange and correlation energies for the density parameter rs in the range from 2 to 3 bohr.
Our calculations show that the TM approximation can yield consistently high accuracy for most properties
considered here, with mean absolute errors (MAEs) of 0.025 Å for lattice constants, 7.0 GPa for bulk moduli,
0.08 eV/atom for cohesive energies, and 35 erg/cm2 for surface exchange-correlation energies. The MAE in
band gaps is larger than that of TPSS, but slightly smaller than the errors of the local spin-density approximation,
Perdew-Burke-Ernzerhof generalized gradient approximation, and revised TPSS. However, band gaps are still
underestimated, particularly for large-gap semiconductors, compared to the Heyd-Scuseria-Ernzerhof nonlocal
screened hybrid functional.
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I. INTRODUCTION

The Kohn-Sham density functional theory (DFT) [1] is
the most widely used method for electronic structure cal-
culations of molecules and solids. In this theory, only the
exchange-correlation energy component that accounts for all
many-body effects must be approximated as a functional of
the electron density. Therefore, development of accurate and
widely applicable exchange-correlation energy functionals has
been a primary goal of this theory.

Although many exact properties of the exchange-
correlation functional have been discovered, the exact func-
tional itself remains unknown. Approximations can be con-
structed by assuming some parametrized functional form and
imposing basic properties of the exact functional, such as uni-
form coordinate scaling, spin scaling, negativity of the energy
density, uniform gas limit, and the correct density-gradient
expansion. The parameters introduced, or part of them, can be
determined by a fit to experiment or highly accurate theoretical
reference values for selected properties and systems. Such
functionals are called empirical or semiempirical. Density
functionals can also be developed by imposing exact or
nearly exact constraints so that all introduced parameters
can be fixed by the imposed constraints. Approximate func-
tionals of this type are called nonempirical. Nonempirical
functionals may not be as accurate as empirical functionals
for certain properties, but they provide a more balanced
description of physically different systems (molecules, solids,
and surfaces) because parameters determined by universal
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constraints are more transferable from one system to another
than those determined through empirical fitting. This has been
demonstrated by the universally good performance of the
nonempirical Perdew-Burke-Ernzerhof (PBE) [2] generalized
gradient approximation (GGA) and Tao-Perdew-Staroverov-
Scuseria (TPSS) [3] meta-GGA. On the other hand, empirical
functionals can be highly accurate for subsets of systems and
properties, pushing the accuracy to its limit for a particular
functional form. For example, the M06-L functional [4], which
contains 38 fitted parameters, has very high accuracy for
molecules but not for lattice constants of solids [5].

Physically, the exchange-correlation energy arises from the
interaction between an electron and the exchange-correlation
hole surrounding the electron. The exchange-correlation
hole associated with a given semilocal functional is gen-
erally unknown, but it can be constructed by the reverse-
engineering approach, that is, by constraining the hole to
reproduce the corresponding energy functional. There are
many forms of the associated hole that can satisfy this
and other constraints [6–8]. Therefore, additional approxi-
mations have to be introduced in the construction of the
hole.

In the development of semilocal DFT, an appealing ap-
proach is to approximate the exchange-correlation hole di-
rectly, from which the energy functional can be obtained [2,9].
Recently, Tao and Mo [10] developed a meta-GGA for
the exchange-correlation energy. In this paper, we assess
the performance of the Tao-Mo (TM) meta-GGA on lattice
constants, bulk moduli, band gaps, cohesive energies of solids,
and surface exchange and correlation energies of jellium. Our
numerical tests show that this density functional can achieve
high accuracy for those properties.
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TABLE I. The contracted Gaussian-type basis sets adopted for the atoms of the 22 solids. The Strukturbericht symbols denote the types of
crystal structures: face-centered cubic (A1), body-centered cubic (A2), diamond (A4), rock salt (B1), and zinc blende (B3).

Solids Basis sets d functions

Li (A2) 4s, 3p, 1d [19] Pure
K (A2) 6s, 4p, 1d [20] Cartesian
Al (A1) 6s, 3p, 1d [21] Cartesian
C (A4) 6-31G* Cartesian
Si (A4) 6-31G* Cartesian
SiC (B3) Si: 6-31G* C: 6-31G* Cartesian
Ge (A4) 4s, 3p, 2d [22]a Pure
BP (B3) B: 4s, 3p, 1d [22] P: 6s, 5p, 1d [22] Pure
AlP (B3) Al: 6s, 3p, 1d [21] P: 6-311G* Pure
AlAs (B3) Al: 6s, 3p, 1d [21] As: 6-311G* Pure
GaN (B3) Ga: 6s, 5p, 2d [23] N: 6-311G* Pure
GaP (B3) Ga: 6s, 5p, 2d [23] P: 6-311G* Pure
GaAs (B3) Ga: 6s, 5p, 2d [23] As: 6-311G* Pure
NaCl (B1) Na: 6s, 4p, 1d [24] Cl: 6-311G* Pure
NaF (B1) Na: 6s, 4p, 1d [24] F: 6-311G* Pure
LiCl (B1) Li: 4s, 3p, 1d [24] Cl: 6-311G* Pure
LiF (B1) Li: 4s, 3p, 1d [24] F: 6-311G* Pure
MgO (B1) Mg: 4s, 3p, 1d [25] O: 4s, 3p, 1d [25] Pure
MgS (B1) Mg: 4s, 3p, 1d [25] S: 6-311G* Pure
Cu (A1) 6s, 5p, 2d [26] Pure
Pd (A1) 4s,4p,2d [28]a Pure
Ag (A1) 4s,4p,2d [29]a Pure

aWith the corresponding effective core potentials from Ref. [27].

II. COMPUTATIONAL METHODS

The TM functional is a meta-GGA of the form [10]

Exc[n↑,n↓]

=
∫

d3r nεunif
xc (n↑,n↓)Fxc(n↑,n↓,∇n↑,∇n↓,τ↑,τ↓), (1)

where n(r) = n↑(r) + n↓(r) is the total electron density,
εunif

xc (n↑,n↓) is the exchange-correlation energy per electron
of a uniform electron gas, Fxc is the enhancement factor,
and τσ (r) = 1

2

∑
i |∇φiσ (r)|2 is the Kohn-Sham kinetic energy

density of σ -spin electrons.
The exchange part of the TM meta-GGA enhancement

factor consists of two parts: one is derived from a density-
matrix expansion (DME) [11,12], and the other is a slowly-
varying-density correction (SC),

Fx = wF DME
x + (1 − w)F SC

x . (2)

In the spin-unpolarized from, the DME part is given by

F DME
x = 1

f 2
+ 7

9f 4

{
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54
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− 1

τ unif

[
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(
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)

×
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72
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n
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, (3)

where τ unif = 3kF
2n/10 is the kinetic energy density of a uni-

form electron gas, p = s2 = (|∇n|/2kF n)2, kF = (3π2n)1/3

is the Fermi wave vector, f = [1 + 10(70y/27) + βy2]1/10,
y = (2λ − 1)2p, with λ = 0.6866, and β = 79.873. In the

slowly-varying-density limit, the first term on the right-hand
side of Eq. (3) reduces to 1, while the second term vanishes.
Therefore, the DME recovers the correct uniform gas limit,
but the gradient expansion coefficients are not correct. The
required slowly-varying-density correction F SC

x is given by

F SC
x =

{
1 + 10

[(
10

81
+ 50

729
p

)
p + 146

2025
q̃2

− 73

405
q̃

3

5

(τW

τ

)(
1 − τW

τ

)]}1/10

, (4)

where q̃ = 3τ/2kF
2n − 9/20 − p/12 and τW = |∇n|2/8n is

the von Weizsäcker kinetic energy density. In the slowly-
varying-density limit, F SC

x reduces to the exact fourth-order
gradient expansion [6], while the DME part vanishes as
O(∇6n). The weight is given by

w = (τW/τ )2 + 3(τW/τ )3

[1 + (τW/τ )3]
2 . (5)

For one-electron densities, w = 1, while in the uniform
gas limit, w = 0. In the slowly-varying-density limit, our
enhancement factor of Eq. (2) correctly reduces to F SC

x .
The correlation part of the TM meta-GGA functional takes

the same form as TPSS correlation [eqs. (11) and (12) of
Ref. [3]] but replaces C(ζ,ξ ) with a simpler form

C(ζ,ξ ) = 0.1ζ 2 + 0.32ζ 4

{1 + ξ 2[(1 + ζ )−4/3 + (1 − ζ )−4/3]/2}4 , (6)

where ζ = (n↑ − n↓)/n is the relative spin polarization and
ξ = |∇ζ |/2kF . This modification is motivated by the fact
that, in the low-density limit, correlation shows exchange-like
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TABLE II. Equilibrium (at 0 K) lattice constants (in Å) of 22 solids calculated with various functionals.a

Solids Experiment LSDA PBE PBEsol TPSS revTPSS TM HSE06 optB86b-vdW

Li 3.451 (3.477) 3.383 3.453 3.453 3.475 3.425 3.445 3.460 3.452
K 5.212 (5.225) 5.093 5.308 5.232 5.362 5.325 5.265 5.202
Al 4.019 (4.032) 4.008 4.063 4.038 4.035 4.005 4.024 4.022 4.036
C 3.544 (3.567) 3.544 3.583 3.562 3.583 3.559 3.564 3.549 3.572
Si 5.415 (5.430) 5.426 5.490 5.442 5.477 5.437 5.443 5.435 5.447
SiC 4.340 (4.358) 4.351 4.401 4.381 4.392 4.358 4.374 4.347 4.369
Ge 5.639 (5.652) 5.624 5.764 5.679 5.723 5.680 5.671 5.682 5.725
BP 4.520 (4.538) 4.491 4.548 4.520 4.544 4.529 4.534 4.519 4.545
AlP 5.445 (5.460) 5.433 5.504 5.468 5.492 5.482 5.487 5.472
AlAs 5.646 (5.658) 5.631 5.728 5.676 5.702 5.682 5.691 5.687
GaN 4.520 (4.531) 4.457 4.549 4.499 4.532 4.518 4.492 4.494
GaP 5.435 (5.448) 5.392 5.506 5.439 5.488 5.460 5.437 5.462
GaAs 5.637 (5.648) 5.592 5.726 5.687 5.702 5.673 5.641 5.687 5.717
NaCl 5.565 (5.595) 5.471 5.698 5.611 5.696 5.671 5.618 5.659 5.627
NaF 4.576 (4.609) 4.505 4.700 4.633 4.706 4.674 4.626 4.650 4.658
LiCl 5.072 (5.106) 4.968 5.148 5.072 5.113 5.087 5.089 5.115 5.103
LiF 3.960 (4.010) 3.904 4.062 4.002 4.026 4.011 3.995 4.018 4.037
MgO 4.186 (4.207) 4.156 4.242 4.229 4.224 4.233 4.209 4.210 4.230
MgS 5.182 (5.202) 5.127 5.228 5.184 5.228 5.222 5.198
Cu 3.596 (3.603) 3.530 3.636 3.578 3.593 3.548 3.587 3.638 3.605
Pd 3.913 (3.916) 3.851 3.950 3.888 3.917 3.876 3.900 3.921 3.909
Ag 4.062 (4.069) 3.997 4.130 4.045 4.076 4.050 4.052 4.142 4.101
ME −0.046 0.067 0.017 0.052 0.026 0.019 0.031 0.037

(−0.064) (0.049) (−0.001) (0.034) (0.007) (0.000) (0.034) (0.039)
MAE 0.048 0.067 0.025 0.053 0.039 0.025 0.013 0.017

(0.064) (0.051) (0.019) (0.035) (0.029) (0.017) (0.024) (0.024)

aThe ME and MAE are in reference to experimental lattice constants. The LSDA, PBE, TPSS, PBEsol, and revTPSS values for Ge, BP, AlP,
AlAs, GaN, GaP, and MgS are from Ref. [34]. The other LSDA, PBE, and TPSS values are from Ref. [24] and PBEsol from Ref. [35].
The revTPSS results are taken from Ref. [36], except for potassium, which is from Ref. [34]. The HSE06 values are from Ref. [37]. The
optB86b-vdW value for BP is from Ref. [38]. All other optB86b-vdW values are from Ref. [39]. The experimental data (in parentheses) and
ZPE-corrected values (preceding the parentheses) for lattice constants are from Ref. [40]. The TM values are calculated self-consistently. The
smallest and largest MAEs for the semilocal functionals are in bold and italic, respectively.

scaling behavior, while in the high-density limit, correlation
scales to a constant, indicating the significance of correlation
in the low-density limit [13] (modification of the TPSS
correlation energy functional is equivalent to modification
of the TPSS correlation hole, because the latter can be
reverse-engineered from the former [6–8]).

III. RESULTS AND DISCUSSION

A. Lattice constants

The equilibrium lattice constant of a solid is a basic quantity
on which all other properties depend. Accurate prediction
of this quantity is critical to the design of materials and
devices [14–16]. Our test set of 22 bulk crystals includes
main-group metals Li, K, Al, semiconductors diamond, Si,
β-SiC, Ge, BP, AlP, AlAs, GaN, GaP, GaAs, ionic crystals
NaCl, NaF, LiCl, LiF, MgO, MgS, and transition metals Cu,
Pd, Ag. Calculations on these solids were performed using a
locally modified version [10] of the Gaussian program [17]
with periodic boundary conditions [18]. The Gaussian-type
basis sets used in the calculation of the 22 bulk solids are
given in Table I. Diffuse basis functions present in the standard
6-31G∗ and 6-311G∗ basis sets were removed for compu-
tational efficiency. For smooth convergence and reliability

of results, dense k-point meshes were used: 22 × 22 × 22
to 20 × 40 × 40 for main-group metals, 10 × 10 × 10 to
12 × 12 × 12 for semiconductors, 10 × 10 × 10 to 14 × 14 ×
14 for ionic crystals, and 8 × 16 × 16 to 10 × 18 × 18 for
transition metals.

Listed in Table II are the equilibrium lattice constants of the
22 solids calculated with TM and other DFT methods. Figure 1
compares the errors of local spin density approximation
(LSDA), PBE, TPSS, PBEsol, revised TPSS (revTPSS), and
TM for lattice constants of these solids. The TM functional has
a mean error (ME) of 0.019 Å and is the second most balanced
functional between underestimation and overestimation. The
greatest reductions of error by TM relative to TPSS were
achieved for K, NaF, and NaCl. Among the 22 solids, the TM
functional has the highest accuracy in predicting the lattice
constants of main group metals Li and Al, semiconductors
GaP and GaAs, and transition metals Cu and Ag. Overall, TM
is one of the most accurate functionals for lattice constants,
with a mean absolute error (MAE) of 0.025 Å, which is the
smallest among all semilocal functionals listed and on par with
the MAE of PBEsol (the SCAN functional [5] also yields very
accurate lattice constants). The MAE of the TM functional
is larger than those of the nonlocal Heyd-Scuseria-Ernzerhof
(HSE06) (MAE = 0.013 Å) and van der Waals (vdW) density

035118-3



MO, CAR, STAROVEROV, SCUSERIA, AND TAO PHYSICAL REVIEW B 95, 035118 (2017)

FIG. 1. Performance of various density functionals for lattice constants of 22 solids. The references used are ZPE-corrected experimental
values at 0 K. All values are from Table II.

functionals such as optB86b-vdW (MAE = 0.017 Å). These
nonlocal functionals outperform all the listed semilocal density
functionals, but have a higher computational cost.

B. Bulk moduli

Bulk modulus is related to the curvature of the total
energy as a function of unit cell volume at the equilibrium
geometry. This quantity can be calculated from various

model equations of state (EOS) [30–32]. Bulk modulus
presents a great challenge to DFT, in particular, for transition
metals [33].

In the present paper, to obtain the zero-temperature equi-
librium lattice constant and bulk modulus for each crystal,
calculations of the total energy were first performed on no
less than ten static lattices. The unit cells of such lattices have
volumes ranging from −5% to +5% of the equilibrium cell
volume. The corresponding total energies were fitted to the

TABLE III. Equilibrium bulk moduli (in GPa) of the 22 solids calculated at 0 K.a

Solids Experiment LSDA PBE TPSS PBEsol TM HSE06 optB86b-vdW

Li 13 14.7 13.7 13.2 13.8 13.7 13.4
K 3.7 4.6 3.8 3.6 3.7 4.0 3.79
Al 79.4 82.5 76.8 85.2 82.6 88.6 77.0
C 443 458 426 421 450.0 442.4 468.2 431
Si 99.2 95.6 89 91.9 94.2 97.1 99.6 91.2
SiC 225 225 209 213 218.0 220.0 233.3 215
Ge 75.8 75.9 63.0 66.4 68.1 72.5 73.5 61.5
BP 173 176 162 173.4 171.5 178.4 163.3
AlP 86 89.9 82.6 90.5 89.3 94.3
AlAs 82 75.5 67.0 78.7 75.2 81.9
GaN 190 204 173 182.8 207.1 193.0
GaP 88 90.6 77.0 85.9 89.2 88.8
GaAs 75.6 81.3 68.1 70.1 69.1 78.6 72.2 63.6
NaCl 26.6 32.5 23.9 23 25.8 26.9 25.9 26.2
NaF 51.4 63.3 47.7 44 48.6 52.5 54.5 47.5
LiCl 35.4 42 32.9 34.3 35.2 36.2 34.5 34.3
LiF 69.8 87.5 65.9 67.2 73.1 74.4 76.4 70.2
MgO 165 183 162 169 157.0 174.5 172.9 156
MgS 78.9 84.0 74.4 60.9 79.8 62.2
Cu 142 192 153 173 166.0 180.2 149
Pd 195 240 180 203 205.0 210.7 187
Ag 109 153 107 129 119.0 138.4 104
ME 11.1 −6.8 −0.1 −0.2 5.3 2.8 −5.2
MAE 12.0 7.8 8.8 6.0 7.0 5.8 6.1
MARE 13.0 7.5 8.1 5.8 6.5 5.0 5.6

aThe LSDA, PBE, and TPSS values are from Ref. [24]. The PBEsol values are from Ref. [41]. For BP, AlP, AlAs, GaN, GaP, and MgS, the
LSDA and PBE values are from Ref. [42], and the PBEsol values are from Ref. [43]. The HSE06 values are from Ref. [43]. The optB86b-vdW
value for BP is from Ref. [38]. All other optB86b-vdW values are from Ref. [39]. The experimental values of bulk moduli for the 22 solids are
from the following references: Li [44], K [45], Al [46], C [47], Si [48], SiC [49], Ge [48], BP [50], AlP [51], AlAs [51], GaN [52], GaP [51],
GaAs [48], NaCl [53], NaF [53], LiCl [53], LiF [54], MgO [55], MgS [56], Cu [57], Pd [58], and Ag [59]. The smallest and largest MAEs for
the semilocal functionals are in bold and italic, respectively. MARE is the mean absolute relative error.
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FIG. 2. Performance of various density functionals for bulk moduli of 22 solids at 0 K. All values are from Table III.

stabilized jellium EOS [30,31]

ε(x) = a

x3
+ b

x2
+ c

x
+ d, (7)

where ε is the energy of the lattice cell and x is the volume.
The equilibrium lattice volume v0 and bulk modulus B0 were
obtained by solving

a = 9
2B0v0(B1 − 3), (8)

b = 9
2B0v0(10 − 3B1), (9)

c = − 9
2B0v0(11 − 3B1). (10)

Listed in Table III are the equilibrium bulk moduli of the
22 solids calculated with TM and other functionals. Figure 2
shows deviations of the LSDA, PBE, TPSS, PBEsol, TM,
HSE06, and optB86b-vdW bulk moduli from the experimental
data for these solids. The TM functional is less accurate than
PBEsol and nonlocal functionals HSE06 and optB86b-vdW
but outperforms the all-purpose functionals TPSS, PBE, as
well as LSDA. Compared to lattice constants, the advantage
of the two nonlocal functionals HSE06 and optB86b-vdW over
the listed semilocal functionals has decreased significantly in
the case of bulk moduli, suggesting relative insignificance of
nonlocality for the curvature of the potential energy curve.
Nevertheless, nonlocality is still helpful in predicting bulk
moduli, as can be seen from the error reduction from PBE to
the PBE-based nonlocal HSE06 functional.

C. Semiconductor band gaps

The electronic band gap is a key property of a semi-
conductor necessary for understanding its electrical, optical,
photovoltaic, and photocatalytic properties [60,61]. We have
assessed performance of the TM functional on 30 semiconduc-
tors. The TM results are listed in Table IV, along with other
calculated values from the literature. All calculated band gaps
reported in this paper were obtained as the difference between
the valence band maximum and conduction band minimum.

From Table IV, we see that the TM functional tends to
underestimate band gaps, like other density functionals. The
MAE of the TM functional is 0.87 eV, which is larger than that
of TPSS (MAE = 0.79 eV) but 6–20% smaller than those of
LSDA, PBE, PBEsol, and revTPSS. Compared to the nonlocal
functional HSE06, the errors of semilocal functionals are too

large, suggesting the significance of nonlocality [8] in band
gap calculations.

A noteworthy feature of the TM functional is its greater
ability to distinguish small-gap semiconductors from metals.
Among the 30 semiconductors, InN is the only material
incorrectly predicted by the TM functional to have a zero
band gap, while other semilocal density functionals predict
zero band gaps for multiple semiconductors: LSDA (five
semiconductors), PBE (three), PBEsol (four), TPSS (two),
and revTPSS (two). The numerical values of the band
gaps predicted by the TM functionals for such small-gap
semiconductors are the most accurate among all semilocal
functionals listed.

D. Cohesive energies

Cohesive energy is the difference between the total elec-
tronic energy of a solid and the constituent neutral atoms. It is
the condensed-matter analog of molecular atomization energy
and a measure of the interatomic bond strength. To compute
the cohesive energy for each of the seven test solids, the total
energy of a unit cell was first divided by the number of atoms
in the cell to obtain the total energy per atom. This energy per
atom was corrected by adding the phonon zero-point energy
(ZPE) to account for the zero-point motion. The phonon ZPE
per atom can be estimated from [30]

εZPE = 9
8kB�D, (11)

where kB is the Boltzmann constant and �D is the Debye
temperature of the solid. We used the following Debye
temperatures: C 2230 K [64], Si 645 K [64], SiC 1232 K [65],
NaCl 321 K [64], NaF 492 K [64], LiCl 422 K [64], and
LiF 732 K [64]. The ZPE-corrected energy per atom was then
subtracted from the spin-unrestricted ground-state energy of
isolated atoms to obtain the cohesive energy.

Among the six atoms (C, Si, Na, Li, Cl, and F) comprising
the seven solids, the atoms Li and Na involve diffuse functions
in their molecular basis sets. These diffuse basis functions
were excluded from the calculations of lattice constants and
bulk moduli of Li- and Na-containing ionic solids but used for
calculating the ground-state energies of the isolated Li and Na
atoms (i.e., the full molecular basis set 6-311G* was employed
for the isolated Li and Na atoms). Applying different basis
sets to the solid and the corresponding isolated atoms provides
reasonable cohesive energies for ionic solids, because cations
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TABLE IV. Band gaps (in eV) of 30 semiconductors.a

Solid Experiment LSDA PBE PBEsol TPSS revTPSS TM HSE06

C 5.48 4.22 4.24 4.03 4.29 4.05 4.12 5.43
Si 1.17 0.62 0.72 0.53 0.80 0.63 0.56 1.21
Ge 0.74 0.00 0.13 0.00 0.32 0.14 0.35 0.80
SiC 2.42 1.42 1.46 1.27 1.42 1.23 1.24 2.32
BP 2.40 1.36 1.40 1.24 1.45 1.28 1.27 2.13
BAs 1.46 1.19 1.25 1.10 1.27 1.13 1.10 1.88
AlP 2.51 1.64 1.78 1.56 1.86 1.72 1.10 2.42
AlAs 2.23 1.43 1.55 1.37 1.66 1.57 1.47 2.13
AlSb 1.68 1.34 1.44 1.22 1.58 1.40 1.28 1.82
GaN 3.50 2.18 2.22 1.85 2.15 1.71 1.71 3.48
β-GaN 3.30 1.84 1.86 1.70 1.79 1.53 2.06 3.08
GaP 2.35 1.63 1.80 1.62 1.89 1.77 1.64 2.39
GaAs 1.52 0.04 0.36 0.42 0.60 0.73 0.68 1.11
GaSb 0.73 0.00 0.19 0.06 0.39 0.31 0.51 0.90
InN 0.69 0.00 0.00 0.00 0.00 0.01 0.00 0.72
InP 1.42 0.74 0.99 0.83 1.19 1.00 1.19 1.77
InAs 0.41 0.00 0.00 0.00 0.08 0.00 0.19 0.57
InSb 0.23 0.00 0.00 0.00 0.00 0.00 0.14 0.47
ZnS 3.66 2.02 2.30 2.22 2.53 2.42 2.40 3.44
ZnSe 2.70 1.05 1.37 1.26 1.62 1.58 1.61 2.38
ZnTe 2.38 1.11 1.39 1.29 1.65 1.60 1.70 2.34
CdS 2.55 0.97 1.26 1.08 1.47 1.31 1.33 2.21
CdSe 1.90 0.31 0.63 0.45 0.85 0.77 1.33 1.48
CdTe 1.92 0.54 0.81 0.67 1.05 0.98 1.10 1.64
MgS 5.40 3.37 3.65 3.34 3.91 2.68 3.76 4.67
MgSe 2.47 1.74 1.90 1.70 2.21 2.03 1.97 2.69
MgTe 3.60 2.41 2.65 2.58 3.07 3.08 2.98 3.54
BaS 3.88 2.13 2.40 2.15 2.56 2.48 2.34 3.19
BaSe 3.58 1.84 2.05 1.83 2.18 2.17 2.03 2.74
BaTe 3.08 1.48 1.66 1.38 1.77 1.69 1.61 2.21
ME −1.09 −0.93 −1.09 −0.79 −0.95 −0.89 −0.14
MAE 1.09 0.93 1.09 0.79 0.95 0.89 0.26

aThe LSDA, PBE, PBEsol, TPSS, and revTPSS values are from Ref. [62]. The HSE06 values are from Ref. [63]. The experimental values are
from Ref. [22]. The smallest and largest MAEs for the semilocal functionals are in bold and italic, respectively.

are compact and their electrons are less likely to appear in the
far regions described by diffuse functions, therefore decreasing
the need of diffuse functions in the solid-state calculation.

Listed in Table V are the cohesive energies of the seven
solids. Figure 3 compares the performance of the LSDA, PBE,

TPSS, PBEsol, revTPSS, TM, HSE06, and optB86b-vdW
functionals for cohesive energies of these solids. Overall, TM
has an MAE of only 0.08 eV/atom, with an error reduction
of over 50% from that of the meta-GGA TPSS. The TM
functional is also significantly more accurate than the other

TABLE V. Cohesive energies (in eV per atom) of seven representative solids.a

Solid Experiment LSDA PBE TPSS PBEsol revTPSS TM HSE06 optB86b-vdW

C 7.37 8.83 7.62 7.12 8.05 7.31 7.48 7.43 7.66
Si 4.62 5.26 4.50 4.36 4.87 4.50 4.61 4.52 4.81
SiC 6.37 7.25 6.25 6.02 6.75 6.26 6.29 6.28 6.55
NaCl 3.31 3.58 3.16 3.18 3.20 3.14 3.19 3.06 3.29
NaF 3.93 4.50 3.96 3.87 3.99 3.74 3.88 3.67 3.95
LiCl 3.55 3.88 3.41 3.41 3.49 3.39 3.42 3.33 3.56
LiF 4.40 5.02 4.42 4.32 4.49 4.23 4.34 4.18 4.43
ME 0.68 −0.03 −0.18 0.18 −0.14 −0.05 −0.16 0.10
MAE 0.68 0.12 0.18 0.23 0.14 0.08 0.17 0.11
MARE 13.4 2.5 3.7 4.2 3.4 1.9 4.3 1.9

aThe LSDA, PBE, and TPSS values are from Ref. [24], PBEsol from Ref. [41], revTPSS from Ref. [66], HSE06 from Ref. [37], and
optB86b-vdW from Ref. [39]. The TM values are calculated self-consistently and corrected for zero-point vibrations. The smallest and largest
MAEs for the semilocal functionals are in bold and italic, respectively.
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FIG. 3. Performance of various density functionals for cohesive
energies of solids. All values are from Table V.

semilocal functionals revTPSS, PBE, PBEsol, and LSDA. This
is in sharp contrast with atomization energies of molecular
systems [10] for which TM is less accurate than TPSS for the
148 G2 molecules and moderately more accurate than TPSS
for the AE6 test set. The TM functional can even provide better
description of cohesive energies than the nonlocal functionals
HSE06 and optB86b-vdW.

E. Surface exchange and correlation energies

Jellium, a homogeneous electron gas with a positive
uniform background charge, is a useful model of simple
metals. The electron density of jellium is uniform within the
bulk, varies rapidly near the surface, and decays exponentially
in vacuum. The surface energy σ is defined as the energy per
unit area needed to cut the bulk jellium into two infinitely
separated parts. The exchange-correlation contribution to the
surface energy can be calculated as

σxc =
∫ ∞

−∞
n(z)[εxc(z) − εxc(−∞)]dz. (12)

From this equation, we can see that to have an accurate
description of the surface energy, a density functional must
be correct for slowly varying densities. This is true even for

real solids [67] because the typical valence electron density of
solids is slowly varying.

Several ab initio calculations of the jellium surface
exchange-correlation energy are available in the literature,
including the random-phase approximation (RPA) [68] and
quantum Monte Carlo (QMC) [69]. These calculations agree
well with each other and with time-dependent DFT [68].
Since QMC values have some uncertainty, we compare all
DFT values to the RPA values in the high-density regime
from rs = 2 bohr to rs = 3 bohr, in which the RPA is reliable.

The results displayed in Table VI show that the surface
exchange energies from the TM exchange functional are in
excellent agreement with the exact values [70], better than the
LSDA, PBE, and TPSS values. Specifically, the TM functional
has an MAE of only 10 erg/cm2, an 80–96% decrease of
error compared with LSDA, PBE, and TPSS. This excellent
performance of the TM functional largely benefits from the
recovery of the correct fourth-order gradient expansion in the
slowly-varying-density limit. As a result, TM also yields much
better surface exchange-correlation energies than LSDA, PBE,
and TPSS.

IV. CONCLUSION

In summary, we have evaluated the performance of the
TM meta-GGA on solids and solid surfaces for a number of
properties including lattice constants, bulk moduli, band gaps,
cohesive energies, and jellium surface exchange-correlation
energies. Our calculations show that this functional is consis-
tently accurate for the properties considered. In particular, TM
is the most accurate semilocal density functional among those
considered for both lattice constants and cohesive energies,
indicating its great potential utility in computational studies
of the structure and energetics of solids. The TM functional
also achieves excellent accuracy for jellium surface exchange-
correlation energies. However, like all other semilocal func-
tionals, the TM functional tends to underestimate band gaps,
because it misses the functional derivative discontinuity [71]
required for accurate band gap prediction. Nevertheless, TM
is able to distinguish small-gap semiconductors from metals,
as it predicts a zero band gap for only one of the 30 test
semiconductors, which is the best result among all semilocal
functionals considered.

TABLE VI. Jellium surface exchange energies σx and surface exchange-correlation energies σxc (in erg/cm2).a

Exchange Exchange-correlation

rs(bohr) LSDA PBE TPSS TM Exact LSDA PBE TPSS TM RPA

2.00 3037 2438 2553 2641 2624 3354 3265 3380 3515 3467
2.07 2674 2127 2231 2312 2296 2961 2881 2985 3109 3064
2.30 1809 1395 1469 1531 1521 2019 1962 2035 2132 2098
2.66 1051 770 817 860 854 1188 1152 1198 1267 1240
3.00 669 468 497 528 526 764 743 772 823 801
ME 284 −125 −51 10 −77 −133 −60 35
MAE 284 125 51 10 77 133 60 35

aThe exact-exchange and RPA values are from Ref. [70]. The LSDA, PBE, and TPSS values are taken from Ref. [24]. The smallest and largest
MAEs are in bold and italic, respectively.
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The performance of the TM functional greatly benefits from
(i) recovery of the correct slowly-varying-density gradient
expansion, the paradigm of condensed-matter physics, and (ii)
slow increase of the enhancement factor with density gradient.
The first property is important for surface energy calculations,
while the second is helpful in describing van der Waals interac-
tions [72–79], as demonstrated by the excellent performance of
the TM functional for lattice constants (Table II) and cohesive
energies (Table V). Recently, we have also assessed [80] the
TM functional on diverse molecular properties and found that
it has as good performance for atoms and molecules as for
solids. The balanced description of finite and extended systems
by the TM functional makes it an attractive tool for studying
new materials whose properties are yet unknown.
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