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Resolving the VO2 controversy: Mott mechanism dominates the insulator-to-metal transition
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We consider a minimal model to investigate the metal-insulator transition in VO2. We adopt a Hubbard model
with two orbitals per unit cell, which captures the competition between Mott and singlet-dimer localization.
We solve the model within dynamical mean-field theory, characterizing in detail the metal-insulator transition
and finding new features in the electronic states. We compare our results with available experimental data,
obtaining good agreement in the relevant model parameter range. Crucially, we can account for puzzling optical
conductivity data obtained within the hysteresis region, which we associate with a metallic state characterized
by a split heavy quasiparticle band. Our results show that the thermal-driven insulator-to-metal transition in VO2

is compatible with a Mott electronic mechanism, providing fresh insight to a long-standing “chicken-and-egg”
debate and calling for further research of “Mottronics” applications of this system.
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Vanadium dioxide VO2 and vanadium sesquioxide V2O3

remain at the center stage of condensed-matter physics as they
are prototypical examples of systems undergoing a strongly
correlated metal-insulator transition (MIT) [1]. Their unusual
electronic behavior makes them very attractive materials for
novel electronic devices [2,3]. In fact, they are being investi-
gated intensively in the emerging field of “Mottronics,” which
aims to exploit the functionalities associated with quantum
Mott transitions. A key goal is to create fast and ultralow-power
consumption transistors, which may be downsized to the
atomic limit [4–6].

VO2 and V2O3 have nominally partially filled bands, hence
they are expected to be metals. However, they undergo a
first-order metal-to-insulator transition upon cooling at ∼340
and 180 K, respectively. This phenomenon has often been
associated with a Mott MIT [1], namely a transition driven
by the competition between kinetic energy and Coulomb
repulsion [7]. However, that point of view has been questioned
just as often [1,8].

The case of VO2, displaying a transition from a high-T
rutile (R) metal to a low-T monoclinic (M1) insulator is
emblematic [9–16]. The central issue is whether the transition
is driven by a spin-Peierls structural instability, or by a
Mott-Hubbard-type electronic charge localization. This issue
has been under scrutiny using electronic structure calculations
[17–21] based on the combination of density-functional theory
in the local-density approximation with dynamical mean-
field theory (LDA+DMFT) [22]. In the pioneering work of
Ref. [17], Biermann et al. argued that the insulator should be
considered as a renormalized Peierls insulator, i.e., a band-
insulator where the opening of the bonding-antibonding gap is
driven by dimerization and renormalized down by interactions
[17]. On the other hand, the calculations showed that within the
metallic rutile phase, the Coulomb interaction failed to produce
a MIT for reasonable values of the interaction. More recently,
the problem was reconsidered by Brito et al. [19] and by
Biermann et al. as well [20,23–25], providing a rather different
scenario. Brito et al. found a MIT within a second monoclinic
(M2) phase of VO2 that only has half the dimerization of the
standard M1 for the same value of the Coulomb interaction.
Hence, they argued that Mott localization must play the leading

role in both MITs. Nevertheless, they also noted that the Mott
insulator adiabatically connects to the singlet dimer insulator
state, and therefore the transition should be considered a
Mott-Hubbard transition in the presence of strong intersite
exchange [19,20,23].

While those LDA+DMFT works provided multiple useful
insights, the issue of whether the first-order MIT at 340 K in
VO2 is electronically or structurally driven still remains. Here
we shall try to shed new light on this classic “chicken-and-egg”
problem by adopting a different strategy. We shall trade the
complications of the realistic crystal structures and orbital
degeneracy of VO2 for a model Hamiltonian, namely the dimer
Hubbard model (DHM), that captures the key competition
between Mott localization due to Coulomb repulsion and
singlet dimerization, i.e., Peierls localization. This permits a
detailed systematic study that may clearly expose the physical
mechanisms at play. Importantly, in our study the underlying
lattice stays put. Therefore, we can directly address the issue
of whether a purely electronic transition, having a bearing on
the physics of VO2, exists in this model. The specific questions
that we shall address are the following: (i) Does this purely
electronic model predict a first-order metal-insulator transition
as a function of the temperature within the relevant parameter
region? (ii) What is the physical nature of the different states?
(iii) Can they be related to key available experiments? These
issues are relevant, since if this basic model fails to predict an
electronic MIT consistent with the one observed in VO2, then it
would be mandatory to include the lattice degrees of freedom.
In the present study, we shall provide explicit answers to these
questions. We show that the solution of the DHM brings the
equivalent physical insight for VO2 as the single-band Hubbard
model for V2O3, which is one of the significant achievements
of DMFT [26,27].

The dimer Hubbard model is defined as

H =
⎡
⎣−t

∑
〈i,j〉ασ

c
†
iασ cjασ + t⊥

∑
iσ

c
†
i1σ ci2σ + H.c.

⎤
⎦

+
∑
iα

Uniα↑niα↓, (1)
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O. NÁJERA et al. PHYSICAL REVIEW B 95, 035113 (2017)

where 〈i,j 〉 denotes nearest-neighbor (n.n.) lattice sites, α =
{1,2} denote the dimer orbitals, σ is the spin, t is the lattice
hopping, t⊥ is the intradimer hopping, and U is the Coulomb
repulsion. For simplicity, we adopt a semicircular density of
states ρ(ε) = √

4t2 − ε2/(2πt2). The energy unit is set by
t = 1/2, which gives a full bandwidth of 4t = 2D = 2, where
D is the half-bandwidth. This interesting model has received
surprisingly little attention, and only partial solutions have
been obtained within DMFT [28–31]. The main results were
the identification of the region of coexistent solutions at mod-
erate U and small t⊥ at T = 0 using the iterated perturbation
theory (IPT) approximation [28] and at finite T = 0.025 by
quantum Monte Carlo [32,33] (QMC) [29]. Here we obtain
a detailed solution of the problem, paying special attention
to the MIT and the nature of the coexistent solutions. We
solve for the DMFT equations with hybridization-expansion
continuous-time quantum Monte Carlo (CT-QMC) [34,35]
and exact diagonalization [26], which provide (numerically)
exact solutions. We also adopt the IPT approximation [28],
which, remarkably, we find is (numerically) exact in the
atomic limit t = 0, therefore it provides reliable solutions of
comparable quality as in the single-band Hubbard model [26].
Furthermore, IPT is extremely fast and efficient to explore the
large parameter space of the model, and it provides accurate
solutions on the real frequency axis. An extensive comparison
between IPT and the CT-QMC is shown in the Supplemental
Material [43]. The DMFT equations provide for the exact
solution of the DHM in the limit of large lattice coordination,
and they have been derived elsewhere [28]. Here we quote
the key self-consistency condition of the associated quantum
dimer-impurity model,

G−1(iωn) + �(iωn) =
(

iωn −t⊥
−t⊥ iωn

)
− t2G(iωn), (2)

where Gα,β and 	α,β (with α,β = 1,2) are, respectively, the
dimer-impurity Green’s function and self-energy. At the self-
consistent point, these two quantities become the respective
local quantities of the lattice [26]. An important point to em-
phasize is that this quantum dimer-impurity problem is anal-
ogous to that in the above-mentioned LDA+DMFT studies
[17,19,20,23]. Therefore, strictly speaking, our methodology
is a cluster-DMFT (CDMFT) calculation (cf. the Supplemental
Material [43]).

We start by establishing the detailed phase diagram, which
we show in Fig. 1. We observe that at low T there is a large
coexistent region at moderate U and t⊥ below 0.6 [28]. This
region gradually shrinks as T is increased, and fully disappears
at T ≈ 0.04. The lower panel shows the phase diagram in the
U -T plane at fixed t⊥. At t⊥ = 0 we recover the well-known
single-band Hubbard model result, where the coexistent region
extends in a triangular region defined by the lines Uc1(T )
and Uc2(T ) [26]. The triangle is tilted to the left, which
indicates that upon warming the correlated metal undergoes a
first-order transition to a finite-T Mott insulator. This behavior
was immediately associated with the famous first-order MIT
observed in Cr-doped V2O3 [26,36], which has long been
considered a prime example of a Mott-Hubbard transition [1].
It is noteworthy that this physical feature has remained relevant
even in recent LDA+DMFT studies, where the full complexity
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FIG. 1. Phase diagram showing the coexistence (grayed) of metal
and insulator states (black lines from IPT and red from QMC), where
the approximate position of the first-order lines is indicated. MI
denotes Mott insulator and BI denotes bond insulator; the crossover
regions have bad metal behavior (see the text and Ref. [40]). The top
panels show the t⊥-U plane. The left one shows lower temperature
T = 0.001 (IPT) and 1/200 (CT-QMC), and the right one shows
higher temperature T = 0.03 (IPT) and 1/64 (CT-QMC). Lower
panels show the U -T plane. The left one is for fixed t⊥ = 0 (i.e.,
the single-band Hubbard model), and right one is for t⊥ = 0.3.

of the lattice and orbital degeneracy is considered [8,37]. This
underlines the utility of sorting the detailed behavior of basic
model Hamiltonians. Significantly, as t⊥ is increased in the
DHM, the tilt of the triangular region evolves toward the right.
This signals that t⊥ fundamentally changes the stability of the
ground state. In fact, as shown in the lower right panel of Fig. 1,
at t⊥ = 0.3 we find that the MIT is reversed with respect to the
previous case. Namely, upon warming, an insulator undergoes
a first-order transition to a (bad) correlated metal at finite
T . We may connect several features of this MIT to VO2,
both qualitatively and semiquantitatively. We first consider
the energy scales and compare the parameters of the DHM to
those of electronic structure calculations. The LDA estimate
of the bandwidth of the metallic state of VO2 is ∼2 eV [17],
which corresponds in our model to 4t , hence t = 0.5 eV. This
is handy, since from our choice of t = 0.5 we may simply read
the numerical energy values of the figures directly in physical
units (eV) and compare with experimental data of VO2. We
notice that the coexistence region (with a first-order transition
line) extends up to T ≈ 0.04 (eV) ≈400 K, consistent with
the experimental value ≈340 K. We then set the value of t⊥ =
0.3 eV, which corresponds approximately with LDA estimates
for the (average) intradimer hopping amplitudes (cf. the
Supplemental Material [43]) [17,38,39]. Thus, the coexistence
region is centered around U ≈ 2.5–3 eV, consistent with the
values adopted in the LDA+DMFT studies [17,38].

We can make further interesting connections with exper-
iments in VO2. The metallic state is unusual and it can be
characterized as a bad metal, i.e., a metal with an anomalously
high scattering rate that approaches (or may violate) the
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FIG. 2. Top: The scattering rate Im[	11(ω = 0)] for the metal
(solid) at fixed t⊥ = 0.3 values of U from 0 to 3 in steps of 0.5
(upward). The experimentally relevant values U = 2.5 and 3 are
highlighted with thick lines. The inset shows the U dependence at
fixed T = 0.04. Bottom: The effective intradimer hopping t eff

⊥ = t⊥ +
Re[	12](0) as a function of T for the same parameters as the top panel.
Metal states are shown by solid (blue) lines, and the insulator is shown
by dashed (red) lines for U = 2.5 and 3. The calculations are done
with IPT.

Ioffe-Regel limit [41]. In Fig. 2, we show the imaginary part
of the diagonal self-energy, whose y-axis intercept indicates
the scattering rate (i.e., inverse scattering time). At T ≈ 0.04
(i.e., ∼400 K), we observe a large value of the intercept, of
order ∼t = 1/2, which signals that the carriers are short-lived
quasiparticles. In fact, VO2 has such an anomalous metallic
state [12]. This anomalous scattering is likely the origin
of the surprising observation that despite the fact that the
lattice structure has one-dimensional (1D) vanadium chains
running along the c axis, the resistivity is almost isotropic,
within a mere factor of 2 [11]. It is noteworthy that this lack
of anisotropy observed in electronic transport experiments
provides further justification for our simplified model of a
lattice of dimers. This bad metal behavior is a hallmark of
Mottness [40,42] and also indicates that the MIT in VO2

should be characterized as a Mott transition (see Sec. 5 of
Ref. [43]). Additional insights on the mechanism driving
the transition can be obtained from the behavior of the
off-diagonal (intradimer) self-energy 	12(ωn). From Eq. (2),
we observe that the intradimer hopping amplitude is effectively
renormalized as teff

⊥ = t⊥ + Re[	12](0). In Fig. 2, we show the
behavior of this quantity across the transition. We see that in the
metallic state it remains small, while it becomes large (
t⊥) at
low T in the insulator [19,20,23]. The physical interpretation
is transparent. In the correlated metal, the two dimer sites are
primarily Kondo-screened by their lattice neighbors, and as
in the single-band Hubbard model, each one forms a heavy
quasiparticle band. Then these two bands get split into a
bonding and antibonding pair by the small t⊥. Hence, the
low-energy electronic structure is qualitatively similar to the
noninteracting one, with a larger effective mass. As T is

FIG. 3. Electronic dispersion for the metal (left top) and insulator
(left bottom) in the coexistence region for parameter values t⊥ = 0.3,
U = 2.5, and T = 0.01. Right panels show the respective DOS(ω).
The calculations are done with IPT (cf. the Supplemental Material
[43]).

lowered, the dramatic increase in Re[	12](0) when the Mott
gap opens at the first-order transition signals that the intradimer
interaction is boosted by teff

⊥ ∼ Re[	12]. Unlike the one-band
Hubbard model, here the finite t⊥ permits a large energy gain in
the Mott insulator by quenching the degenerate entropy. This
mechanism, already observed in other cluster-DMFT models
[44–46], stabilizes the insulator within the coexistence region,
leading to the change in the tilt seen in Fig. 1. Another way of
rationalizing the transition is that at a critical U -dependent t⊥,
the Kondo screening in the metal breaks down in favor of the
local dimer-singlet formation in the insulator. In this view, the
large gap opening may be interpreted as a U -driven enhanced
band splitting ∝2teff

⊥ (U ).
Further detail is obtained from a comparison of the

electronic structure of the metal and the insulator within the
coexistence region. (The electronic structure results from IPT,
CT-QMC, and exact diagonalization all show good agreement;
see Ref. [43]). In the correlated metallic state shown in
Fig. 3, we find at high energies (∼ ± U/2) the incoherent
Hubbard bands, which are signatures of Mott physics. At
lower energies, we also observe a pair of heavy quasiparticle
bands crossing the Fermi energy at ω = 0. Consistent with
our previous discussion, this pair of quasiparticle bands can
be though of as the renormalization of the noninteracting
band structure. Significantly, as we shall discuss later on, this
feature may explain the puzzling optical data of Qazilbash
et al. [12] within the MIT region of VO2, which has remained
unaccounted for so far. Unlike the single-band Hubbard model,
the effective mass of these metallic bands does not diverge
at the MIT at the critical U , even at T = 0. In fact, the
finite t⊥ cuts off the effective mass divergence as expected
in a model that incorporates spin fluctuations. In addition, the
DHM may be considered [28] the simplest nontrivial cluster
DMFT model. It is interesting to note that the realistic values
U = 2.5 and t⊥ = 0.3 lead to Hubbard bands at ≈ ± 1.5 eV
and a quasiparticle residue Z ≈ 0.4, both consistent with the
photoemission experiments of Koethe et al. [47].
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In Fig. 3, we also show the results for insulator electronic
dispersion at the same values of the parameters. The compar-
ison of the insulator and the metal illustrates the significant
changes that occur at the first-order MIT. We see that the
metallic pair of quasiparticle bands suddenly opens a large
gap. More precisely, in contrast to the one-band case, here the
Hubbard bands acquire a nontrivial structure, with sharp bands
coexisting with incoherent ones. The dispersion of the coherent
part can be traced to that of a lattice of singlet dimers (see
the Supplemental Material [43]). Hence, the insulator can be
characterized as a novel type of Mott-singlet state in which the
Hubbard bands have a mixed character with both coherent and
incoherent electronic structure contributions. It is also interest-
ing to note that the gap in the density of states is 
 ≈ 0.6 eV,

again consistent with the photoemission experiments [47].
To gain further insight and make further contact with

key experiments, we now consider the optical conductivity
response σ (ω) within the MIT coexistence region. A set of
remarkable data was obtained in this regime by Qazilbash
et al. [12], bearing directly on the issue of the driving force
behind the transition. They systematically investigated the
σ (ω) as a function of T using nanoimaging spectroscopy. They
clearly identified within the T range of the MIT the electronic
coexistence of insulator and metallic regions, characteristic of
a first-order transition. A crucial observation was that upon
warming the insulator in the M1 phase, metallic puddles
emerged with a σ (ω) that was significantly different from
the signal of the normal metallic R phase. Thus, the data
provided a strong indication of a purely electronic driven
transition. Regarding this point, we would like to mention
also the works of Arcangeletti et al. [15] and Laverock et al.
[16], who reported the observation of metallic states within
the monoclinic phase under pressure and strain, respectively.
Coming back to the experiment of Qazilbash et al., a key
point that we want to emphasize here is that σ (ω) in the
putative M1-metallic state was characterized by an intriguing
midinfrared (MIR) peak ωMIR ≈ 1800 cm−1 = 0.22 eV, whose
origin was not understood. From our results on the electronic
structure within the coexistence region, we find a natural
interpretation for the puzzling MIR peak: It corresponds to
excitations between the split metallic quasiparticle bands.
Since they are parallel, they would produce a significant
contribution to σ (ω), which enabled its detection. In Fig. 4,
we show the calculated optical conductivity response (see Sec.
7 of the Supplemental Material [43]) that corresponds to the
spectra of Fig. 3. In the metal we see that, in fact, a prominent
MIR peak is present at ωMIR ≈ 0.22 eV, in excellent agreement
with the experimental value. On the other hand, the optical
conductivity of the insulator shows a maximum at ωins ≈ 2 eV
in both theory and experiment. Moreover, we also note the
good agreement of the relative spectral strengths of the main
features in the two phases.

FIG. 4. The optical conductivity σ (ω) of the metal and the
insulator within the coexistence region for parameters t⊥ = 0.3,
U = 2.5, and T = 0.01. The calculations are done with IPT. Inset:
the experimental optical conductivity adapted from Ref. [12].

In conclusion, we showed that the detailed solution of the
dimer model treated within DMFT can account for a number
of experimental features observed in VO2. The minimal
model has an impurity problem that is analogous to that of
LDA+DMFT methods, yet the simplicity of this approach
allowed for a detailed solution that permitted a transparent
understanding of many physical aspects of the electronic
first-order transition in this problem. It exposes a dimer-Mott-
transition mechanism, where the effective intradimer exchange
is controlled by correlations, weakened in the metal, and
strongly enhanced in the Mott insulator. In the metal, this leads
to a pair of split quasiparticle bands, which then further sepa-
rate in the insulator to join and coexist with the usual incoherent
Hubbard bands. Despite the simplicity of our model, we made
semiquantitative connections to several experimental data in
VO2, including a crucial optical conductivity study within the
first-order transition that remained unaccounted for. Our work
sheds light on the long-standing question of the driving force
behind the metal-insulator transition of VO2, highlighting the
relevance of the Mott mechanism. The present approach may
be considered as a counterpart for VO2 of the DMFT studies
of the Mott transition in paramagnetic Cr-doped V2O3.
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