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We present a computationally efficient approach to perform large-scale all-electron density functional theory
calculations by enriching the classical finite element basis with compactly supported atom-centered numerical
basis functions that are constructed from the solution of the Kohn-Sham (KS) problem for single atoms. We term
these numerical basis functions as enrichment functions, and the resultant basis as the enriched finite element
basis. The compact support for the enrichment functions is obtained by using smooth cutoff functions, which
enhances the conditioning and maintains the locality of the enriched finite element basis. The integrals involved in
the evaluation of the discrete KS Hamiltonian and overlap matrix in the enriched finite element basis are computed
using an adaptive quadrature grid that is constructed based on the characteristics of enrichment functions. Further,
we propose an efficient scheme to invert the overlap matrix by using a blockwise matrix inversion in conjunction
with special reduced-order quadrature rules, which is required to transform the discrete Kohn-Sham problem to a
standard eigenvalue problem. Finally, we solve the resulting standard eigenvalue problem, in each self-consistent
field iteration, by using a Chebyshev polynomial based filtering technique to compute the relevant eigenspectrum.
We demonstrate the accuracy, efficiency, and parallel scalability of the proposed method on semiconducting and
heavy-metallic systems of various sizes, with the largest system containing 8694 electrons. We obtain accuracies
in the ground-state energies that are ∼1 mHa with reference ground-state energies employing classical finite
element as well as Gaussian basis sets. Using the proposed formulation based on enriched finite element basis,
for accuracies commensurate with chemical accuracy, we observe a staggering 50–300-fold reduction in the
overall computational time when compared to classical finite element basis. Further, we find a significant
outperformance by the enriched finite element basis when compared to the Gaussian basis for the modest system
sizes where we obtained convergence with Gaussian basis. We also observe good parallel scalability of the
numerical implementation up to 384 processors for a representative benchmark system comprising of 280-atom
silicon nanocluster.
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I. INTRODUCTION

Kohn-Sham Density Functional Theory (DFT), enjoying
the distinction of the most widely used electronic structure
method for over four decades, has immensely contributed to
our understanding of a wide range of materials properties. It
relies on the Hohenberg-Kohn theorem [1] and the Kohn-Sham
anstaz [2] to reduce the many-body Schrödinger equation to an
effective single electron problem, thereby, making predictions
on materials properties computationally tractable. On the other
hand, the pseudopotential approximation [3–6] has played an
important role in electronic structure method development,
which reduces the electronic structure calculation to the eval-
uation of smooth pseudo-wave-functions corresponding to the
valence electrons of a Hamiltonian constructed from a smooth
effective external potential, namely the pseudopotential. The
construction of a pseudopotential, which is nonunique, entails
matching the pseudo-wave-functions to the corresponding
all-electron wave functions outside the user defined atomic
core. In the past few decades, pseudopotentials have seen
a rapid evolution from norm-conserving potentials [7–10]
to ultrasoft potentials [11] to the state-of-the-art projector
augmented wave (PAW) [12] method and have proven to be
successful in predicting bulk, mechanical, electrical, magnetic,
and chemical properties for a wide range of materials.

However, despite their success, pseudopotentials are often
sensitive to the choice of core size used in their construction
and tend to oversimplify the treatment of core electrons as
chemically inert for various systems and external conditions.
For example, in systems under high pressure where the core

and valence wave functions show increasing overlap with
pressure, pseudopotentials tend to underpredict their phase
transition pressures [13–15]; in systems at high temperature,
where the contribution of core electrons to various thermody-
namic potentials is non-negligible, pseudopotentials provide
an inaccurate description of the equation of state [16]; in
transition metals, where the penultimate d and f orbitals
are not tightly bound, noninclusion of these orbitals as
valence electrons oftentimes leads to inaccurate bulk property
predictions. More pronounced inaccuracies and sensitivity
to core sizes are observed in the prediction of ionization
potentials [17], magnetizatibility [18], spectroscopic prop-
erties [19,20] of heavier atoms wherein scalar relativistic
pseudopotentials are widely employed, and in the prediction
of band-gap and excited state properties [21]. Thus all-electron
calculations are necessary for an accurate and more reliable
description of such systems and conditions.

The earliest and the most commonly employed method for
all-electron calculations involves the use of atomic-orbital-
type basis sets [22–30], wherein atom-specific basis, either
analytic or numerical, are used with only a few basis functions
per atom. However, owing to the incompleteness of the basis,
systematic convergence for all materials systems remains
a concern. Moreover, in many numerical implementations,
their applicability is largely limited to isolated systems and
are not easily amenable to arbitrary boundary conditions.
Furthermore, the nonlocality of the basis substantially limits
parallel scalability of their numerical implementations. Among
the family of complete basis sets, the plane-wave basis,
owing to the straightforward evaluation of the Coulomb
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interactions in Fourier space and the exponential convergence
afforded by the basis, has been the most popular choice for
pseudopotential calculations. However, its applicability to all-
electron calculations is greatly hindered by its lack of adaptive
spatial resolution, as any computationally efficient basis for
all-electron calculations warrants finer resolution closer to
nuclei, where the wave functions are rapidly oscillating, and
coarser resolution elsewhere. This shortcoming has been, to a
large extent, alleviated through the use of various augmentation
schemes such as augmented plane waves (APW) [31,32],
linearized augmented plane waves (LAPW) [33–35], and
APW+lo [36–38]. All these methods involve the description
of the wave functions in terms of products of radial functions
and spherical harmonics inside muffin-tins (MTs) surrounding
each atom, and in terms of plane waves in the interstitial re-
gions between atoms. Although these schemes attain adaptive
spatial resolution, the basis functions within the MTs depend
on the choice of trial energy parameters, typically based on
atomic energies, for each azimuthal (l) quantum number.
Owing to the lack of one-to-one correspondence between
the Kohn-Sham eigenvalues and the trial energy parameters,
the quality of the basis is sensitive to the choice trial energy
parameters, especially in systems where the chosen l quantum
number based trial energies fail to describe all states with the
same l-character, and in systems where the occupied bands
show substantial deviation from their atomic counterparts [38].
Additionally, certain notable disadvantages of plane waves
such as their restriction to periodic boundary conditions, the
highly nonlocal communication associated with fast Fourier
transform (FFT), also persist in these augmentation schemes.

Blöchl, in his PAW formulation [12], generalized the notion
of APW/LAPW and the pseudopotential approach to construct
the all-electron orbitals through a linear transformation T̂
of the smoothly varying pseudo-orbitals, thus providing a
balance between accuracy and computational efficiency. How-
ever, typically, PAW is implemented within the frozen-core
approximation, wherein, although the oscillatory behavior
of the valence orbitals near the atomic centers is retrieved
through T̂ acting on the pseudo-valence orbitals, the core
states are treated as frozen and do not feature within the
self-consistent field iteration. One can, in principle, relax the
core states within the PAW framework, however, this involves
achieving simultaneous self-consistency in core states, valence
partial waves and the effective potential, which can severely
affect the computational efficiency otherwise afforded by
frozen-core approximation. Marsman et al. [39] presented
a computationally efficient extension of PAW beyond the
frozen-core approximation, wherein, first, the core states are
updated self-consistently within a fixed valence charge density
and a spherical approximation for the one-center potential.
Subsequently, new valence partial waves are evaluated. How-
ever, as noted in that work, the spherical approximation of
the one-center potential used in the core-state relaxation poses
limitations in terms of accounting for core polarization effects
and core-core interactions from neighboring atoms; capturing
changes in valence-core interactions outside the augmentation
spheres; preserving orthogonality of the valence partial waves
with the core states under situations where the core charge
density spills outside the augmentation spheres. Additionally,
the construction of the valence all-electron and pseudo partial
waves that feed into T̂ , while using the actual one-center

potential (crystal potential) in their construction, involves the
use of trial energy parameters (analogous to APW/LAPW),
thereby introducing sensitivity to the choice of these trial
energies. Therefore, to account for these notable limitations, it
is desirable to treat the core electrons on equal footing with the
valence electrons while at the same time minimize the huge
computational expense incurred by such explicit treatment of
core electrons.

The limitations of plane waves have, in the past two
decades, led to the development of various real-space tech-
niques for DFT calculations, of which the finite difference
(FD) method [40,41] remains the most prominent. The FD
method can handle arbitrary boundary conditions, and exhibit
improved parallel scalability in comparison to plane-wave
basis. However, the FD method fails to retain the variational
convergence of plane waves. Moreover, a lack of basis in
the FD method makes an accurate treatment of singular
potentials difficult, thereby, limiting its utility for all-electron
calculations. Finite element basis [42,43], on the other hand,
being a local piecewise polynomial basis, retains the vari-
ational property of the plane waves, and, in addition, has
other desirable features such as locality of the basis that
affords good parallel scalability, being easily amenable to
adaptive spatial resolution, and the ease of handling arbitrary
boundary conditions. While most studies employing the finite
element basis in DFT calculations [44–53] have shown
its usefulness in pseudopotential calculations, some of the
works [44,53–57] have also demonstrated its promise for
all-electron calculations. In particular, the work of Motamarri
et al. [53] has combined the use of higher-order spectral finite
elements along with Chebyshev polynomial based filtering
technique to develop an efficient scheme for the computation
of the occupied eigenstates. As detailed in the work, the
aforementioned method outperforms the plane-wave basis in
pseudopotential calculations for the benchmark systems con-
sidered. However, in the context of all-electron calculations,
it remains an order of magnitude slower in comparison to
the Gaussian basis. This relatively unsatisfactory performance
of the finite element basis in all-electron calculations was
attributed to the requirement of large number of basis functions
[O(105) per atom, even for light atoms] as well as the high
polynomial degree required in the Chebyshev filter (O(103))
to accurately compute the occupied eigenstates. To elaborate,
one requires a highly refined finite element mesh closer to the
atomic cores in order to capture the sharp variations in the
electronic wave functions and the singularity of the nuclear
potential. This refinement, in turn, leads to an increase in
the spectral width of the discrete Kohn-Sham Hamiltonian,
thereby, requiring a very high polynomial degree Chebsyhev
filter to compute the occupied eigenstates. This need for a high
polynomial degree Chebyshev filter in all-electron calculations
also negatively affects the computational complexity realized
through reduced order scaling methods. As detailed in a
recent work [57], which combines Chebyshev filtered subspace
projection with localization and Fermi-operator expansion,
while pseudopotential calculations exhibited linear scaling for
materials systems with a band gap and subquadratic scaling
for materials systems without a band gap, the overall scaling
for all-electron calculations was close to quadratic even for
materials with a band gap.
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In order to alleviate the aforementioned limitations of
finite element basis in all-electron calculations, we propose
employing a mixed basis comprising of finite element basis
functions and compactly supported atomic-orbital-type basis
functions. In particular, the atomic-orbital-type functions
capture the essential features of the electronic fields near the
nuclei, thereby, mitigating the need for high mesh refinement
around atoms, while the finite element basis functions capture
the smooth parts of the wave function away from the nuclei
and also extend completeness to the basis. In this work, we
formalize this idea of a mixed basis to develop, what we
refer to as, the enriched finite element basis. The enriched
finite element basis is generated by augmenting the piecewise
continuous Lagrange polynomials in finite element basis,
henceforth described as the classical finite element basis, with
compactly supported atom-centered numerical basis functions
that are obtained from the solutions of the Kohn-Sham
problem (Kohn-Sham orbitals and electrostatic potentials) for
single atoms. We term these atom-centered numerical basis
functions as enrichment functions. We note that the proposed
enriched finite element basis differs from other augmentation
schemes in plane waves like APW, LAPW, and APW+lo in
the following ways: (i) unlike the plane-wave augmentation
schemes, the enriched finite element basis does not partition
the space into muffin tins (MTs) and interstitials, thereby
eliminating the need of any matching or smoothness constraint
for the augmenting basis functions; (ii) as opposed to the
plane-wave augmentation schemes, the enrichment functions
of our proposed method do not have any trial energy parameter
dependence; and (iii) unlike the plane-wave augmentation
scheme, wherein the basis functions inside the MTs needs
to be computed for every materials system separately, the
enrichment functions, being atomic solutions to the electronic
fields, are independent of the materials system and are
computed a priori.

The key ideas in the proposed method involve: (i) pre-
computing the enrichment functions by solving radial Kohn-
Sham equations and employing smooth cutoff functions to
ensure the locality as well as control the conditioning of
the enriched finite element basis; (ii) employing a divide
and conquer strategy to construct an adaptive quadrature
grid based on the nature of enrichment functions, so as
to accurately and efficiently evaluate the integrals involving
enrichment functions; (iii) implementing an efficient scheme
to evaluate the inverse of the overlap matrix corresponding
to the enriched finite element basis by using block-wise
matrix inversion in conjunction with Gauss-Lobatto-Legendre
reduced order quadrature rules; and (iv) in each self-consistent
field iteration, using a Chebyshev polynomial based filter to
compute the space spanned by the occupied eigenstates, and
solving the Kohn-Sham eigenvalue problem by projecting
the problem onto this Chebyshev-filtered space. We have
implemented the proposed method in a parallel computing
framework using the message passing interface (MPI) to
enable large-scale all-electron calculations. To begin with,
we demonstrate optimal convergence rates of the ground-state
energies with respect to enriched finite element basis. Further,
we investigate the accuracy and performance of the proposed
method on benchmark semiconducting (silicon nanoclusters)
and heavy-metallic (gold nanoclusters) systems of various

sizes, with the largest system containing 8694 electrons.
The proposed formulation using the enriched finite element
basis obtains close to 1 mHa accuracy in per-atom ground-
state energies of the benchmark systems when compared to
the reference ground-state energies obtained from classical
finite element basis or Gaussian basis calculations. Further-
more, the proposed method achieves a staggering 50–300-fold
speedup relative to the classical finite element basis, and
a significant speedup relative to the Gaussian basis even
for modest sized systems. Lastly, we observe good parallel
efficiency of our implementation up to 384 processors for a
silicon nanocluster containing 3920 electrons discretized using
∼4 million basis functions.

The rest of the paper is structured as follows. In Sec. II,
we recall the real-space formulation of the Kohn-Sham DFT
problem. Subsequently, we briefly introduce the classical
finite element discretization in the context of Kohn-Sham
DFT problem in Sec. III. Section IV details the proposed
enriched finite element discretization for the Kohn-Sham
eigenvalue problem, and Sec. V discusses the key ideas based
on Chebyshev polynomial filtering employed in the self-
consistent field iteration (SCF) solution procedure. Section VI
presents the convergence, accuracy, performance and parallel
scalability of the enriched finite element basis. Finally, we
summarize the findings from the present work and outline the
future scope in Sec. VII.

II. REAL-SPACE DFT FORMULATION

We recall that the ground-state properties of a materials
system in the Kohn-Sham DFT framework are computed by
solving the nonlinear Kohn-Sham eigenvalue problem [2],
given by(

−1

2
∇2 + Veff(ρ,R)

)
ψi = εiψi, i = 1,2, . . . , (1)

where εi and ψi denote the eigevalues and the corresponding
eigenfunctions of the Kohn-Sham Hamiltonian, respectively,
ρ is the electron charge density of the noninteracting system,
R = {R1,R2, . . . ,RNa

} is the collective representation for
all nuclear positions in the system, and Veff(ρ,R) is the
effective single-electron Kohn-Sham potential. In the present
work, we limit our discussion to a nonperiodic setting and
spin-independent Hamiltonian. However, we note that all
the ideas discussed subsequently can be generalized, in a
straightforward manner, to periodic [48] or semiperiodic
systems and spin-dependent Hamiltonians [58].

The effective single-electron potential, Veff(ρ,R), in Eq. (1)
is given by

Veff(ρ,R) = Vxc(ρ) + VH(ρ) + Vext(x,R). (2)

Here, Vxc(ρ) = δExc
δρ

is the exchange-correlation potential and
is defined as the variational derivative of the exchange-
correlation energy, Exc, with respect to ρ. Physically, Vxc(ρ)
is the mean-field potential that models the many-body in-
teractions between electrons. In the present work, we have
used the local density approximation (LDA) [58] for the
exchange-correlation, specifically, the Ceperley-Alder [59]
form. The Hartree potential, VH(ρ), and the external potential,
Vext(x,R), in Eq. (2) are the classical electrostatic potentials
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corresponding to the electron charge density and nuclear
charges, respectively, and are given by

VH(ρ) =
∫

ρ(x′)
|x − x′| dx′, (3)

Vext(x,R) = −
Na∑
I=1

ZI

|x − RI | , (4)

where ZI denotes the atomic number of the I th nucleus in the
system.

We note that both the electrostatic potentials—Hartree
(VH) and external potential (Vext)—are extended in real
space. However, noting that the 1

|r| kernel in these extended
interactions is the Green’s function of the Laplace operator,
one can reformulate their evaluation as solutions of the Poisson
problems, given by

− 1

4π
∇2VH(x) = ρ(x), (5a)

− 1

4π
∇2Vext(x,R) = b(x,R). (5b)

In the above Eq. (5b), we define b(x,R) =
−∑Na

I ZI δ̃(x,RI ), where δ̃(x,RI ) is a Dirac distribution
centered at RI . We refer to previous works on finite element
based DFT calculations [46,48,50,53,60] for a comprehensive
treatment of the local reformulation of electrostatic potentials
into Poisson problems.

The electron charge density, the central quantity of interest
in DFT, is given in terms of the eigenfunctions in Eq. (1) as

ρ(x) = 2
∑

i

f (εi,μ)|ψi(x)|2, (6)

where f (ε,μ) is the orbital occupancy function and μ is
the Fermi energy. Typically, in DFT calculations the orbital
occupancy function f is chosen as the Fermi-Dirac distribu-
tion [61,62], given by

f (ε,μ) = 1

1 + exp
(

ε−μ

kBT

) , (7)

where kB denotes the Boltzman constant and T is the
temperature used for smearing the orbital occupancy function.
The Fermi energy, μ, is evaluated from the constraint on the
total number of electrons (Ne) in the system, given by∫

ρ(x) dx = 2
∑

i

f (εi,μ) = Ne. (8)

The choice of a Fermi-Dirac distribution is made over a
Heavyside function to avoid charge sloshing, wherein systems
with degenerate energy levels at Fermi energy can exhibit large
spatial deviation in electron charge density with SCF iterations
on the account of different degenerate orbitals being occupied
at different SCF iterations.

Finally, upon solving Eqs. (1), (6), and (8) self-consistently,
the ground-state energy of the materials system is computed as

Etot = Eband + Exc −
∫

Vxc(ρ)ρ dx

− 1

2

∫
ρVH(ρ) dx + EZZ, (9)

where Eband is the band energy, given by

Eband = 2
∑

i

f (εi,μ)εi, (10)

and EZZ is the nuclear-nuclear repulsion, given by

EZZ = 1

2

Na∑
I,J=1
I �=J

ZIZJ

|RI − RJ | . (11)

III. CLASSICAL FINITE ELEMENT METHOD

In this section, we briefly discuss the discretization of
the Kohn-Sham eigenvalue problem using the classical finite
element basis. In particular, we comment on the usefulness of
higher-order spectral finite elements, employed in this work,
which in conjunction with the reduced order Gauss-Lobatto-
Legendre (GLL) quadrature rule enables an efficient inversion
of the overlap matrix of the classical finite element basis
functions.

A. Classical finite element discretization

In the finite element method, the spatial domain of interest is
discretized into subdomains called finite elements using a finite
element mesh. The finite element basis is constructed from
piecewise polynomial functions that have a compact support
on the finite elements, thus rendering locality to these basis
functions. We note that there is an abundance of choice in
terms of the form and order of the polynomial functions that
can be used in constructing the finite element basis, and we
refer to Refs. [43,63] for a comprehensive discourse on the
subject. Henceforth, we refer to the standard notion of finite
element basis as the classical finite element basis in order to
differentiate from the proposed enriched finite element basis
in Sec. IV, and refer to the corresponding discrete formulation
as the classical finite element discretization.

Let Xh denote the finite element subspace of dimension nh

constructed from a finite element mesh with a characteristic
mesh-size h. Let ψh

i and φh denote the classical finite
element discretized fields corresponding to the Kohn-Sham
orbitals and the electrostatic potential (generically represent-
ing both Hartree and external potential), respectively, that are
expressed as

ψh
i (x) =

nh∑
j=1

NC
j (x)ψC

i,j i = 1,2, . . . , (12a)

φh(x) =
nh∑

j=1

NC
j (x)φC

j . (12b)

The superscript C, in the above expressions and elsewhere
in the paper, is used to indicate the discretization based on
classical finite element basis. Here, NC

j : 1 � j � nh denote
the classical finite element basis functions spanning Xh, and
ψC

i,j and φC
j are the coefficients corresponding to j th basis

function (NC
j ) in the expansion of the ith Kohn-Sham orbital

and electrostatic potential, respectively.
Using the classical finite element discretization in Eq. (12a),

the Kohn-Sham eigenvalue problem in Eq. (1) reduces to the
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following discrete form:

HC�C
i = εC

i MC�C
i , (13)

where HC denotes the discrete Kohn-Sham Hamiltonian, MC

denotes the overlap matrix of the classical finite element
basis, εC

i denotes the ith discrete Kohn-Sham eigenvalue,
and �C

i denotes the corresponding eigenvector containing
the expansion coefficients ψC

i,j . For a nonperiodic problem
defined on a domain 	 with homogeneous Dirichlet boundary
conditions, the discrete Hamiltonian matrix HC

jk is given by

HC
jk = 1

2

∫
	

∇NC
j (x).∇NC

k (x) dx

+
∫

	

V h
eff(x,R)NC

j (x)NC
k (x) dx. (14)

Although the above expression is for a nonperiodic problem,
it can be easily extended to a periodic problem on a unit
cell using the Bloch theorem [48]. We note that owing to
the nonorthogonality of the classical finite element basis, the
overlap matrix MC , defined by MC

jk = ∫
	

NC
j (x)NC

k (x) dx,
is not an identity matrix, thereby, resulting in a generalized
eigenvalue problem. However, utilizing the symmetric positive
definiteness, and hence the invertibility of MC , we can
transform the generalized eigenvalue problem in Eq. (13) to a
standard eigenvalue problem, given by

(MC)
−1

HC�C
i = εC

i �C
i . (15)

We remark that this transformation of the generalized eigen-
value problem to a standard eigenvalue problem is essential for
the use of Chebyshev polynomial based acceleration technique
to compute the occupied eigenspace (to be discussed in
Sec. V). Further, we note that this transformation to a standard
eigenvalue problem relies on computationally efficient meth-
ods for computing (MC)

−1
, which forms the basis for our use

of spectral finite elements along with Gauss-Lobatto-Legendre
quadrature rule, as will be discussed in Sec. III B.

Turning to the Poisson problems in Eq. (5), and using the
discretization in Eq. (12b), we obtain the following system of
linear equations,

AC
C = bC, (16)

where AC represents the Laplace operator discretized in the
classical finite element basis that is given by

AC
jk = 1

4π

∫
	

∇NC
j (x).∇NC

k (x) dx, (17)


C is the electrostatic potential vector containing the expan-
sion coefficients φC

j , and bC , the forcing vector, is given by

bC
i =

∫
	

g(x)NC
i (x) dx, (18)

where g(x) = ρ(x) or g(x) = b(x,R) for the Hartree and
external potential, respectively.

B. Spectral finite elements

As opposed to conventional classical finite element basis,
which is typically constructed from a tensor product of

Lagrange polynomials interpolated through equidistant nodal
points in an element, spectral finite element basis employ a
distribution of nodes obtained from the roots of the derivative
of Legendre polynomials or the Chebyshev polynomials [64].
In the present work, we employ the Gauss-Lobatto-Legendre
node distribution, where the nodes are located at the roots of
the derivative of the Legendre polynomial and the bound-
ary points. The resulting spectral finite element basis has
been shown to provide better conditioning with increasing
polynomial degree [64] and has been effective for electronic
structure calculations using higher-order finite element dis-
cretization [53,60]. However, the major advantage of this
spectral finite element basis is realized when it is used in
conjunction with Gauss-Lobatto-Legendre (GLL) quadrature
rule [65] for evaluation of the integrals arising in the overlap
matrix, wherein the quadrature points are coincident with the
nodal points in the spectral finite element. Such a combination
renders the overlap matrix MC in the discrete Kohn-Sham
eigenvalue problem diagonal, thereby making the transforma-
tion of the generalized eigenvalue problem in Eq. (13) to the
standard eigenvalue problem in Eq. (15) to be trivial. We note
that while an n point rule in the conventional Gauss quadrature
rule integrates polynomials exactly up to degree 2n − 1, an n

point GLL quadrature rule integrates polynomials exactly only
up to degree 2n − 3. Thus we employ the GLL quadrature
rule only in the construction of MC , while the more accurate
Gauss quadrature rule is used for all other integrals featuring
in the Kohn-Sham eigenvalue problem as well as the Poisson
problems for the electrostatic potentials. We refer to Motamarri
et al. [53] for a discussion on the accuracy and sufficiency of
GLL quadrature in the evaluation of overlap matrix MC . Since
we employ spectral finite elements all throughout the present
work, any reference to classical finite elements, henceforth,
corresponds to spectral finite elements.

IV. ENRICHED FINITE ELEMENT METHOD

In this section, we first discuss the proposed enriched finite
element discretization for the Kohn-Sham eigenvalue problem.
Then, we present various numerical and algorithmic strategies
for efficient use of the enriched finite element basis.

A. Enriched finite element discretization

In enriched finite element discretization, we augment the
classical finite element basis by appending additional atom-
centered basis functions called enrichment functions. We write
the enriched finite element discretization for the Kohn-Sham
orbitals ψh

i and the electrostatic potentials (both Hartree and
external potential) φh as follows:

ψh
i (x) =

nh∑
j=1

NC
j (x)ψC

i,j

︸ ︷︷ ︸
Classical

+
Na∑
I=1

nI∑
k=1

N
E,ψ

k,I (x,RI )ψE
i,k,I︸ ︷︷ ︸

Enriched

, (19a)

φh(x) =
nh∑

j=1

NC
j (x)φC

j

︸ ︷︷ ︸
Classical

+
Na∑
I=1

N
E,φ

I (x,RI )φE
I︸ ︷︷ ︸

Enriched

. (19b)
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In the above expressions, the superscripts C and E are used
to distinguish between classical and enriched components,
respectively. As with the classical finite element discretiza-
tion, NC

j denotes the j th classical finite element basis, and
ψC

i,j and φC
j are the expansion coefficients corresponding

to NC
j for the ith Kohn-Sham orbital and the electrostatic

potential, respectively. In addition, we have the enrichment
functions N

E,ψ

k,I and N
E,φ

I for the Kohn-Sham orbitals and
the electrostatic potentials, respectively, each centered on
atom I located at RI . ψE

i,k,I denotes the expansion coefficient

corresponding to N
E,ψ

k,I for the ith Kohn-Sham orbital, and φE
I

denotes the expansion coefficient corresponding to N
E,φ

I for
the electrostatic potential. The enrichment functions, N

E,ψ

k,I

and N
E,φ

I , are the atom-centered numerical solutions to the
Kohn-Sham orbitals and electrostatic potentials, respectively,
for the atom type (chemical element) at RI . The index I runs
over all the atoms, Na , in the materials system, and the index

k in Eq. (19a) runs over the number of atomic Kohn-Sham
orbitals, nI , we would want to include for the atom I . Typically,
we include all the occupied and a few lowest unoccupied
atomic orbitals for a given atom I . We note that although we
have represented the enrichment functions for both Hartree and
external potential as N

E,φ

I , they differ based on the electrostatic
potential that is being discretized.

We now discuss the procedure to generate the enrichment
functions. As aforementioned, the enrichment functions are
chosen as the solutions to the Kohn-Sham orbitals and
electrostatic potentials for any given single atom. Under the as-
sumption of equal fractional occupancy for degenrate orbitals,
the charge density for a single atom is radially symmetric,
which in turn, results in radially symmetric Vxc(ρ) and VH(ρ).
Thus, rewriting Eqs. (1) and (5) in spherical coordinates and
using separation of variables, we obtain the following radial
equations for any single atom with the atom type denoted by a
superscript S:

− 1

4π

1

r2

d

dr

(
r2 d

dr

)
φS(r) = gS(r), (20a)

[
− 1

2

1

r2

d

dr

(
r2 d

dr

)
+ l(l + 1)

r2
+ V S

eff(r)

]
RS

nl(r) = εS
nlR

S
nl(r), (20b)

ρS(r) = 2
∑

n

∑
l

2l + 1

4π
f

(
εS
nl,μ

S
)(

RS
nl(r)

)2
. (20c)

In Eq. (20a), φS(r) denotes either the Hartree or the external
potential; gS(r) denotes the charge density ρS(r) or the nuclear
charge bS(r) = ZSδ̃(0) with Zs denoting the atomic number,
depending on whether φS(r) represents the Hartree or the
external potential, respectively. In Eq. (20b), RS

nl(r) represents
the radial part of the Kohn-Sham orbital corresponding to the
principal quantum number n and azimuthal quantum number
l. Equation (20) are solved self-consistently until convergence
in ρS(r) is achieved. We note that these radial equations can
be solved inexpensively using a 1D classical finite element
mesh comprising of, typically, 1000–5000 basis functions.
Moreover, the radial atomic solutions can be pre-computed
for all atom types spanning the periodic table and stored for
later use in constructing the enrichment functions.

Having evaluated the radial part RS
nl(r), the full Kohn-Sham

orbital is obtained by multiplying it with spherical harmonics
as follows:

ψS
nlm(r,β,γ ) = RS

nl(r)Ylm(β,γ ), (21)

where Ylm(β,γ ) denotes the real form of spherical harmonics
for the pair of azimuthal quantum number l and magnetic quan-
tum number m, and β and γ represent the polar and azimuthal
angles, respectively. Using the above atomic solutions, we
write the orbital enrichment function N

E,ψ

k,I centered at atom I

of atom type S as

N
E,ψ

k,I (x,RI ) = ψS
nlm

(|x − RI |,βRI
,γRI

)
, (22)

where the index k represents a specific choice of n, l and m, and
βRI

and γRI
are the polar and azimuthal angles, respectively,

for the point x with RI as the origin. Similarly, we define the
electrostatic enrichment function N

E,φ

I (x) centered at atom I

of atom type S as

N
E,φ

I (x,RI ) = φS(|x − RI |). (23)

Henceforth in the paper, to make our notation of the enrichment
functions more succinct, we combine the indices k and I into a
single index denoted by α for the orbital enrichment functions
and their coefficients, and drop the argument RI in the enrich-
ment functions. Furthermore, we define n

ψ

E = Na × nI to de-
note the total number of enrichment functions in the materials
system used for discretization of any Kohn-Sham orbital ψi .

Discretizing the Kohn-Sham eigenvalue problem in the
enriched finite element basis, we obtain a standard eigenvalue
equation analogous to its classical counterpart [Eq. (15)] and
is given by

(ME)
−1

HE�E
i = εE

i �E
i , (24)

where HE and ME are the discrete Kohn-Sham Hamiltonian
matrix and overlap matrix in the enriched finite element basis,
εE
i denotes the ith discrete Kohn-Sham eigenvalue and �E

i de-
notes the corresponding eigenvector containing the expansion
coefficients ψC

i,j and ψE
i,α [defined in Eq. (19a)]. Both HE and

ME matrices have a 2 × 2 block structure, given by

HE =
[

Hcc (Hec)T

Hec Hee

]
, (25)

ME =
[

Mcc (Mec)T

Mec Mee

]
, (26)
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where Hcc and Mcc are the classical-classical blocks, which
comprise of matrix elements involving only the classical finite
element basis functions and are same as the HC and MC

matrices appearing in Eq. (13), respectively; Hec and Mec are
the enriched-classical blocks containing the cross-term matrix
elements involving both classical finite element basis functions
and enrichment functions; and Hee and Mee are the enriched-
enriched blocks comprising of matrix elements involving only
the enrichment functions. Each of these blocks are given by

Hcc
jk = 1

2

∫
	

∇NC
j (x).∇NC

k (x) dx

+
∫

	

V h
eff(x,R)NC

j (x)NC
k (x) dx, (27a)

Hec
αj = 1

2

∫
	

∇NE,ψ
α (x).∇NC

j (x) dx

+
∫

	

V h
eff(x,R)NE,ψ

α (x)NC
j (x) dx, (27b)

Hee
αβ = 1

2

∫
	

∇NE,ψ
α (x).∇N

E,ψ

β (x) dx

+
∫

	

V h
eff(x,R)NE,ψ

α (x)NE,ψ

β (x) dx, (27c)

Mcc
jk =

∫
	

NC
j (x)NC

k (x) dx, (28a)

Mec
αj =

∫
	

NE,ψ
α (x)NC

j (x) dx, (28b)

Mee
αβ =

∫
	

NE,ψ
α (x)NE,ψ

β (x) dx, (28c)

where j,k = 1,2, . . . ,nh and α,β = 1,2, . . . ,n
ψ

E .
Discretizing the Poisson problems (5) in the enriched

finite element basis, we obtain a system of linear equations
analogous to its classical counterpart [Eq. (16)], and is given by

AE
E = bE, (29)

where AE represents the discrete Laplace operator in the en-
riched finite element basis, and 
E is the electrostatic potential
vector containing the expansion coefficients φC

j and φE
I [de-

fined in Eq. (19b)]. Similar to HE and ME , the matrix AE also
assumes a 2 × 2 block structure containing classical-classical,
enriched-classical and enriched-enriched blocks, given by

AE =
[

Acc (Aec)T

Aec Aee

]
(30)

with the individual blocks defined as

Acc
jk =

∫
	

∇NC
j (x).∇NC

k (x) dx, (31a)

Aec
Ij =

∫
	

∇N
E,φ

I (x).∇NC
j (x) dx, (31b)

Aee
IJ =

∫
	

∇N
E,φ

I (x).∇N
E,φ

J (x) dx, (31c)

where j,k = 1,2, . . . ,nh and I,J = 1,2, . . . ,Na .

The forcing vector bE is also analogous to its classical
counterpart and is defined as the composite vector

bE =
[

bc

be

]
, (32)

where bc is the classical part of bE and is same as bC [defined
in Eq. (18)]. be is the enrichment part of bE and is given by

be
I =

∫
	

g(x)NE,φ

I (x) dx, (33)

where g(x) = ρ(x) or g(x) = b(x,R) for the Hartree and
external potential, respectively, and I = 1,2, . . . ,Na .

The key idea behind augmenting the classical finite element
basis with these enrichment functions is that in a multiatom
materials system, the enrichment functions, being solutions to
single atom Kohn-Sham orbitals and electrostatic potentials,
can effectively capture the sharp variations in the orbitals
and the electrostatic potentials close to an atom, thereby
eliminating the need for a refined classical finite element mesh
close to an atom. Loosely speaking, the role of the classical
finite element basis is now to capture the deviation of an
electronic field in a materials system from that of superposition
of atomic solutions for the same field. Since these deviations
are much smoother in nature compared to the actual field, we
can use a coarse classical finite element mesh to accurately
approximate them. As will be discussed in Sec. V, the use
of a coarse classical finite element mesh results in two-fold
advantage: (i) a reduction in the total degrees of freedom and
(ii) a reduction in the polynomial degree of the Chebyshev filter
required to compute the occupied Kohn-Sham eigenspace.

B. Conditioning of the enriched finite element basis

The enrichment functions, being solutions to the Kohn-
Sham orbitals and electrostatic potentials for a single atom,
have smooth tails away from their atomic cores. These smooth
tails can cause linear dependency between the enrichment
functions and the classical finite element basis, thereby result-
ing in an ill-conditioned basis. We avoid such ill-conditioning
by multiplying the enrichment functions with a smooth radial
cutoff function, which generates a compact support for each
enrichment function. In the present work, we employ the
smooth cutoff function given by

h(̃r) = u(̃r)

u(̃r) + u(1 − r̃)
, (34)

where u(̃r) is defined as

u(̃r) =
{
e− 1

r̃ r̃ > 0,

0 r̃ � 0,

and r̃ = 1 − t(r−r0)
r0

is a linear transformation of the variable r ,
which offers h(̃r) the following properties:

h(̃r) = 1 0 � r < r0,

0 � h(̃r) < 1 r0 < r � r0 + r0
t
,

h(̃r) = 0 r > r0 + r0
t

.

We multiply the radial part of each enrichment function,
NE,ψ

α (x) or N
E,φ

I (x), with h(̃r) to smoothly truncate them
to zero. In the above expression, the parameter r0 is called
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FIG. 1. Schematic of truncated atomic orbital (radial part).

the cutoff radius, beyond which the truncation begins, and
t controls the width of the transition. In the present work,
we employ different values of r0 for different enrichment
functions. In particular, for an orbital enrichment function, the
value of r0 is chosen to be the farthest turning point (extremum)
in the radial part of the corresponding atomic orbital. One
exception to this rule is the monotonically decreasing 1s

radial function, R10(r), for which the r0 is chosen such that
| ∫ r0

0 (h(̃r)R10(r))2 dr − 1| < 10−6, i.e., the density arising
out of the truncated R10(r) must integrate to within 10−6

of unity. The maximum of the set of r0’s corresponding to
orbital enrichment functions of a given atom is selected as
the cutoff radius for the electrostatic enrichment functions of
the atom. We use t ∈ [0.5,1] to avoid sharp truncation of the
enrichment functions, which may otherwise require a very high
density of quadrature points in the transition region in order
to accurately compute any integrals involving the gradients
of these truncated enrichment functions. Figure 1 presents a
schematic of the radial part of the truncated atomic orbital.

Henceforth, enrichment functions, NE,ψ
α (x) or N

E,φ

I (x),
are assumed to be truncated with the aforementioned smooth
cutoff function. We remark that, in addition to improving the
conditioning of the basis, the truncation renders locality to
the enrichment functions, which in turn renders sparsity to the
discrete Hamiltonian, Laplacian, and overlap matrices.

We note that several prior efforts have been made towards
the generation of compactly supported (finite-range) atom-
centered orbitals by employing different forms of confining
potentials in the atomic Kohn-Sham equation, ranging from
hard-wall potential [66] to polynomial [67,68] to smooth
exponential potential [27]. Other efforts [69,70] were made to
variationally optimize the parameters in the confining potential
to strike a good balance between the locality and accuracy of
the resultant basis. In our view, all these approaches can be
adapted as an alternative to our approach of using smooth
cutoff function.

C. Adaptive quadrature rule

We note that sharp gradients in regions close to atomic
centers and cusps at atomic centers are characteristics of

enrichment functions. Therefore, in order to accurately com-
pute any integral involving an enrichment function, we need a
high quadrature density near the atomic centers, while a lower
quadrature density may suffice in regions farther away from
atomic centers. To this end, we employ an adaptive refinement
of the quadrature grid on each finite element based on the
characteristics of the enrichment functions. Specifically, we
follow a divide and conquer strategy proposed in previous
efforts [71–73], and outline here the main idea and specifics of
our implementation for hexahedral finite elements employed in
this work. For any given finite element, we begin by assigning
it to be the parent element 	p. Further, we consider a trial
function f (x), an n-point Gauss quadrature rule, the eight child
elements ({	c

i })8
i=1 that are obtained by subdividing 	p , a fixed

tolerance τ , and an empty list labeled points. Next, we evaluate
Ip = ∫

	p f (x) dx and I c
i = ∫

	c
i
f (x) dx for i = 1,2, . . . ,8,

using their respective n-point Gauss quadrature rules. If the
base condition, |Ip − ∑8

i=1 I c
i | < τ , is satisfied, we append

the Gauss quadrature points and weights of the parent element
to the list points and terminate the algorithm. Otherwise, we
treat each of the child elements as a parent element, and
recursively subdivide them until the base condition is satisfied.
Whenever the base condition is satisfied, the Gauss quadrature
points and weights corresponding to the parent element at the
current recursion level are appended to the list points. Finally,
the list points represents the quadrature points and weights for
the given element. We repeat this process for each element
present in the finite element mesh. Typically, instead of using
a single trial function f (x), we use nt such trial functions,
{fν(x)}nt

ν=1, which requires nt base conditions corresponding
to each fν(x) to be satisfied.

In the present work, we choose the following four trial
functions to build the adaptive quadrature rule:

f1(x) =
Na∑
I=1

(
N

E,φ

I (x)
)2

, (35a)

f2(x) =
Na∑
I=1

∣∣∇(
N

E,φ

I (x)
)∣∣2

, (35b)

f3(x) =
n

ψ

E∑
α=1

(
NE,ψ

α (x)
)2

, (35c)

f4(x) =
n

ψ

E∑
α=1

|∇(Nψ
α (x))|2. (35d)

Although we have labeled just two trial functions, f1(x)
and f2(x), defined by the electrostatic enrichment functions,
these correspond to four trial functions—two each for en-
richment functions corresponding to the Hartree potential and
the external potential. We remark that the aforementioned
adaptive quadrature construction is performed only on the
finite elements which are within the compact support of
the enrichment functions. Since only a small fraction of
the total elements are within the compact support of any
enrichment function, the adaptive quadrature construction is
computationally inexpensive. Further, once constructed, the
adaptive quadrature list remains fixed for a given finite element
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mesh, and only needs to be updated if the finite element mesh
changes during the course of the calculation.

We now turn towards determining an economical choice
for the tolerance parameter, τ , as a loose tolerance may result
in an inadequate quadrature grid whereas an extremely tight
tolerance will be computationally inefficient. In the present
work, we employ the following heuristic to choose τ . For
each atom type S of atomic number ZS in the materials
system, we obtain the atomic ground-state charge density,
ρS(r), its corresponding Hartree potential, φS

H(r), and the
atomic external potential, φS

ext(r), by solving the radial Kohn-
Sham equations in Eq. (20). Next, we evaluate the following
two integrals E

S,1D
1 = 1

2

∫
4πr2ρS(r)φS

H(r) dr and E
S,1D
2 =∫

4πr2ρS(r)φS
ext(r) dr , which correspond to the electrostatic

interaction energies. We then construct a coarse 3D finite
element mesh with atom S at the origin. In order to determine
a judicious choice for τS corresponding to atom type S, we set
its initial value as τS = 0.1 and enter an iterative loop. For the
current iterate of τS , we evaluate the 3D counterparts of E

S,1D
1

and E
S,1D
2 , namely, E

S,3D
1 and E

S,3D
2 , respectively, using the

aforementioned adaptive quadrature rule. If the convergence
criteria, |ES,1D

1 − E
S,3D
1 | < γ and |ES,1D

2 − E
S,3D
2 | < γ , are

satisfied for a pre-determined γ , we terminate the loop with
the current value of τS . Else, the loop is repeated with τS set
to half of its current value, until the above convergence criteria
are met. We use the minimum of all such τS corresponding
to the various atom types in the materials system as our τ for
construction of the adaptive quadrature grid for the materials
system calculation. In all our calculations, we have used
γ = 0.1 mHa so as to ensure that the quadrature errors are
an order lower than the desired discretization error (∼1 mHa)
that we are aiming in the ground-state energy per atom. We
note that the above procedure to determine τ , is independent
of the choice of 3D finite element mesh. Moreover, the τS for
each S can be precomputed and stored for later use.

D. Inverse of overlap matrix

We now discuss a computationally efficient way of evaluat-
ing the inverse of the overlap matrix, ME , defined in Eq. (26),
which is vital to the transformation of the generalized Kohn-
Sham eigenvalue problem to a standard eigenvalue problem,
and the subsequent use of Chebyshev polynomial based
acceleration technique to compute the occupied eigenstates
as will be discussed in Sec. V. We make use of the block-wise
matrix inversion theorem [74] (also known as Banachiewicz in-
version formula), to obtain the following 2 × 2 block structure
for (ME)

−1
,

(ME)
−1 =

[
(Mcc)−1 + LTS−1L −LTS−1

−S−1L S−1

]
, (36)

where L = Mec(Mcc)−1, and S = Mee − Mec(Mcc)−1(Mec)T .
Assuming that the enriched finite element basis is not ill-
conditioned, we note that the overlap matrix ME is positive
definite, and, hence invertible. Further, Mcc being the overlap
matrix of the classical finite element basis functions, is
also positive definite, and hence invertible. Subsequently, the
positive definiteness, and hence invertibility, of S can be
ascertained by noting that it is the Schur complement [74]

of Mcc in ME . We note that the above expression for (ME)
−1

contains two matrix inverses, (Mcc)−1 and S−1. As mentioned
in Sec. III B, the matrix Mcc is rendered diagonal through
the use of spectral finite elements along with Gauss-Lobatto-
Legendre quadrature rule, which makes the evaluation of
(Mcc)−1 trivial. Regarding the evaluation of S−1, we note that S
is a small matrix of the size of n

ψ

E × n
ψ

E , where n
ψ

E is typically
of the same order as the number of electrons in the system.
Thus S can be easily inverted through the use of direct solvers.

Further, we note that although the overlap matrix is sparse,
its inverse is a dense matrix. However, the constituent matrices
present in the 2 × 2 block structure of (ME)

−1
are either

sparse or much smaller in size compared to (ME)
−1

itself. To
elaborate, we note that L is of the size n

ψ

E × nh, and is hence

much smaller than the size (nh + n
ψ

E ) × (nh + n
ψ

E ) of (ME)
−1

.
Furthermore, L, owing to the locality of the enrichment
functions, is sparse. As noted earlier, S−1 is a small n

ψ

E × n
ψ

E

matrix and (Mcc)−1, being diagonal, is sparse. Since we are
only interested in the action of matrix (ME)

−1
on a vector (as

will be discussed in Sec. V), we perform the matrix-vector
product using the constituent matrices without ever explicitly
constructing the (ME)

−1
matrix. This matrix-free evaluation

of any matrix-vector product presents a significant advantage
for the above inversion technique over the Newton-Schultz
[75–77] and Taylor expansion [78] based methods, wherein
the construction of the (ME)

−1
matrix is explicit and hence

have huge memory requirements owing to the dense structure
of (ME)

−1
.

Finally, we briefly compare the proposed enriched finite
element method with the other existing methods which in a
similar spirit seek to augment the classical finite element basis
with other basis functions that efficiently capture the known
physics in regions of interest. One such approach is that of
partition-of-unity finite element method (PUFEM) [79,80],
wherein a typical discretization can be defined as [81,82]

ψh(x) =
nh∑

j=1

NC
j (x)ψC

j +
nE∑
α

nPU∑
k=1

NPU
k (x)NE

α (x)ψE
α,k, (37)

where NC
j (x) are the classical finite element basis functions,

and NPU
k (x) is a subset of the classical finite element basis

functions used to modulate the enrichment functions, NE,ψ
α (x),

thus providing a larger set of augmenting functions. Although
PUFEM preserves the locality of the basis to be commensurate
with conventional finite element basis, the effect of multiplying
enrichment functions with a set of classical finite element
basis functions results in smoother augmenting basis functions,
thereby making it more prone to ill-conditioning (due to
linear dependency of augmenting basis functions with classical
finite element basis functions). A more serious limitation of
PUFEM stems from the significant increase in the number
of augmenting basis functions, which, in turn, significantly
increases the size of the Mee block of the overlap matrix
ME , thereby making the evaluation of the S−1 in (ME)

−1

computationally prohibitive.
Another such approach is that of Gaussian finite element

mixed basis [83], wherein a given choice of Gaussian basis is
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used to the augment the classical finite element basis instead
of atomic solutions to the Kohn-Sham problem, as used in the
present work. We note that compared to the Gaussian basis the
atomic solutions provide a more natural choice for augmenting
functions and also provide for better control over the condi-
tioning of the basis through the use of smooth cutoff functions
on the radial part of the atomic orbitals. Further, in the work
on Gaussian finite element mixed basis [83], the Kohn-Sham
problem was solved as a generalized eigenvalue problem using
preconditioned conjugate-gradient method [84] which is, in
general, less efficient compared to the Chebyshev filtering
method used in the present work, discussed subsequently.

V. SELF-CONSISTENT FIELD ITERATION AND
CHEBYSHEV FILTERING

We begin this section with a brief outline of the well-known
Kohn-Sham self-consistent field iteration (SCF) used to solve
the nonlinear Kohn-Sham eigenvalue problem. This involves
starting with an input guess for the charge density, ρin, which
is used to construct the effective potential, Veff(ρin,R). Having
constructed Veff(ρin,R), the Kohn-Sham eigenvalue problem is
solved to obtain the eigenpairs (εi,ψi), which are in turn used
to compute the output charge density, ρout. If the difference
between ρout and ρin, in an appropriately chosen norm, is
below a certain tolerance, then the charge density is deemed
to have converged and ρout denotes the ground-state charge
density. Otherwise, ρin is updated through a choice of mixing
scheme [85–88] involving ρin and ρout from the current as well
as those from previous iterations, and the iteration continues
until convergence in charge density is achieved.

The most computationally expensive step in every iterate of
the SCF procedure is the solution of the discrete Kohn-Sham
eigenvalue problem. Typically, one can use Krylov-subspace
based methods such as Jacobi-Davidson [89] or Krylov-
Schur [90] to evaluate the lowest few eigenpairs corresponding
to the occupied eigenstates. However, benchmark studies pre-
sented in a recent work [53] have shown these Krylov-subspace
based methods to be about tenfold slower in comparison to the
Chebyshev filtering technique [91] to compute the occupied
eigenstates. Based on this relative merit, we have employed
the Chebyshev filtering technique to compute the relevant
eigenspectrum of the Kohn-Sham Hamiltonian.

The key idea involved in the Chebyshev filtering approach
is to progressively improve the subspace V spanned by the
eigenvectors of the previous SCF iteration through polynomial
based power iteration to eventually compute the occupied
eigenspectrum upon attaining self-consistency. It relies on
two important properties of a Chebyshev polynomial pm(x)
of degree m to magnify the relevant (occupied) spectrum
of the discrete Kohn-Sham Hamiltonian: (i) pm(x) grows
rapidly outside the interval [−1,1], and (ii) |pm(x)| � 1 for
x ∈ [−1,1]. For the sake of notational simplicity, we denote the
discrete Kohn-Sham Hamiltonian by H̃, which in the classical
finite element basis is (MC)

−1HC and in the enriched finite
element basis is (ME)

−1HE . The filtering technique proceeds
by first mapping the unoccupied eigenspectrum of H̃ to [−1,1]
through the affine transformation t(x) = 2x−a−b

b−a
, where a and

b denote the upper bounds of the occupied and unoccupied

eigenspectrum of H̃, respectively. The upper bound of the
unoccupied spectrum, b, is obtained inexpensively through a
few Arnoldi iterations on H̃. The upper bound of the occupied
spectrum, a, is obtained as the highest Rayleigh quotient
of H̃ in the subspace V of the previous SCF iteration. We
denote the resultant transformed matrix as H̄. We then apply
the m-degree Chebyshev polynomial filter pm(H̄) on V to
obtain Ṽ = pm(H̄)V . Owing to the rapid growth property of
Chebyshev polynomials outside [−1,1], the aforementioned
filtering of V amplifies, for each vector in V , the components
along the eigenvectors corresponding to occupied states and
damps the components along the eigenvectors corresponding
to unoccupied states. The action of the Chebyshev filter on
V can be achieved in an efficient manner by utilizing the
recursive construction of the Chebyshev polynomial [92]:
pk+1(x) = 2xpk(x) − pk−1(x). Next, we orthonormalize the
Chebyshev-filtered vectors to obtain the orthonormal set of
vectors Q spanning Ṽ , and perform a Galerkin projection of H̃
onto Ṽ to obtain the following reduced generalized eigenvalue
problem,

QT HQ�i = εiQ
T MQ�i, (38)

where {H, M, εi} represent {HC , MC , εC
i } or {HE , ME ,

εE
i } corresponding to the classical or enriched finite el-

ement discretization, respectively. We can now solve the
above generalized eigenvalue problem, whose dimension is
commensurate with the number of electrons in the system,
using direct solvers to obtain the eigenvalues εi and their
corresponding projected eigenvectors �i . We subsequently
rotate the projected eigenvectors to the original space to obtain
the eigenvectors Q�i , which along with the eigenvalues εi are
used to evaluate the charge density. Finally, the subspace V is
updated to Ṽ for the next SCF iteration.

We remark that in order to gain computational efficiency,
we exploit the elemental structure in HE (or HC) and (ME)

−1

(or (MC)
−1

) to perform the matrix-vector products involved
in the evaluation of Ṽ = pm(H̄)V . To elaborate, we consider
the case of enriched finite element and note that all the blocks
in the 2 × 2 block structure of HE and all the constituent
matrices (except (Mcc)−1 and S−1) can be constructed, owing
to the locality of the basis, by assembling contributions from
individual elements. However, since we are interested only in
the action of these matrices on vectors, we perform the matrix-
vector products by first evaluating elemental matrix-vector
products and then assembling the resultant elemental vector,
without explicitly assembling any global matrix. We also note
that, the dimension of the subspace V , denoted by N , is chosen
to be greater than the number of occupied orbitals so as to
avoid numerical instabilities for systems with small band-gaps
or degenerate energy levels close to the Fermi energy, and also
to avoid missing out any occupied eigenstate between two
successive SCF iterations. Typically, we choose N ∼ Ne

2 +
20. Further, we note that Kohn-Sham orbitals of single atoms
represent a good initial guess for the subspace V for the first
SCF iteration, and is adopted in the present work.

We note that the degree m of the Chebyshev polynomial
filter needed to obtain a good approximation to the occupied
eigenspace of the Kohn-Sham Hamiltonian depends on (i) the
separation between eigenvalues in the occupied part of the
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eigenspectrum and (ii) the ratio between the spectral widths
of the occupied and unoccupied part of the eigenspectrum
of H̃. While the separation between the occupied eigenvalues
depends on the materials system, the ratio of the spectral widths
of the occupied and unoccupied parts of the eigespectrum
depends on the largest eigenvalue of H̃, which, in turn
depends on the finite-element discretization—it increases
with decreasing element size. Typically, in a pseudopotential
calculation, where the orbitals and the electrostatic potentials
vary smoothly, one can use a relatively coarse finite element
mesh to achieve chemical accuracies of ∼1 meV per atom
using the classical finite element method. For such coarse
finite element discretizations, a Chebyshev polynomial degree
between 10 to 50 is sufficient to compute the occupied
eigenspace. However, in all-electron calculations, where the
orbitals are characterized by sharp variations near atomic
cores and the external potential has Coulomb-singularity, one
requires a highly refined finite element mesh near the atomic
cores to achieve chemical accuracies of ∼1 mHa per atom. In
addition to the significant increase in the degrees of freedom,
such mesh refinement also increases the upper bound of
the unoccupied eigenspectrum, thereby requiring a very high
Chebyshev polynomial degree, O(103), to effectively compute
the occupied eigenspace. These shortcomings of the classical
finite element discretization in the context of all-electron cal-
culations are noted in Ref. [53], where comparisons were made
against plane-wave basis for pseudopotential calculations and
against Gaussian basis for all-electron calculations. It was
noted that while the classical finite elements basis outperforms
the plane-wave basis in pseudopotential calculations on the
benchmark systems studied, they were tenfold slower in
comparison to the Gaussian basis in all-electron calculations.
These disadvantages of the classical finite element basis for
all-electron calculations are mitigated by using the proposed
enriched finite element basis, as will be demonstrated in the
subsequent section.

VI. RESULTS AND DISCUSSION

In this section, we discuss the rate of convergence, accuracy,
performance, and parallel scalability of the proposed enriched
finite method for all-electron calculations. We first study the
rate of convergence of ground-state energy with respect to
element size for methane and carbon monoxide molecules.
We then demonstrate the accuracy and performance of the
enriched finite element method using large-scale nonperiodic
semiconducting and heavy metallic systems. We use nonpe-
riodic silicon nanoclusters of various sizes, with the largest
one containing 621 atoms (8694 electrons), as our benchmark
semiconducting systems. For heavy metallic systems, we
use gold nanoclusters, Aun(n = 1 − 23), as our benchmark
systems. In order to assess the accuracy, reduction in degrees
of freedom, reduction in Chebyshev polynomial degree, and
performance of the enriched finite element method, we use,
wherever possible, the classical finite element method as
a reference. Depending upon the system, we use spectral
hexahedral finite elements of polynomial order 2 to 6, denoted
as HEX27, HEX64SPEC, HEX125SPEC, HEX216SPEC,
and HEX343SPEC, respectively. We also compare, wherever
possible, the accuracy and performance of the enriched

finite element method with that of Gaussian basis. All our
calculations using the Gaussian basis are performed with the
NWCHEM [28] package. We use n-stage Anderson mixing [85]
for charge density mixing in all our enriched and classical
finite element method based calculations. Finally, we present
the parallel scalability of our implementation of the proposed
enriched finite element method using a message passing inter-
face (MPI). The scalability studies as well as the benchmark
studies demonstrating the computational efficiency, reported
subsequently, are conducted on a parallel computing cluster
with the following configuration: Intel Xeon E5-2680v3 CPU
nodes with 24 processors (cores) per node, 128 GB memory
per node, and Infiniband networking between all nodes for fast
MPI communications.

A. Rate of convergence

In this section, we study the rate of convergence of the
ground-state energy with element size, h, using quadratic
(HEX27) and cubic (HEX64SPEC) spectral finite elements. To
this end, we generate a sequence of finite element meshes with
increasingly smaller element sizes by uniformly subdividing
the coarsest mesh. The ground-state energy, Eh, obtained from
each of the HEX64SPEC meshes is used in the expression

|Eh − E0| = Chq (39)

to compute the constants E0, q, and C through a least-square
fit. In the above expression, E0 is the extrapolated continuum
ground-state energy obtained as h → 0. We use the E0

obtained from HEX64SPEC to compute the relative error
|Eh−E0|

|E0| for both HEX27 and HEX64SPEC meshes. To assess
the accuracy of E0, we also compare it against the ground-state
energy obtained using the polarization consistent-4 (pc-4) [93]
Gaussian basis.

For the benchmark systems in our convergence study, we
consider two systems: (i) methane molecule with a C-H bond
length of 2.0784 a.u. and H-C-H bond angle of 109.4712◦
and (ii) carbon monoxide molecule with a C-O bond length
of 2.1297 a.u.. For both the systems, we use a Chebyshev
filter of order 60 to compute the occupied eigenspace and
Fermi-Dirac smearing with T = 500 K. For methane, the value
of E0 is evaluated to be −40.11993 Ha and the ground-state
energy from pc-4 Gaussian basis is −40.11992 Ha. For carbon
monoxide, the value of E0 is evaluated to be −112.47189
Ha and the ground-state energy from pc-4 Gaussian basis
is −112.47188 Ha. Next, we plot the relative error, |Eh−E0|

|E0| ,
against the smallest element size, and obtain the rates of
convergence from the slopes of these plots. As evident from
Figs. 2 and 3, we obtain close to optimal rates of convergence
in energy of O(h2k), where k is the polynomial order (k = 2
for HEX27 and k = 3 for HEX64SPEC). The results also
suggest higher accuracies obtained with HEX64SPEC when
compared to HEX27 for the same mesh size. We note that
the numerically obtained rates of convergence deviate slightly
from the theoretically optimal rates due to other numerical
errors—beyond the discretization errors in the theoretical
estimates—that are present in simulations, such as quadrature
errors, errors due to stopping tolerance in the iterative solutions
of the Poisson problem, diagonalization of the Hamiltonian
and the self-consistent field iteration.
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FIG. 2. Convergence of energy with respect to element size for
methane molecule.

B. Large-scale materials systems

We now discuss the accuracy and performance of the
proposed enriched finite element method using large-scale
semiconducting and heavy metallic materials systems. We
also compare, wherever possible, the proposed method against
classical finite element and Gaussian basis based calculations.

1. Semiconducting systems: Silicon nanoclusters

We consider silicon nanoclusters of various sizes, con-
taining 1 × 1 × 1 (252 electrons), 2 × 1 × 1 (434 electrons),
2 × 2 × 2 (1330 electrons), 3 × 3 × 3 (3920 electrons); and
4 × 4 × 4 (8694 electrons) diamond unit cells, as our bench-
mark semiconducting systems. We employ a lattice constant
of 10.26 a.u. in our calculations. These are isolated clusters in
vacuum and we do not use any surface passivation. To obtain
the characteristic element size to be used in the enriched finite
element based calculations of the nanoclusters, we first obtain
the reference ground-state energy Eref for a single silicon
atom by solving its 1D-radial Kohn-Sham eigenvalue problem
as mentioned in Sec. IV A. Next, we choose a fourth-order
(HEX125SPEC) finite element mesh for which the single
atom ground-state energy obtained from the enriched finite

FIG. 3. Convergence of energy with respect element size for
carbon monoxide molecule.

element based calculation is within 1 mHa accuracy with
respect to Eref . Similarly, to obtain the characteristic element
size for the classical finite element based calculations of the
nanoclusters, we choose a fifth-order (HEX216SPEC) finite
element mesh which is also within a 1 mHa accuracy for the
single atom ground-state energy. We note that the smallest
element size, thus obtained for the classical finite element
based calculation is found to be an order of magnitude smaller
than that of the smallest element size obtained in the enriched
finite element based calculation. This, in turn, affects the
largest eigenvalue of the Kohn-Sham Hamiltonian which is
found to be O(106) in case of classical finite elements, thereby,
requiring a Chebyshev polynomial filter of degree 1500 to
compute the occupied eigenstates. Correspondingly, for the
enriched finite element case, the largest eigenvalue is found to
be O(103), thereby, requiring a ∼20-fold smaller Chebyshev
polynomial degree of 80 to compute the occupied eigenstates.
These choices for element sizes and Chebyshev polynomial
degrees from single atom calculations are then carried forward
to the nanocluster calculations. We note that owing to the steep
computational demand arising from large number of basis
functions and high Chebyshev polynomial degree in the case
of classical finite element based all-electron calculations, we
could only perform studies up to 2 × 2 × 2 nanocluster size
using the computational resources available to us. We also
compare the accuracy and performance of the enriched finite
element method with Gaussian basis. We use the polarization
consistent (pc) family of Gaussian basis as it provides a
hierarchy of increasingly larger basis sets. Specifically, we use
pc-3 and pc-4 basis as they are both commensurate with the
∼1 mHa accuracy when compared with aforementioned Eref

for a single silicon atom. All the calculations with Gaussian
basis are performed using direct inversion of iterative subspace
(DIIS) [94] as well as the quadratically convergent mini-
mization scheme [95], both available within the NWCHEM
package, and the computational time from the more efficient
scheme is reported. For the DIIS scheme, extrapolation of up to
10 Fock matrices were used. Table I compares the ground-state
energy, degrees of freedom (number of basis functions) per
atom and the total computation CPU time (CPU time = number
of cores × wall-clock time) for various cluster sizes using

TABLE I. Comparison of classical and enriched finite element
(FE) basis. Energy per atom (E in Ha), degrees of freedom per atom
(DoF), and total computation CPU time (in CPU hours) for various
silicon nanoclusters.

Si 1 × 1 × 1 Classical FE Enriched FE

E −288.320035 −288.319450
DoF 402,112 14,728

CPU Hrs 1599.15 24.81

Si 2 × 1 × 1 Classical FE Enriched FE
E −288.334123 −288.333872
DoF 386,205 13,557

CPU Hrs 16441.43 57.10

Si 2 × 2 × 2 Classical FE Enriched FE
E −288.359459 −288.359266
DoF 360,467 10,642
CPU Hrs 75936.4 553.13
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TABLE II. Comparison of enriched finite element, pc-3, and pc-4
basis. Energy per atom (E in Ha) and total computation CPU time
(in CPU hours) for various silicon nanoclusters.

Si 1 × 1 × 1 Enriched FE pc-3 pc-4

E −288.319450 −288.318996 −288.319448

CPU Hrs 24.81 8.39 98.88

Si 2 × 1 × 1 Enriched FE pc-3 pc-4
E −288.333872 −288.333447 −288.333898

CPU Hrs 57.10 151.74 1817.30

Si 2 × 2 × 2 Enriched FE pc-3 pc-4
E −288.359266 −288.360045 FTCa

CPU Hrs 553.13 4097.29 –

Si 3 × 3 × 3 Enriched FE pc-3 pc-4
E −288.374721 FTC FTC

CPU Hrs 6252.15 – –

Si 4 × 4 × 4 Enriched FE pc-3 pc-4
E −288.381425 FTC FTC
CPU Hrs 45053.82 – –

aFTC: Failed to converge.

classical and enriched finite element basis. Similarly, Table II
compares the ground-state energy and the total computation
CPU time for various cluster sizes using enriched finite
element, pc-3, and pc-4 basis. In all these calculations, we
used a Fermi-Dirac smearing with T = 500 K.

As is evident from Tables I and II, the enriched finite
element basis achieves accuracies of within 1 mHa in the
ground-state energies per atom when compared with classical
finite element, pc-3, and pc-4 basis. We observe a staggering
60- to 300-fold reduction in the total computation CPU time
for the enriched finite element basis when compared with the
classical finite element basis. This reduction in computation
time stems from a ∼30-fold reduction in the degrees of
freedom as well as a ∼20-fold reduction in the Chebyshev
polynomial degree as compared to the classical finite element
basis. When compared with the pc-3 Gaussian basis, the
enriched finite element is a factor ∼3 slower in the case of
the smallest (1 × 1 × 1) cluster. However, it outperforms the
pc-3 basis, in total computation CPU time, by a factor of 2.5 for
the 2 × 1 × 1 cluster and by a factor of 7.5 for the 2 × 2 × 2
cluster. Similarly, the enriched finite element basis outperforms
the pc-4 Gaussian basis by factors 4 and 30 for the 1 × 1 × 1
and 2 × 1 × 1 clusters, respectively. We note that the pc-3 basis
failed to converge for the 3 × 3 × 3 and 4 × 4 × 4 clusters,
whereas the pc-4 basis failed to converge for 2 × 2 × 2 and
higher clusters. The failure of the pc-3 and pc-4 basis to
converge for larger system sizes is primarily due to linear
dependency of the Gaussian basis functions for larger system
sizes. These results suggest that the enriched finite element
basis offers a computationally efficient and robust basis for all-
electron calculations in semiconducting systems as compared
to both classical finite element and Gaussian basis.

2. Heavy metallic systems: Gold nanoclusters

Next, we consider gold nanoclusters, Aun(n = 1–23), to
study the accuracy and performance of the enriched finite

element basis. For n = 2 and 6, we use the stable geometries
obtained in a previous work [96] wherein the Au2 has a bond
length of 4.818 a.u. and Au6 has a planar triangle geometry
with D3h symmetry and bond length of 5.055 a.u.. The Au14

and Au23 nanoclusters were constructed as 1 × 1 × 1 and
2 × 1 × 1 face centered cubic (FCC) lattice, respectively, with
a lattice constant of 6.812 a.u.. We follow the same strategy
as used for silicon nanoclusters to obtain the characteristic
element sizes and Chebyshev polynomial degrees that are
to be used in gold nanocluster calculations, both using
classical and enriched finite element basis. We use fifth-
order (HEX216SPEC) and sixth-order (HEX343SPEC) finite
elements for the enriched and classical finite element based cal-
culations, respectively. We note that since gold is much heavier
than silicon, it is characterized by more sharply oscillating or-
bitals and much steeper electrostatic potentials in comparison
to silicon, thereby requiring smaller element sizes than those
used in silicon to achieve similar accuracy. This, in turn, results
in an increment in the largest eigenvalues of the Hamiltonian,
which are found to be O(104) and O(108), for the enriched and
classical finite element basis, respectively, thereby requiring
higher Chebyshev polynomial degrees to accurately compute
the occupied eigenstates. We note that the Chebyshev polyno-
mial based filtering technique, being analogous to the power
iteration method, can generate an ill-conditioned space for a
very high polynomial degree, thereby resulting in numerical
issues. To circumvent this, we employ, at each SCF iteration,
multiple passes of a low polynomial degree Chebyshev filter
and orthonormalize the filtered vectors between two successive
passes. For all our gold cluster calculations based on the
enriched finite element basis we used 30 passes of a Chebyshev
filter of degree 20, whereas 10 passes of a Chebyshev filter
of degree 1200 have been employed for the classical finite
element based calculations. We note that in the case of classical
finite element based calculations, owing to the huge computa-
tional cost, we could perform calculations only up to Au2 using
the computational resources at our disposal. Further, we do not
present a comparison with Gaussian basis owing to the lack
of a good hierarchical nonrelativistic basis for gold. Table III
presents the comparison of the ground-state energies, degrees
of freedom and total computation CPU times for the gold
nanoclusters using classical and enriched finite element basis.

As is evident from Table III, the enriched finite element
basis obtains chemical accuracy in the ground-state energies
per atom with far fewer degrees of freedom. In terms of
computational efficiency, while the enriched finite element
basis achieves ∼14-fold speedup over the classical finite Au1,
we observe ∼100-fold speedup for Au2. Once again, these
speedups for the enriched finite element basis are the result of
a 40-fold reduction in the number of degrees of freedom and
a 20-fold reduction in the Chebyshev polynomial degree as
compared to that of the classical finite element basis. These nu-
merical experiments demonstrate the accuracy and efficiency
for all-electron calculations in heavy metallic systems.

C. Scalability

We demonstrate the parallel scalability (strong scaling)
of the proposed enriched finite element basis in Fig. 4.
We choose the 3 × 3 × 3 silicon nanocluster containing ∼4
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TABLE III. Comparison of classical and enriched finite element
(FE) basis. Energy per atom (E in Ha), degrees of freedom per atom
(DoF), and total computation CPU time (in CPU hours) for various
gold nanoclusters.

Au1 Classical FE Enriched FE

E −17860.7623 −17860.7622
DoF 5,040,409 120,361

CPU Hrs 612.22 43.39

Au2 Classical FE Enriched FE
E −17860.8001 −17860.8019
DoF 4,659,399 122,300

CPU Hrs 22950.25 220

Au6 Classical FE Enriched FE
E – −17860.8249
DoF – 178,906

CPU Hrs – 1924.42

Au14 Classical FE Enriched FE
E – −17860.8077
DoF – 88,657

CPU Hrs – 3740.29

Au23 Classical FE Enriched FE
E – −17860.8045
DoF – 80,397
CPU Hrs – 8171.40

million degrees of freedom (number of basis functions) as
our fixed benchmark system and report the relative speedup
with respect to the wall time on 48 processors. The use of
any number of processors below 48 was infeasible owing to
the memory requirement posed by the system. As evident
from the figure, the scaling is in good agreement with the
ideal linear scaling behavior up to 384 processors, at which
we observe a parallel efficiency of 87.8%. However, we
observe a considerable deviation from linear scaling behavior
at 768 processors with a parallel efficiency of 71.2%. This
is attributed to the fact that at 768 processors the number of

FIG. 4. Parallel scalability of the enriched finite element
implementation.

degrees of freedom possessed by each processor falls below
5000, which is too low to achieve good parallel scalability.

VII. SUMMARY

We have developed a computationally efficient mixed
basis, termed as enriched finite element basis, for all-electron
DFT calculations which combines the efficiency of atomic-
orbitals-type basis to capture the sharp variations of the
electronic fields closer to the atoms and the completeness
of the classical finite element basis. This work demonstrates
the marked computational advantage afforded by the enriched
finite element basis over the classical finite element basis for
all-electron DFT calculations.

The proposed method is developed based on the following
key ideas. Firstly, we augmented the classical spectral finite
element basis with enrichment functions constructed from
single-atom Kohn-Sham orbitals and electrostatic potentials.
The enrichment functions are inexpensively precomputed and
stored by solving radial Kohn-Sham equations for all atoms in
the periodic table. The enrichment functions are instrumental
in capturing the sharp variations of the Kohn-Sham orbitals
close to an atom, thereby, mitigating the need of high mesh
refinement near the atomic cores. Secondly, we used smooth
cutoff functions to truncate the enrichment functions so
as to ensure locality as well as better conditioning of the
enriched finite element basis. Thirdly, we employ a divide
and conquer strategy to construct an adaptive quadrature grid
to efficiently evaluate the integrals involving the enrichment
functions. Next, in order to convert the generalized Kohn-Sham
eigenvalue problem to a standard eigenvalue problem, we
employed a computationally efficient scheme to evaluate the
inverse of the overlap matrix in the enriched finite element
basis, by exploiting the block-wise matrix inversion. The use
of spectral finite elements along with Gauss-Lobatto-Legendre
quadrature rule is crucial in rendering the classical-classical
block of the overlap matrix diagonal, whereas the use of
the block-wise matrix inversion is crucial in utilizing the
sparsity of the constituent matrices in the inverse of the overlap
matrix for an efficient evaluation of the ensuing matrix-vector
products. Finally, we employed the Chebyshev polynomial
based filter to compute the occupied eigenstates. Here, we
exploited the finite element structure in the Hamiltonian and
the inverse overlap matrices to achieve an efficient and scalable
implementation of the matrix-vector products involved in the
action of the Chebyshev filter on a subspace.

In terms of the numerical convergence afforded by the
enriched finite element basis, we demonstrated close to
optimal rates of convergence for the ground-state energy with
respect to the finite element discretization. We demonstrated
the accuracy and performance of the proposed enriched
finite element basis on (i) silicon nanoclusters of various
sizes, with the largest cluster containing 8694 electrons; and
(ii) gold nanoclusters of various sizes, with the largest cluster
containing 1817 electrons. We obtained good agreement in
the ground-state energies when compared to classical finite
element and Gaussian basis. In the larger clusters considered
in this study, the enriched finite element basis provides a
staggering 50–300-fold speedup compared to the classical
finite element basis, which is attributed to a 30-fold reduction
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in the degrees of freedom as well as a 20-fold reduction in the
Chebyshev polynomial degree. We also observed a significant
outperformance by the enriched finite element basis relative to
Gaussian basis (pc-3 and pc-4). Furthermore, we were able to
perform ground-state energy calculations for silicon clusters
containing 280 and 621 atoms, for which the Gaussian basis
failed to converge owing to the linear dependency of the basis.
In terms of parallel scalability, we obtained good parallel
efficiency with almost linear scaling up to 384 processors
for the benchmark system comprising of 280 atoms silicon
nanocluster and containing ∼4 million basis functions.

The proposed method offers a computationally efficient,
systematically improvable, and scalable basis for large scale
all-electron DFT calculations, applicable to both light and
heavy atoms. The use of the enrichment in developing linear-
scaling DFT algorithms for all-electron calculations based on
finite element basis [57,97] or Tucker-tensor basis [98] holds
good promise, and is currently being investigated. Further-
more, the use of enrichment ideas in conjunction with reduced-
order scaling DFT algorithms can also be effectively utilized

in the evaluation of the exact exchange operator, and forms
a future direction of interest. Last but not least, the enriched
finite element basis can be useful in a systematic study of the
applicability and accuracy of various pseudopotential approx-
imations on a wide range of materials and external conditions.
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Interdisciplinary Rev.: Comp. Molecular Sci. 4, 269 (2014).

[31] T. L. Loucks, Augmented Plane Wave Method: A Guide
to Performing Electronic Structure Calculations, Frontiers in
Physics: Lecture Note and Reprint Series, A (Benjamin, New
York, 1967).

[32] D. D. Koelling and G. O. Arbman, J. Phys. F 5, 2041 (1975).
[33] O. K. Andersen, Phys. Rev. B 12, 3060 (1975).
[34] E. Wimmer, H. Krakauer, M. Weinert, and A. J. Freeman, Phys.

Rev. B 24, 864 (1981).
[35] M. Weinert, E. Wimmer, and A. J. Freeman, Phys. Rev. B 26,

4571 (1982).
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