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Fundamental limits of optical force and torque
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Optical force and torque provide unprecedented control on the spatial motion of small particles. A valid
scientific question, that has many practical implications, concerns the existence of fundamental upper bounds
for the achievable force and torque exerted by a plane wave illumination with a given intensity. Here, while
studying isotropic particles, we show that different light-matter interaction channels contribute to the exerted
force and torque, and analytically derive upper bounds for each of the contributions. Specific examples for
particles that achieve those upper bounds are provided. We study how and to which extent different contributions
can add up to result in the maximum optical force and torque. Our insights are important for applications ranging
from molecular sorting, particle manipulation, and nanorobotics up to ambitious projects such as laser-propelled
spaceships.
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Introduction. Optical scattering, extinction, and absorp-
tion cross sections characterize the strength of light-matter
interaction. They quantify the fraction of power a particle
scatters, extincts, or absorbs [1,2]. To describe the interaction
of light with a particle, the incident and scattered fields can
be expanded into vector spherical wave functions (VSWFs).
VSWFs are the eigenfunctions of the vectorial wave equation
in spherical coordinates. For an isotropic, i.e., a rotationally
symmetric particle, the amplitudes of the VSWFs expanding
the incident and scattered fields are linked by the Mie
coefficients [1,3]. Each coefficient describes a channel for
the light-matter interaction and is uniquely specified by the
total angular momentum (AM) number j , and the parity of
the fields involved in the scattering process in the respective
Mie channel (MC). Depending on j and the parity, these MCs
are referred to as either electric (aj ) or magnetic (bj ).

If an isotropic particle is illuminated by a plane wave in
a frequency interval where only a single MC is significant,
the maximum scattering cross section Csca (at resonance) is
(2j + 1)λ2/2π [4,5]. The maximum Csca is attained when
the particle operates in the overcoupling (γr � γnr) regime,
i.e., the radiative (scattering) loss (γr) is much larger than
the nonradiative (Ohmic) loss (γnr). For a particle with a
single electric dipole MC (i.e., electric dipolar particle),
the maximum scattering and consequently extinction cross
section Cext (at resonance) corresponds to 3λ2/2π [Fig. 1(a)].
Similarly, the maximum absorption cross section Cabs (at
resonance) is (2j + 1)λ2/8π [6]. It occurs if the particle
operates in the critical coupling (γnr = γr) regime, i.e., the
nonradiative (γnr) and radiative (γr ) loss are equal. For an
electric dipolar particle, the maximum absorption is 3λ2/8π

[Fig. 1(a) when γnr = γr ].
Although optical cross sections are important in studying

light-matter interaction at the nanoscale [7–9], the optical force
and torque are further key quantities [10–13], for which upper
bounds have not yet been well studied. This is surprising
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considering the important applications and implications of
the optical force and torque in many areas. Examples are the
optomechanical manipulation [14–17], molecular or particle
optical sorting [18], or nanorobotics [19,20]. Optical force and
torque are also important in studying the angular momentum
of light [21–24]. Moreover, developing ambitious projects like
laser-propelled spaceships would benefit from an understand-
ing of these limits [25].

In this paper, based on the multipole expansion in scattering
theory [2], we identify and analyze different terms that
contribute to the exerted optical force and torque on isotropic
particles, and derive upper bounds for each contribution. Next,
considering these contributions, the maximum of the total
optical force and torque is calculated. Contrary to the optical
cross sections, the force and torque, in a general direction,
contain terms that are the result of interference among different
MCs.

We start by analyzing particles that are characterized by
a single dipole MC. Afterwards, we consider homogeneous
dielectric spheres supporting multiple MCs and distinguish
different terms contributing to the force and torque. Finally,
considering more general isotropic particles, the maximum
optical force and torque as a function of the maximum
non-negligible multipolar order is calculated. Examples for
particles that maximize each of the contributions as well as
the force/torque are given. The detailed derivations of the
relations, supplementary figures, and more information on the
theoretical background are given in the Supplemental Material
Ref. [26]. Here, we concentrate on the presentation of the
results and the discussion of the physical implications. The
force and torque values are all time averaged.

Fundamental limits on optical force (electric dipole). An
arbitrarily polarized, time harmonic plane wave, propagating
in the +z direction, illuminates an isotropic electric dipolar
particle. The exerted force is [10,27]

Fp = 1

2
Re(∇E∗ · p) = kI0

c
Im[α(ω)] ez = Fpez, (1)

where p = ε0αE is the induced Cartesian electric dipole
moment, α is the electric polarizability of the particle, I0 =
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FIG. 1. (a) Maximal scattering, extinction, and absorption cross
sections of; and (b) optical force and torque exerted on an isotropic
dipolar particle as a function of the loss factor, i.e., γnr/γr. The particle
is illuminated by an arbitrarily polarized plane wave (for the cross
sections and the force) or a circularly polarized plane wave (only for
the torque) at the resonance of a spectrally isolated dipole MC.

ε0c|E0|2/2 is intensity of the illumination, k is the wave
number, ε0 is the free space permittivity, and c is the speed
of light. Alternatively, based on the definition of the extinction
cross section of an electric dipolar particle, Cext,p = k Im(α)
[28], Fp can be rewritten as (I0/c)Cext,p. The dispersion of α

near a resonance can be expressed by a Lorentzian line shape
as [29]

α(ω) = α0

ω2
res − ω2 − iω(γnr + γr)

, (2)

where ωres is the resonance frequency, α0 is the resonance
strength, and γr = α0k

2/6πc is the radiative loss of the
particle, respectively. The maximum force in Eq. (1) occurs
when the particle is nonabsorptive and at resonance (i.e.,
{Im[α(ω)]}max = 6π/k3), where the extinction cross section
is maximized (= 3λ2/2π ), and reads as

(Fp)max = 3F norm, F norm = I0

c

λ2

2π
. (3)

(Fp)max is the fundamental limit for the force an arbitrarily
polarized plane wave can exert on an isotropic electric dipolar
particle. Due to the symmetry of Maxwell’s equations, the
same bound can be attained for an isotropic magnetic dipolar
particle. F norm is used as the normalization factor further on. It
is important to note that (Fp)max depends on the resonance
wavelength (∝ λ2) of the MC. Therefore, the longer the
resonance wavelength, the larger the maximum force.

Fundamental limits on optical torque (electric dipole). If
a circularly polarized plane wave E = E0e

ikz(ex + σ iey)/
√

2,
with handedness σ = ±1, impinges on the particle, the optical
torque reads as [11]

Np = 1

2

[
Re(p × E∗) − k3

6πε0
Im(p∗ × p)

]

= σI0

ω

{
k Im[α(ω)] − k4

6π
|α(ω)|2

}
ez = Npez. (4)

Based on the definition of the absorption cross section of an
electric dipolar particle, Cabs,p = k Im(α) − k4|α|2/6π [28],

Np can be rewritten as σ (I0/ω)Cabs,p. Therefore, the torque
is maximized at the maximum of the absorption cross section
(= 3λ2/8π ) and is equal to

(
Np

)
max = 3σNnorm, Nnorm = I0

ω

λ2

8π
. (5)

(Np)max is the fundamental limit on the torque exerted
on an isotropic electric dipolar particle by a circularly
polarized plane wave. The same bound is attained for an
isotropic magnetic dipolar particle. Nnorm will be later used
for normalization. Note that for an isotropic particle, it can
be easily deduced from Eq. (4) that a linearly polarized plane
wave exerts no torque N = 0.

Figure 1(b) shows the maximal force and torque at
resonance exerted by a plane wave as a function of the
loss factor, i.e., γnr/γr. In the overcoupling regime, Cext, and
consequently the force is maximized. On the other hand, in the
critical coupling regime, the Cabs and consequently the torque
is maximized.

Multipole expansion. To extend our analysis to include
multiple MCs, we go beyond the single channel dipole
approximation. In the multipolar expansion, the incident and
scattered fields are expanded as [1,3,30]

Einc = −
∞∑

j=1

j∑
m=−j

Ejm

(
pjmN(1)

jm + iqjmM(1)
jm

)
,

Esca =
∞∑

j=1

j∑
m=−j

Ejm

(
ajmN(3)

jm + ibjmM(3)
jm

)
, (6)

where [M(1)
jm(r; ω),N(1)

jm(r; ω)] are the regular and

[M(3)
jm(r; ω),N(3)

jm(r; ω)] the outgoing vector spherical
wave functions (VSWFs). (pjm,qjm) and (ajm,bjm) are
the amplitudes of the VSWFs expanding the incident and
scattered fields. j (j + 1) is the eigenvalue of the AM squared
J2, and m is the eigenvalue of the z component of the AM
Jz. Ejm is a normalizing factor (Supplemental Material Ref.
[26]).

The incident fields are assumed to be known. Their VSWF
amplitudes can be calculated using orthogonality relations.
The VSWF amplitudes of a plane wave are given in the
Supplemental Material Ref. [26]. Finding the scattered field
amplitudes is not a trivial task. However, Mie theory provides
analytical solutions for an isotropic particle [3,31]. The
VSWF amplitudes of the scattered and incident fields are
related by ajm = ajpjm, and bjm = bjqjm, with aj and bj

being the electric and magnetic Mie coefficients [3]. Each
Mie coefficient has a spectral profile with certain resonance
peaks. For any of these channels (Mie channels) the angular
momentum and parity of the fields are preserved and no energy
cross-coupling occurs among different MCs. Based on energy
conservation, the Mie coefficients are always smaller than
unity and at resonance of a nonabsorbing particle they are
equal to unity [32].

Fundamental limits on optical force. The multipolar de-
scription of the force on a particle by an arbitrary illumination
has been presented in [33,34] (Supplemental Material Ref.
[26]). Considering the contributions of different MCs, the force
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TABLE I. Fundamental limits on optical force constituents.

Term F/F norm (F )max/F
norm Maximum contribution at Example (overcoupling regime)

Fje
2π

λ2 Cext,je = (2j + 1)Re(aj ) (2j + 1) |aj | resonance Dielectric sphere (Fig. 2)

Fjm
2π

λ2 Cext,jm = (2j + 1)Re(bj ) (2j + 1) |bj | resonance Dielectric sphere (Fig. 2)

Fjejm − 2(2j+1)
j (j+1) Re(ajb

∗
j ) − 2(2j+1)

j (j+1) Simultaneous |aj | and |bj | resonance Dual dielectric sphere (Fig. S3)

Fje(j+1)e − 2j (j+2)
(j+1) Re(aj+1a

∗
j ) − 2j (j+2)

(j+1) Simultaneous |aj | and |aj+1| resonance Dielectric core multishell (Fig. S4)

Fjm(j+1)m − 2j (j+2)
(j+1) Re(bj+1b

∗
j ) − 2j (j+2)

(j+1) Simultaneous |bj | and |bj+1| resonance Dielectric core multishell

on an isotropic particle in along +z is derived as

F =
∞∑

j=1

{Fj e + Fjm + Fj ejm + Fj e(j+1)e + Fjm(j+1)m}

= [Fp + FQe + FOe + · · · ] + [Fm + FQm + FOm + · · · ]

+ [Fpm + FQeQm + FOeOm + · · · ]

+ [FpQe + FQeOe + · · · ] + [FmQm + FQmOm + · · · ]. (7)

Fj e (Fjm ) is the force due to an individual electric (mag-
netic) MC. Fj ejm is the force due to the spectral interference
of two MCs with identical j but opposite character. Fj e(j+1)e

(Fjm(j+1)m ) is due to the spectral interference of two electric
(magnetic) MCs with the same character and j and j + 1 total
AM number.

Assuming an arbitrarily polarized plane wave, propagating
in +z direction and illuminating an isotropic particle, we
have derived the expression for different force terms and
the conditions to maximize their individual contribution
(Supplemental Material Ref. [26]). The results are shown in
Table I. Specific examples are mentioned that maximize each
term. Figure 2 shows different nonzero contributions to the
optical force exerted on a nonabsorbing dielectric sphere up to
the multipole order j = 3 (in Fig. S2 the same is considered
for an absorbing particle, which shows a significant damping
in the force near resonance). For all the upcoming figures, the
maximum contribution of each force term is shown by a same
color dashed line. Let us now focus on maximizing the total
optical force. For a homogeneous sphere like the one in Fig. 2,
at least for the lower size parameter values, where the spectral
overlap of MCs is small, the interference terms are small
and the optical force can be approximated by the individual
contribution of MCs. Therefore, in this case, the maximal
total optical force is well approximated by the maximum of
the individual contribution of the MCs, (2j + 1)F norm. The
individual contribution of a MC is directly related to the
extinction cross section (Supplemental Material Ref. [26]).
Although the (2j + 1) factor is bigger for higher multipoles,
the resonance wavelengths of the channels are lower and hence
in general, for an isotropic particle, the achievable maximum
force is smaller for higher order multipoles.

When extending our analysis to more general isotropic
particles, interference terms come into play. Figure S3 con-
siders the optical force on a dual [35] dielectric sphere.
Due to the simultaneous resonance of the electric (aj ) and
magnetic (bj ) MCs, the contribution of the interference
term Fj ejm is maximized. In Fig. S4, a core-multishell

particle is analyzed, where the electric dipole-quadrupole and
quadrupole-octopole interference force contributions are max-
imized (FpQe = −3F norm,FQeOe ≈ −5.3F norm). Note that the
maximum contribution of the interference terms is always neg-
ative. However, as proven in Supplemental Material Ref. [26],
the maximum positive contribution of an interference term
(at off-resonance) is eight times smaller than the maximum
negative contribution (at resonance).

To calculate the maximum total optical force, the contri-
bution of interference terms should be considered. For an
isotropic particle with finite volume and finite permeability
and permittivity (positive or negative), which is illuminated by
a plane wave at a given frequency, avoiding pathological cases
where classical electrodynamics is not applicable, we assume

FIG. 2. Nonabsorbing dielectric sphere. (a) Optical force exerted
by an arbitrarily polarized plane wave on a nonabsorbing sphere
[εr = (3.5)2, μr = 1] depending on the sphere’s size parameter (solid
line). Contributions of the noninterference terms (dashed line).
(b) The individual contributions of the dipole, quadrupole, and
octopole electric and (c) magnetic MCs. (d) The partial contribution
of the interference of dipole-dipole, quadrupole-quadrupole, and
octopole-octopole electric and magnetic MCs. (e) The interference
of dipole-quadrupole and quadrupole-octopole, electric and magnetic
MCs.
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r1r2
12

FIG. 3. (a) Maximum total optical force and (b) torque as a
function of the maximum non-negligible multipole moment order
jmax. (c) Optical force exerted on an optimized isotropic nonabsorbing
core-shell particle, illuminated by an arbitrarily polarized plane wave.
The figure also illustrates the contributions of the individual dipolar
electric and magnetic MCs and their interference. Parameters of the
particle: r1 = 88 nm, r2 = 179 nm, ε1 = 42, and ε2 = (2.64)2.

that the optical response is describable with a finite number
of multipole moments and hence the total optical force is
always finite. For a nonabsorbing particle, each Mie coefficient
is modeled by a simple formula (aj = cos αj exp iαj , bj =
cos βj exp iβj ) with a single real-valued variable αj or βj [36].
Based on this model and Eq. (7), assuming that the resonance
of the MCs can be optimally engineered (i.e., assuming all
αj ’s and βj ’s to be independent), the maximum force can
be calculated as a function of the maximum non-negligible
multipole order jmax. For a smaller number of Mie channels the
maximal force can be derived analytically, i.e., up to jmax = 3.
For a larger number of Mie channels a genetic algorithm has
been used (Supplemental Material Ref. [26]). The results are
shown in Fig. 3(a). For a dipolar particle, the maximum of
the optical force is 3.375F norm. This upper bound for the
force is not met at the resonance due to the interference
contribution. Using particle swarm optimization (PSO) [37],
we have optimized a dielectric core-multishell particle that
receives the maximum optical force in dipolar approximation
at λ = 1 μm [Fig. 3(c)] (Supplemental Material Ref. [26]).
This demonstrates the applicability of the present formalism.

Fundamental limits on optical torque. In a similar approach,
the z component of the optical torque exerted on an isotropic
particle by an arbitrary illumination, presented in Ref. [33],

FIG. 4. Absorbing dielectric sphere. (a) Optical torque on an
absorbing sphere [εr = (3.5 + 0.16i)2, μr = 1], by a circularly
polarized plane wave as a function of the sphere’s size parameter.
The individual contribution of the dipole, quadrupole, and octopole
electric and (b) magnetic MCs.

can be rewritten as

N =
∞∑

j=1

{Nj e + Njm}

= [Np + NQe + NOe + · · · ] + [Nm + NQm + NOm + · · · ],

(8)

where Nje (Njm ) is the contribution of an electric (magnetic)
MC to the optical torque. The contribution of an electric MC
to the torque is

Nj e = λ3I0

8π3c
Re(aj − |aj |2)

j∑
m=−j

m|pjm|2 = σI0Cabs,j e

ω
. (9)

The exerted torque is directly related to the averaged total AM
[1] of the incident wave in the z direction. For a circularly
polarized plane wave propagating along z, the contribution of
an electric MC to the torque simplifies to

Nj e = 4σ (2j + 1)Re(aj − |aj |2)Nnorm. (10)

For an absorbing isotropic particle at the critical coupling
regime, Re(aj − |aj |2) is maximum and equal to 0.25 [6].
Therefore, the maximum torque is derived as

(Nj e )max = σ (2j + 1)Nnorm. (11)

A similar relation can be derived for the contribution of
a magnetic MC. Table II summarizes the two contributions
and the conditions for maximizing them. To maximize the
total optical torque, Cabs should be maximized, i.e., the critical
coupling condition should be satisfied. The critical coupling
is met at a single frequency. In Fig. 4, the optical torque is
critically coupled at the magnetic dipole MC resonance.

Unlike the force, the torque along +z does not have interfer-
ence terms and contribution of MCs directly add up. Therefore,
for a dual (identical aj and bj ) sphere that is critically coupled,

TABLE II. Fundamental limits on optical torque constituents.

Term N/Nnorm (N )max/N
norm Maximum contribution at Example (critical-coupling regime)

Nje
σI0
ω

Cabs,je = 4σ (2j + 1)Re(aj − |aj |2) σ (2j + 1) |aj | resonance Dielectric sphere (Fig. S5)

Njm
σI0
ω

Cabs,jm = 4σ (2j + 1)Re(bj − |bj |2) σ (2j + 1) |bj | resonance Dielectric sphere (Figs. 4 and S5)
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from Table II, the torque is (Nj e )max + (Njm )max = 2(2j +
1)Nnorm. This is shown in Fig. S5. As a simple extrapolation,
it can be concluded that the maximum optical torque on a crit-
ically coupled particle occurs when all the multipole moments
overlap resonantly. Therefore, the maximum optical torque as
a function of jmax is

∑jmax
j=1 2(2j + 1)Nnorm = 2jmax(jmax + 2).

This relation is plotted in Fig. 3(b).
For completeness, we have calculated the optical force and

torque on a silver nanosphere (Fig. S6) and a gold nanopatch
(Fig. S7) to compare our results with a realistic absorbing

particle. Our results can be used to design superaccelerable
and -rotatable particles by engineering the spectral resonance
of the MCs. The designed particles can in turn be used in
optonanorobots.
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