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Band geometry, Berry curvature, and superfluid weight
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We present a theory of the superfluid weight in multiband attractive Hubbard models within the Bardeen-
Cooper-Schrieffer (BCS) mean-field framework. We show how to separate the geometric contribution to the
superfluid weight from the conventional one, and that the geometric contribution is associated with the interband
matrix elements of the current operator. Our theory can be applied to systems with or without time-reversal
symmetry. In both cases the geometric superfluid weight can be related to the quantum metric of the corresponding
noninteracting systems. This leads to a lower bound on the superfluid weight given by the absolute value of the
Berry curvature. We apply our theory to the attractive Kane-Mele-Hubbard and Haldane-Hubbard models, which
can be realized in ultracold atom gases. Quantitative comparisons are made to state of the art dynamical mean-field
theory and exact diagonalization results.
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I. INTRODUCTION AND MAIN RESULTS

A manifold of quantum states possess a natural geometric
structure given by the quantum geometric tensor [1], whose
imaginary part is the Berry curvature and the real part is the
quantum metric [2]. The integral of Berry curvature over a
surface in parameter spaces gives the Berry phase [3], which
measures the phase change of a quantum state along the
boundary of the surface. Related to the phase change, the
amplitude change is characterized by the quantum metric.

The Berry curvature provides a coherent understanding
of basic phenomena such as electron transport, polarization,
and orbital magnetization [4–6]. For systems with discrete
translational invariance, the integral of the Berry curvature over
the Brillouin zone gives the Chern number, which can be used
to characterize topological phases. The quantum metric has
found applications in the theory of quantum entanglement and
quantum information [7] and can be used to detect quantum
phase transitions [8].

Recently, there has been great interest in models with flat or
quasiflat bands. A band is called quasiflat if the ratio between
the bandwidth and the energy gap to neighboring bands (the
flatness ratio) is much smaller than unity. A quasiflat band
with nonzero Chern number may support various fractional
quantum Hall states [9–15], and it has been shown that flat
bands can enhance the superconducting transition temperature
because of the high density of states [16–19]. The importance
of the quantum geometric tensor, especially in flat-band
systems, has been revealed in connection with lattice fractional
quantum Hall states [14,15], flat-band superfluidity [20,21],
and orbital magnetic susceptibility [22,23].

Nonzero superfluid weight is a defining property of super-
conductors and leads to the Meissner effect and dissipationless
transport. It sets the phase fluctuation energy scale that plays
a significant role in high-temperature superconductors [24].
In Ref. [20], two of us pointed out that the superfluid weight
is related to the quantum metric and bounded from below by
the Chern number in the isolated flat-band limit. However,
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a flat band with zero Chern number can also support a large
superfluid weight [21], which is consistent with, but can not be
explained by the Chern number bound. The theory developed
in Ref. [20] depends on time-reversal symmetry (TRS) and the
relation between the superfluid weight and the quantum metric
is obtained only in the specific case of the flat-band limit.

In this paper, we develop a general theory of the super-
fluid weight in multiband attractive Hubbard models in the
framework of linear response theory. The superfluid weight
defined through linear response is equivalent to the one
defined in terms of the thermodynamic potentials, but it offers
several advantages. For example, it is the starting point for
investigating beyond-mean-field effects through many-body
perturbation theory and facilitates the derivation of useful sum
rules [25,26].

We show here how to separate in general the geometric
contribution to the superfluid weight from the conventional
one. The linear response approach clarifies the origin of the
geometric effect. The conventional contribution is associated
with the diagonal (intraband) matrix elements of the current
operator that are derivatives of the band dispersions. Thus the
conventional contribution vanishes in the flat-band limit. The
geometric contribution, however, is associated with the off-
diagonal (interband) matrix elements of the current operator
and can be nonzero even for a flat band.

In the presence of TRS and for uniform pairing, we find
a novel form for the geometric contribution Ds

geom, where
the quantum metric appears explicitly both in the case of an
isolated, not necessarily flat, band and in two-band systems.
A Bloch band is called an isolated band if it is separated from
other bands by large enough band gaps. In the isolated band
limit (see Sec. II A for details), we obtain

Ds
geom,μν = 2�2

∑
k

tanh (βEk/2)

Ek
gμν(k), (1)

where μ,ν = x,y,z are spatial indices, � is the pairing order
parameter, β = 1/T is the inverse temperature (the Boltzmann
constant is taken to be 1 throughout this paper), Ek � 0 is
the BCS theory quasiparticle excitation energy, and gμν(k)
is the quantum metric of the isolated Bloch band. A similar
expression for two-band systems is given by Eq. (25) below.

2469-9950/2017/95(2)/024515(16) 024515-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevB.95.024515


LONG LIANG et al. PHYSICAL REVIEW B 95, 024515 (2017)

-2

0

2

4

2 10 0-1-2 -2 0 2 4
0

2

4

6

8

Do
S

/t

/t

FIG. 1. Band structure and density of states (DoS) of the
noninteracting Haldane model for cos(φ) = t/(4t ′) = 3

√
3/43. The

bandwidth of the lower band is about 0.29t and the gap between upper
and lower band is 1.75t . The quasiflat lower band has much larger
density of states than the dispersive upper band.

Furthermore, the quantum metric also appears in the isolated
band limit of two-band systems without TRS, see Eq. (28)
below. These are important generalizations of the previous
results, where the quantum metric has been related to the
superfluid weight only in the isolated flat-band limit with
TRS [20,21], and show that the quantum metric affects the
superfluid properties in a broad class of systems.

The quantum metric is non-negative everywhere in the
Brillouin zone and allows us to derive a bound on the superfluid
weight using the Berry curvature Bμν(k). For two-dimensional
isotropic systems,

Ds
geom � 2�2

∑
k

tanh (βEk/2)

Ek
|Bxy(k)|. (2)

Importantly, this bound depends on the absolute value of
the Berry curvature. Therefore the geometric contribution
is nonzero for any nonzero Berry curvature. Equation (2)
provides a much stronger lower bound than the Chern number
bound [20] since a nonzero Berry curvature can still integrate
to zero. This explains why bands with zero Chern number,
such as the Lieb lattice flat band [21], can still have a nonzero
superfluid weight.

We apply our general theory of the superfluid weight
for multiband systems to the attractive Kane-Mele-Hubbard
(KMH) model and the spinful Haldane-Hubbard (HH) model,
which are paradigmatic models of interacting topological
systems and also of great interest in current ultracold atomic
gas experiments [27,28]. The KMH model has TRS, while in
the spinful HH model TRS is broken but SU(2) spin symmetry
is present. The Haldane model [29] is a representative model
of Chern insulators. The Kane-Mele model is a time-reversal
symmetric generalization of the Haldane model and is a
representative model of Z2 topological insulators [30]. The
band energies of the noninteracting part of both the Kane-
Mele-Hubbard model and the Haldane-Hubbard model are
shown in Fig. 1 and the corresponding lattice in Fig. 3. The
nearest-neighbor hopping t and the complex next-nearest-
neighbour hopping t ′eiφ are chosen to minimize the flatness
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FIG. 2. Zero-temperature superfluid weight for the KMH model
[(a) and (b)] and the HH model [(c) and (d)] at filling n = 1/8 [(a)
and (c), flat band], 15/8 [(b) and (d), dispersive band]. Geometric
contributions and conventional contributions are obtained using the
theory developed in Section II. The geometric contribution is large
and dominant or comparable to the conventional one for the flat
bands. Solid curves are the Drude weight D obtained from exact
diagonalization (ED) on a 32-site cluster.

ratio [11]. Consequently, the lower band is quasiflat, while the
higher one is highly dispersive.

Our mean-field results for the critical temperature are
consistent with previous theoretical predictions [16–18]. For
the flat band, the critical temperature is proportional to the
Hubbard interaction, while for the dispersive band, it is
exponentially small in the weak-coupling limit. The superfluid
weight obtained within mean-field theory is shown in Fig. 2.
For the quasiflat bands [Figs. 2(a) and 2(c)] the geometric con-
tribution is comparable to, or even larger than the conventional
one, while for the strongly dispersive bands the conventional
contribution dominates [Figs. 2(b) and 2(d)].

It is not immediately clear whether BCS theory is a good
approximation especially in the highly degenerate flat-band
case. In a recent work, two of us have shown that the BCS
wave function is the exact ground state of the attractive
Hubbard interaction term projected on the flat-band subspace
if TRS is present and the uniform pairing condition [see
Eq. (31) below] is satisfied [31]. The validity of BCS theory
in the strong-coupling limit can be justified using perturbation
theory (see Sec. III A). Furthermore, we employ dynamical
mean-field theory (DMFT) to calculate the order parameter
and the superfluid weight and find good agreement with
mean-field results. DMFT goes beyond static mean-field
theory by including local fluctuations. However, nonlocal
fluctuations are not included and the method might be biased
by the choice of order parameters. We thus perform also exact
diagonalization (ED) calculations to get the Drude weight (red
dots in Fig. 2) for a finite system. The Drude weight in the bulk
limit is equivalent to the superfluid weight for a gapped system
[32]. ED gives unbiased results which are in good agreement
with the mean-field results.

The rest of this paper is organized as follows. In Sec. II, we
present the derivation of the superfluid weight within the BCS
theory and show how to separate the geometric contribution
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from the conventional one. We discuss the cases with and
without TRS in Sec. II A and Sec. II B, respectively. In Sec. III,
we apply our theory to the attractive KMH model and HH
model and compare the mean-field results with DMFT and ED
results. Finally, conclusions and future prospects are presented
in Sec. IV.

II. SUPERFLUID WEIGHT IN MULTIBAND ATTRACTIVE
HUBBARD MODELS

We start from the lattice Hamiltonian

H = −
∑

iα,jβ,σ

tσiα,jβc
†
iασ cjβσ

−U
∑
iα

niα↑niα↓ − μ
∑
iασ

niασ , (3)

where c
†
iασ (ciασ ) is the creation (annihilation) operator labeled

by orbital iα (i is the unit cell label and α the sublattice
label) and spin σ , and niασ = c

†
iασ ciασ is the particle number

operator. The first term in the Hamiltonian is the kinetic energy,
which can be spin dependent. Note that we only consider the
case of kinetic Hamiltonians which commute with the spin
operator along the z axis. The second term is the Hubbard
interaction which we assume to be attractive, i.e., U > 0.
The filling n ≡ (N↑ + N↓)/Nsites is controlled by the chemical
potential μ.

The superfluid weight can be obtained using linear response
theory [25], which relates the response functions to the
correlation functions evaluated on the ground state. In our
case, the BCS ground state is a good approximation of the
true ground state, therefore the use of linear response theory is
legitimate. To calculate the current-current response function,
we introduce a slowly varying vector potential A by the
Peierls substitution, so that the hopping tij is modified by
the phase factor e−iA·(rj −ri ). Expanding the phase factors up to
A2 order, we get H (A) = H + j

p
μAμ + TμνAμAν/2, where

j
p
μ = i[xμ,H ],Tμν = i[xμ,j

p
ν ] and xμ = ∑

iα ri,μc
†
iασ ciασ is

the position operator. Here, j
p
μ is the paramagnetic current

operator while TμνAν is the diamagnetic current operator.
From linear response theory, we find that the current density
is jμ(q,ω) = Kμν(q,ω)Aν(q,ω), where Kμν is the current-
current response function,

Kμν(q,ω) = 〈Tμν〉

− i

∫ ∞

0
dtei(ω+i0+)t

〈[
jp
μ (q,t),jp

ν (−q,0)
]〉

. (4)

The superfluid weight is defined through the static Meissner
effect by taking the proper zero momentum limit of the
transverse component of the current-current response function.
At mean-field level one can use the result [32]

Ds
μν = Kμν(q → 0,ω = 0). (5)

This is equivalent to the definition in terms of the thermody-
namic potentials, see Appendix A. We calculate Kμν(q,ω)
within the BCS framework by decoupling the Hubbard
interaction as

− U
∑
iα

niα↑niα↓ ≈
∑
iα

(�iαc
†
iα↑c

†
iα↓ + H.c.), (6)

where the order parameter �iα = −U 〈ciα↓ciα↑〉 should be
determined self-consistently. We consider mean-field solutions
that preserve the translational symmetry. Then the mean-field
Hamiltonian reads HMF = ∑

k 	
†
kH(k)	k. The Nambu field

is 	k = (cαk↑,c
†
α−k↑)T with α = 1,2, . . . ,M denoting the

orbital. The Bogoliubov-de Gennes (BdG) Hamiltonian reads

H(k) =
[
H↑(k) − μ �

�† −H∗
↓(−k) + μ

]
, (7)

where the M by M matrix Hσ (k) is the Fourier transform
of the hopping terms and � = diag(�1,�2, · · · ,�M ) are
momentum independent order parameters in orbital space.

The diamagnetic and paramagnetic current operators are
given, respectively, by

Tμν =
∑
k,σ

c
†
kσ ∂μ∂νHσ (k)ckσ (8)

and

jp
μ (q) =

∑
k,σ

c
†
kσ ∂μHσ (k + q/2)ck+qσ . (9)

It is convenient to calculate the response function in imaginary
time using the Matsubara formalism. Within the BCS mean-
field theory, we obtain

Kμν(q,iωn) = 1

β

∑
k

∑
�m

Tr[∂μ∂νH(k)G(i�m,k)

+G(i�m,k)∂νH(k + q/2)γ z

×G(iωn + i�m,k + q)∂μH(k + q/2)γ z],

(10)

where ωn = 2πn/β, �m = 2π (m + 1/2)/β are bosonic and
fermionic Matsubara frequencies and ∂μ ≡ ∂kμ

is the derivative
with respect to the momentum kμ. For simplicity, the volume
(area in two dimensions) is taken to be 1. Here, γ z = τ z ⊗
IM×M and τ i are Pauli matrices acting in the particle-hole
space, and IM×M is the M by M identity matrix. Furthermore,

G(iωn,k) = 1

iωn − H(k)
=

2M∑
j=1

|ψj (k)〉〈ψj (k)|
iωn − Ej,k

, (11)

is the Green’s function and |ψj (k)〉 is the j th eigenvector
of the BdG Hamiltonian with eigenvalue Ej,k. Hereafter the k
dependence of quantities will be omitted with some exceptions.
Performing the Matsubara frequency summation and taking
the ω = 0, q → 0 limit, we get the superfluid weight

Ds
μν =

∑
k,i,j

n(Ej ) − n(Ei)

Ei − Ej

(〈ψi |∂μH|ψj 〉〈ψj |∂νH|ψi〉

− 〈ψi |∂μHγ z|ψj 〉〈ψj |γ z∂νH|ψi〉), (12)

where n(Ei) = 1/(eβEi + 1) is the Fermi-Dirac distribution
and the prefactor should be understood as −∂En(E) when
i = j or Ei and Ej are degenerate. The first term in the
parenthesis is the diamagnetic term and the second term is the
paramagnetic term. For a single-band system, it is well known
that the paramagnetic term vanishes at zero temperature, and
the nonzero diamagnetic term leads to the Meissner effect.
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However, for a multiband system, the paramagnetic term
remains finite even at zero temperature.

For our purposes it is convenient to write Eq. (12) in
terms of the matrix elements of the current operator. To
this end, we expand the BdG wave functions in terms of
the Bloch functions |m〉σ : |ψi〉 = ∑M

m=1 (w+,im|m〉↑ ⊗ |+〉 +
w−,im|m∗

−〉↓ ⊗ |−〉), where |m〉↑ is the eigenvector of H↑(k)
with eigenvalue ε↑,m,k, |m∗

−〉↓ is the eigenvector of H∗
↓(−k)

with eigenvalue ε↓,m,−k, and |±〉 is the eigenvector of τ z with
eigenvalue ±1. Since the order parameters and the chemical
potential are momentum independent, the derivative of the
BdG Hamiltonian can be written as ∂μH(k) = P+∂μH↑(k) −
P−∂μH∗

↓(−k). Here P+ (P−) is the projection operator onto the
particle (hole) space. Inserting these expressions into Eq. (12)
leads to

Ds
μν =

∑
k

∑
m,n,p,q

Cmn
pq [jμ,↑(k)]mn[jν,↓(−k)]qp, (13)

where

Cmn
pq = 2

∑
i,j

n(Ei) − n(Ej )

Ej − Ei

w∗
+,imw+,jnw

∗
−,jpw−,iq . (14)

The matrix element of the current operator is

[jμ,σ (k)]mn = σ 〈m|∂μHσ (k)|n〉σ
= ∂μεσ,mδmn + (εσ,m − εσ,n)σ 〈∂μm|n〉σ , (15)

where δmn is the Kronecker delta function. The diagonal matrix
elements of the current operator are given by the derivatives
of the band dispersions and are therefore zero in the flat-band
limit. Therefore we separate the superfluid weight into two
terms:

Ds
μν = Ds

conv,μν + Ds
geom,μν, (16)

where the geometric contribution Ds
geom,μν is defined as the

terms that depends only on the off-diagonal elements of the
current operator,

Ds
geom,μν =

∑
k

∑
m �= n

p �= q

Cmn
pq [jμ,↑(k)]mn[jν,↓(−k)]qp, (17)

and the terms containing diagonal elements of the current
operator are defined to be the conventional superfluid weight
Ds

conv,μν .
Our results, Eqs. (12)–(17), are quite general and can be

applied to various systems provided that the BCS approxima-
tion is good. Although our theory is developed for the simplest
intraorbital Hubbard interaction, it can straightforwardly be
generalized to inter-orbital interactions, in which case one
needs to consider interorbital pairings. Here, we focus on
the simplest Hubbard interaction, which admits simple mean-
field solutions. We will show that in the presence of extra
symmetries, Eq. (13) can be further simplified to the point
that the geometric contribution can be written solely in terms
of the quantum metric in the isolated band approximation. In
the following, we discuss two cases that can be applied to the
KMH model and HH model.

Naively one may think that in the isolated band limit the
only relevant terms in Eq. (12) are the ones involving only
the quasiparticle wave functions |ψi〉 adiabatically connected

to the isolated band when �α → 0. This is wrong since the
off-diagonal matrix elements of the current operator (15) scale
with the energy gap and for this reason the isolated flat-band
limit of Eq. (12) must be taken with care. We will show below
that all terms in Eq. (12) can provide a nonzero contribution
in the isolated flat-band limit and this leads precisely to the
geometric term of the superfluid weight. Moreover, in the case
of broken TRS, we will show that it is necessary to calculate
the quasiparticle eigenstates |ψi〉 adiabatically connected to
the isolated band up to first order in the order parameters �α ,
before taking the isolated band limit. This first-order correction
also generates off-diagonal matrix elements of the current
operator. Details are in Appendix B 2. We note that this is
an effect of interactions and such complications do not arise in
the noninteracting limit (U = �α = 0). The observation that
the isolated band limit of Eq. (12) is rather subtle is crucial
for the present work. A similar situation is encountered in
quantum Hall systems where it is found that the current oper-
ator is purely off-diagonal, namely, the matrix elements of the
current operator between states in the same Landau level are
vanishing [33].

A. Time-reversal symmetric and uniform pairing case

In the presence of TRS, the kinetic energy for spin-up
and spin-down particles are related: H↑(k) = H∗

↓(−k). We
further assume that the order parameter is uniform in orbital
space, namely, the matrix � = �IM×M is proportional to the
identity. In this case, we can choose a gauge such that �

is real. This is equivalent to the uniform pairing condition
introduced in Ref. [31]. As we mentioned before, the order
parameter should be determined self-consistently and whether
the uniform pairing ansatz is good or not depends on the
specific problem. However, the uniform pairing state already
captures a lot of interesting physical systems [20,31]. For the
KMH and HH models studied here, this assumption is fulfilled
because of inversion symmetry.

An important consequence of uniform pairing together
with time-reversal symmetry is the absence of interband
pairing. This means that when the diagonal blocks of the
BdG Hamiltonian in Eq. (7) are diagonalized by going
from orbital to band space, the off-diagonal blocks retain
their diagonal form. In fact, it is easy to see that the
off-diagonal blocks transform as �(k) = G†(k)�G(k) = �,
where G(k) is the unitary matrix that diagonalizes H↑(k)
and whose matrix elements are given by the Bloch func-
tions G(k)αm = 〈α|mk〉. Then the BdG Hamiltonian in band
space takes the simple form H(k) = ∑M

m=1[(εm − μ)τ z +
�τx] ⊗ |m〉〈m|. It is straightforward to write down the
eigenfunctions and the eigenvalues. The eigenvalues appear
in pairs: E±

m = ±Em = ±
√

(εm − μ)2 + �2. The correspond-
ing eigenfunctions are |ψ+

m 〉 = (um|+〉 + vm|−〉) ⊗ |m〉 and
|ψ−

m 〉 = (−vm|+〉 + um|−〉) ⊗ |m〉, where

um = 1√
2

√
1 + εm − μ

Em

,

vm = 1√
2

√
1 − εm − μ

Em

. (18)
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Substituting these into Eq. (12) and using the definitions (16)
and (17), we get

Ds
conv,μν =

∑
k,m

[
− β

2 cosh2 (βEm/2)
+ tanh (βEm/2)

Em

]

× �2

E2
m

∂μεm∂νεm (19)

and

Ds
geom,μν =

∑
k,m�=n

[
tanh (βEm/2)

Em

− tanh (βEn/2)

En

]

× �2(εn − εm)

εn + εm − 2μ
(〈∂μm|n〉〈n|∂νm〉 + H.c.).

(20)

The conventional term contains only diagonal elements of
the current operator ∝∂μεm and has exactly the same form
as the superfluid weight for a single-band system summed
over all bands. In the flat-band limit, the conventional term is
negligible. The geometric term comes from the off-diagonal
part of the current operator and depends on the derivatives of
Bloch wave functions. The geometric term is reduced to the
quantum metric in the isolated band limit and in two-band
systems, as will be shown below.

First, let us discuss the isolated band limit. Suppose the
chemical potential lies within an isolated band m̄, then we can
perform a large band gap expansion as done in Appendix B. At
zero order in the expansion in inverse powers of the band gap,
the superfluid weight is determined solely by the properties of
the isolated band and the geometric contribution takes a simple
form:

Ds
geom,μν = 2�2

∑
k

tanh (βEm̄/2)

Em̄

× [〈∂μm̄|(1 − |m̄〉〈m̄|)|∂νm̄〉 + H.c.]

= 2�2
∑

k

tanh (βEm̄/2)

Em̄

gm̄
μν, (21)

where gm̄
μν is the quantum metric that defines a distance in

Hilbert space,

ds2 ≡ 1 − |〈m̄(k)|m̄(k + dk)〉|2
= 1

2gm̄
μνdkμdkν + O(k3). (22)

The quantum metric can be expressed in a compact form as
the real part of the quantum geometric tensor Rm̄

μν :

Rm̄
μν = 2Tr[Pm̄∂μPm̄∂νPm̄], (23)

where Pm̄ = |m̄〉〈m̄| is the projection operator onto band m̄.
The quantum geometric tensor is gauge invariant since the
projection operator is gauge invariant. Our result can be
easily generalized to a set of degenerate isolated bands. In
that case, P is the projection operator onto those degenerate
bands.

The result, Eq. (21), is surprising because if we had started
from a single-band effective model, we would have obtained
only the conventional term. However, here we show that
the multiband effects can be written solely in terms of the

quantum metric of the isolated Bloch band. It is possible to
provide a general lower bound on the geometric contribution.
The quantum generic tensor Rμν = gμν + iBμν is positive
semidefinite [2]. It can be shown [14] that det gμν � |Bμν |2
and TrRμν = Trgμν � 2|Bμν |. For two-dimensional isotropic
systems, Ds

geom,xx = Ds
geom,yy ≡ Ds

geom and

Ds
geom � 2�2

∑
k

tanh (βEm̄/2)

Em̄

∣∣Bm̄
xy

∣∣. (24)

This bound can be straightforwardly generalized to three-
dimensional systems. It is worth mentioning that the quantum
metric can be nonzero even if the Berry curvature vanishes
[23]. Generally speaking, in a multiband (i.e., multiorbital)
system the Bloch wave functions at adjacent momenta cor-
respond to different linear combinations of the orbital states,
and thus the modulus of the overlap of Bloch wave functions
is less than unity, resulting in a nonzero quantum metric.

For two-band systems, the noninteracting Hamiltonian
can be written as H↑(k) = h0(k)I + h(k) · σ where σ i are
2 × 2 Pauli matrices and I is the identity matrix. The two
Bloch bands are denoted by |±〉 with the band energy ε± =
h0 ± |h|. The corresponding quasiparticle energies are E± =√

(ε± − μ)2 + �2. The geometric contribution, Eq. (20), can
be simplified as

Ds
geom,μν = 2�2

∑
k,s=±

tanh (βEs/2)

sEs

|h|
μ − h0

gμν. (25)

The quantum metric for the two bands is the same for the
two bands, gμν = ∂μĥ · ∂ν ĥ/2, while the Berry curvature is
B±,μν = ±ĥ · (∂μĥ × ∂ν ĥ)/2, where ĥ = h/|h| is a unit vector.
In the two band case the equality det gμν = B2

±,μν holds.
However, we emphasize that, even in this case, the quantum
metric can be nonzero even if the Berry curvature is zero.

As a direct application of Eq. (25), we study the superfluid
weight in superconducting graphene. The low-energy prop-
erties of graphene are governed by the Dirac equation. The
superconducting properties of Dirac particles are currently
a subject of theoretical and experimental investigations and
our theory might provide new insights in this problem. Using
Eqs. (19) and (25), we find for the superfluid weight of a
graphenelike material (see Appendix C for details)

Ds = 1

π

(√
�2 + μ2 + �2

|μ| ln
|μ| +

√
�2 + μ2

|�|
)

. (26)

The first term is the conventional contribution and the second
term is the geometric contribution. The same expression is
obtained in Ref. [34] using a different approach. The important
role of interband effects was also emphasised in Ref. [35]. Our
approach has the advantage of providing a simple derivation
and at the same time it reveals the deep connection with the
geometric properties of the manifold of Bloch states and allows
to obtain the bound in Eq. (24).

Before closing this section, it is worth mentioning that
Eqs. (19)–(21) are direct consequences of the simple wave
functions |ψ±

m 〉. In the Lieb lattice studied in Ref. [21],
the order parameters are orbital dependent, but the flat-band
states are supported only on two sublattices where the order
parameter is uniform by symmetry. Also in this more general
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case the result (21) in the isolated flat-band limit is valid, while
Eq. (20) is not.

B. Case with SU(2) spin and inversion symmetries

In this section, we consider the case with spin SU(2) sym-
metry, which includes, e.g., the HH model. The conventional
spin SU(2) rotational symmetry implies that H↑(k) = H↓(k).
We further assume that there is inversion symmetry so that
the Bloch Hamiltonians for opposite momenta are related
by a unitary transformation R, H↑(−k) = RH↑(k)R†, and
the order parameters are invariant under inversion. Suppose
|n(k)〉↑ is an eigenvector of H↑(k), then |n(−k)〉↑ = R|n(k)〉↑
is an eigenvector of H↑(−k), therefore the matrix elements
of the spin-down current operator and the spin-up current
operator are related as

[jν,↓(−k)]mn

= −↓〈m(−k)|∂νH↓(−k)|n(−k)〉↓
= −↑〈m(−k)|∂νH↑(−k)|n(−k)〉↑
= −↑〈m(k)|R†R∂νH↑(k)R†R|n(k)〉↑ = −[jν,↑(k)]mn .

(27)

Particle-hole symmetry of the BdG Hamiltonian and inversion
symmetry imply that for each k the BdG Hamiltonian has
eigenvalues which always appear in pairs with opposite
signs ±Ei,k. The eigenfunction for the positive energy +Ei,k
can be written as |ψ+

i 〉 = ∑
n uin|n〉 ⊗ |+〉 + vinR

∗|n∗〉 ⊗ |−〉
and the corresponding negative energy state is |ψ−

i 〉 =∑
n −v∗

in|n〉 ⊗ |+〉 + u∗
inR

∗|n∗〉 ⊗ |−〉. Using these expres-
sions, it is straightforward to write the superfluid weight in
terms of u, v, and the current operator.

To further investigate the geometric contribution of the
superfluid weight in systems without TRS, we study a two-
band model, i.e., the HH model in detail. We find that, in the
isolated band limit, Ds

geom is also related to the quantum metric
(see Appendix B 2),

Ds
geom,μν ≈ �2

∑
k

h2
z(E− + E0 − |h|)2

2E2
0E

3−
gμν, (28)

where E± =
√

(h0 − μ)2 + �2 + |h|2 ± 2|h|E0 are the en-
ergies of the higher (+) and lower (−) quasiparticle bands
and E0 =

√
(h0 − μ)2 + �2ĥ2

z is the gap between the two
branches (see Appendix B 2).

III. SUPERFLUID WEIGHT IN THE
KANE-MELE-HUBBARD AND HALDANE-HUBBARD

MODELS

In this section, we apply our theory to the attractive KMH
and HH models. The KMH model has TRS while the HH
model does not, corresponding to the two cases discussed in
Secs. II A and II B, respectively.

The interplay between band topology and Hubbard in-
teractions, both repulsive and attractive, has been studied
extensively and various phases have been predicted [36–52].
Investigation of possible exotic phases goes beyond the scope
of this work. Instead, we focus on the attractive interaction and
search for the simplest BCS mean-field solutions.

FIG. 3. A patch of the Haldane/Kane-Mele model. The models
consist of a honeycomb lattice with nearest- and next-nearest-
neighbour (NNN) hoppings. Here, e1,e2 are primitive vectors of
the honeycomb lattice while ex,ey are an orthogonal basis. Black
and white dots are A and B sublattice sites. The arrows show the
direction of positive phase winding for the complex NNN hoppings
for the spin up fermions. The rectangle shows the 32-site cluster used
in exact diagonalization. This cluster has C6 symmetry.

We write the Hamiltonian as

H = Hkin,↑ + Hkin,↓ + Hint − μN. (29)

For the HH model, Hkin,↑ = Hkin,↓, while for the KMH model,
Hkin,↑ and Hkin,↓ are related by TRS. The kinetic energy is

Hkin,σ = −t
∑
〈i,j〉

c
†
iσ cjσ − t ′

∑
〈〈i,j〉〉

eiφσ
ij c

†
iσ cjσ , (30)

where c
†
iσ (ciσ ) creates (annihilates) a spin-σ fermion on site i.

Here, 〈ij 〉 and 〈〈ij 〉〉 denote the nearest and next-to-nearest
bonds on the honeycomb lattice. The directed phase φσ

ij

represents the magnetic fields felt by spin-σ fermions, see
Fig. 3. In the HH model, the complex hoppings are the same
for spin-up and spin-down particles while they are complex
conjugates (φ↑

ij = −φ
↓
ij ) in the KMH model.

The parameters t , t ′, and φij can be tuned in cold atom
experiments [27]. In this paper, we take t = 1 as the energy unit
and set cos(φ) = t/(4t ′) = 3

√
3/43. Under these parameters,

the lower band (n < 1) is quasiflat with large flatness ratio and
the upper band (n > 1) is strongly dispersive [11], see Fig. 1.
This allows us to study the flat-band limit as well as a dispersive
band by tuning the filling. The on-site energy difference is set to
be zero, so there is inversion symmetry, with R = σx , meaning
that the Hamiltonian is invariant under the interchange of
A and B sublattices (black and white dots in Fig. 3). The
Hamiltonians have sixfold rotational symmetry that can be
used to simplify computations. Using this symmetry, we show
in Appendix D that the superfluid weight tensor is proportional
to the identity, Ds

μν = Dsδμν . This property is also checked
numerically. We decouple the attractive Hubbard interaction
as in Eq. (6) and the orbital index α = A and B denotes the
sublattice. We search for mean-field solutions that preserve the
inversion symmetry, i.e., �A = �B .
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A. Validity of the BCS approximation

Our theory of superfluid weight is based on the BCS
approximation, so before calculating the superfluid weight,
we first discuss the validity of this approximation. For a flat
band with TRS, it has been shown [31] that in the isolated
flat-band limit, the BCS wave function is an exact ground state
provided that the uniform pairing condition is satisfied. For
the KMH model, this condition means

nα = Vc

(2π )2

∫
B.Z.

dk |〈α|m(k)〉|2 = 1

2
, (31)

where Vc is the volume of the unit cell, |m(k)〉 is the
Bloch function, and |α〉 the wave function corresponding
to a lattice site. For the KMH and HH models Eq. (31)
is a result of inversion symmetry. For the dispersive band,
because of the existence of the well-defined Fermi surface,
the BCS approximation is reliable in the weak-coupling limit,
as the BCS instability is an intrinsic instability of a Fermi
liquid [53].

The validity of the BCS wave function in the U → ∞
limit has been investigated at both zero [54] and finite [55]
temperatures in the study of the BCS-BEC crossover [56]. Here
we shall argue that, by mapping the Hubbard model to effective
spin models [57], the BCS approximation is good in the strong-
coupling limit for our systems. The starting point is the atomic
limit, where each site is empty |0〉 or doubly occupied c

†
↑c

†
↓|0〉.

These two states form an SU (2) representation and can be
viewed as a local “spin.” Turning on a weak tunneling tσij ,
we can project the hopping terms to the local spin degrees
of freedom and get an effective spin Hamiltonian. Up to the
second order, it reads

Heff = −
∑
i,j

2t
↑
ij t

↓
ij

U
T +

i T −
j + H.c.

+
∑
i,j

2(|t↑ij |2 + |t↓ij |2)

U
T z

i T z
j − μ

∑
i

T z
i , (32)

where T +
i = c

†
i↑c

†
i↓, T −

i = ci↓ci↑, and T z
i = (ni↑ + ni↓ −

1)/2. The chemical potential becomes the magnetic field
and the magnetization 〈T z

i 〉 is determined by the filling.
Treating the pseudo-spin as a classical vector, that is, 〈T z

i 〉 =
(n − 1)/2 and 〈T +

i 〉〈T −
i 〉 + 〈T z

i 〉2 = 1/4, we find 〈T +
i 〉 =

〈T −
i 〉 = √

2n − n2/2. The order parameter in the large U

limit calculated using the original Hubbard model is � =
U 〈T +

i 〉 = U
√

2n − n2/2, which coincides with the classical
spin approximation. Thus the BCS theory in the large U limit is
the classical approximation of the effective spin model, which
should be good when the frustration is weak [58]. For our
models, fluctuations are mainly induced by the t ′ terms: if t ′
vanishes, the effective model becomes the antiferromagnetic
Heisenberg model on the honeycomb lattice and the classical
approximation is good for this model [59]. For the parameters
studied in this paper, t ′2/t2 ≈ 0.1 is small, so we expect the
BCS approximation to be good in the large U limit. It is
possible that the classical approximation breaks down for other
choices of the parameters, but this is beyond the scope of this
paper.

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

U/t

∆
/U

n=0.5 (MF)
n=0.5 (DMFT)
n=1.5 (MF)
n=1.5 (DMFT)
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FIG. 4. Order parameters as functions of U for different fillings
obtained with mean-field BCS theory and DMFT at temperature
T = 0.1t . (a) KMH model. (b) HH model. DMFT captures the
local fluctuations and therefore predicts higher critical values of the
interaction. Away from the phase transition, the agreement between
the BCS and DMFT confirms the validity of the BCS approximation.

To further confirm the validity of the mean-field theory,
we employ DMFT to calculate the order parameters, see
Appendix E. In Fig. 4, we plot the order parameters as
functions of the interaction strength U for fillings chosen
to coincide with the middle point of the flat band and the
dispersive band, in the noninteracting limit. Because of the
finite temperature T = 0.1t , there is a critical interaction
strength U below which the superfluid is destroyed by thermal
fluctuations. The local quantum and thermal fluctuations
included in DMFT increase the critical U compared to the
BCS results. However, away from the phase transition, the BCS
results agree well with DMFT signaling that local fluctuations
do not play an important role deep within the ordered state.

As the DMFT might be biased by the choice of order
parameters and the lack of long-range correlation effects, we
also apply the unbiased ED method to calculate the Drude
weight, which is equivalent to the superfluid weight in the bulk
limit for a gapped system [32]. ED is performed on a 32-site
cluster, which preserves the C6 rotational symmetry. Since the
cluster is large, we can only calculate at fillings n = 1/8 and
15/8, corresponding to the bottom of the flat band and the top
of the dispersive band, respectively. As shown in Fig. 2, the
Drude weight obtained from ED is in quantitative agreement
with the mean-field superfluid weight.

B. Superfluid weight

1. Zero-temperature results

Figure 2 presents our main results for the zero-temperature
superfluid weight. An important feature shown in Figs. 2(a)
and 2(c) is that, although the lower band is not strictly flat,
resulting in a finite conventional contribution in the noninter-
acting limit, the geometric contribution is still important: it
is comparable to, or even larger than the conventional one.
For weak interactions, the geometric contribution increases
linearly with U , and reaches a maximum around U/t = 4.
By contrast, the conventional contribution first decreases as
U becomes larger than the bandwidth, then increases as U

becomes large enough to induce pairing in the other band,
and finally decreases again with increasing U . Together these
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FIG. 5. Finite-temperature superfluid weight for the KMH model
[(a)–(d)] and the HH model [(e)–(h)] at different fillings. The tem-
perature is T = 0.1t . Different from the zero-temperature case, both
the flat and dispersive bands supefluid weight show nonmonotonic
behavior. However, a remarkable similarity between the finite and
zero-temperature cases is that, the geometric contribution is important
for the flat bands. Away from the phase transition, the mean-field
results agree well with DMFT results.

effects produce the peculiar nonmonotonic behavior of the
total superfluid weight. For the dispersive bands [Figs. 2(b)
and 2(d)], the conventional contribution dominates and, as
a result, the superfluid weight is roughly constant for weak
interactions and decreases monotonically with increasing U .

Figure 2 also shows that Ds from mean-field theory is
in quantitative agreement with the ED results, which further
confirms the validity of our theory. To limit the basis size of the
ED calculation on the 32-site cluster, we use very low and high
filling fractions. However, we emphasize that the qualitative
behavior of the superfluid weight depends only on whether the
band is flat or not. To confirm this, we also compare mean-field
results to ED on smaller clusters at fillings 1/3 and 5/3 in
Appendix F, and find good agreement also in those cases.

2. Finite-temperature results

In Fig. 5, we plot the finite-temperature superfluid weight
as a function of the interaction. The DMFT results are obtained
by calculating the system’s current response to a small vector
potential, see Appendix E for details. Away from the phase
transition DMFT agrees well with the mean-field results. The
slightly differing results in Figs. 5(c) and 5(g) can be explained
by noting that, in addition to the phase transition visible in the
figures, the DMFT solution also exhibits an upper critical U ,
which is relatively low for very low filling fractions.

Below the critical interaction, the superfluid vanishes as
expected and it grows rapidly as the interaction strength
exceeds the critical value and then decreases after reaching a
maximum. The total superfluid weight shows a nonmonotonic
behavior for the flat as well as the dispersive bands. However,
as shown in Fig. 5, the geometric contribution is important
for the flat band, while for the dispersive band, the superfluid
weight comes mainly from the conventional contribution.

To conclude this section, our mean-field theory is in
good agreement with the state of the art DMFT and ED.
The advantage of the mean-field theory is that it provides
important understanding of the superfluid weight in terms of
the conventional and geometric contributions. We find that the
geometric contribution is large and dominant or comparable to
the conventional one for the flat band, while for the dispersive
band the conventional contribution dominates. Therefore the
concept of geometric contribution is important for a proper
understanding of the superfluid properties of a (quasi)flat band.

C. Mean-field transition temperature and
Berezinskii-Kosterlitz-Thouless temperature

Finally, we discuss the superfluid transition temperature
in these models. The dashed lines in Fig. 6 show the BCS
mean-field transition temperature TBCS as a function of U for
the flat and dispersive bands. In the weak-coupling limit, TBCS

for the flat band is proportional to the interaction strength,
while for the dispersive band, it is exponentially small, which
are consistent with previous theoretical predictions [16–18]. In
the strong-coupling limit, the binding energy of Cooper pairs
scales as U , and therefore the mean-field critical temperature
also scales as U in the strong-coupling limit.

The superfluid weight gives the phase coherence energy
scale and, in two dimensions, determines the Berezinskii-
Kosterlitz-Thouless (BKT) temperature [60,61] via the uni-
versal relation TBKT = πDs(TBKT)/8. We use the mean-field
Ds to determine the BKT temperature, see the solid lines
in Fig. 6. The BKT temperature, which is smaller than the
mean-field transition temperature, gives the superfluid critical
temperature. Different from TBCS, the BKT temperature TBKT

increases with U for weak interactions until it reaches a
maximum and then decreases when U increases further. The
nonmonotonic behavior of TBKT is a reflection of the BCS-BEC
crossover.

For the KMH and HH models studied in this paper, the
dispersive band has a higher transition temperature than the
flat band for intermediate and strong interactions, and TBKT

is maximized around U/t ≈ 4. This is not surprising since
the dispersive band has larger superfluid weight than the flat
band. However, in the weak-coupling limit, the flat band has a
higher critical temperature. In fact, one can see from the inserts
in Fig. 6 that in the weak-coupling limit, TBKT behaves like
TBCS. For the flat band, it increases linearly with U , while for
the dispersive band it is exponentially small. At the first sight,
this may be surprising. Since the dispersive band has higher
surperfluid density, one may expect that it also has higher
transition temperature. This is indeed true for intermediate
and strong interactions where the BCS temperature is high, but
for weak interactions the BCS temperature of the dispersive
band is much lower than that of the flat band. Therefore
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FIG. 6. The mean-field transition temperature TBCS and BKT temperature TBKT for the KMH (a) and HH (b) models. In the weak-coupling
limit, TBCS ∝ U for the flat band (n < 1, blue) while it is exponentially small for the dispersive band (n > 1, red). In the strong-coupling limit,
TBCS ∝ U . The BKT temperature is nonmonotonic. In the weak-coupling limit, it behaves the same as TBCS and in the strong-coupling limit it
decreases with increasing U . The superfluid transition temperature is determined by TBKT, and it is clearly shown that the flat band has a much
higher transition temperature in the weak-coupling limit.

the superfluid weight for the dispersive band decays much
faster with increasing temperature, resulting in a lower BKT
temperature. This is visible also in Fig. 5 where the critical
interactions for the flat bands are lower.

Our results confirm that flat bands indeed provide a way to
improve the superfluid transition temperature in the weak to
intermediate-coupling regime. This is particularly important
for real materials where the effective attractive interaction
between electrons is expected to span this range of-couplings.

IV. CONCLUSION AND OUTLOOK

In this work, we investigate the superfluid properties of
generic attractive Hubbard models defined on a lattice with
complex orbital structure. We focus on the effects due to
the multiband (multiorbital) nature of the system that are not
present in a single-band lattice model, i.e., a model defined on
a simple Bravais lattice. Our work is based on linear response
theory which provides a convenient framework for calculating
the superfluid weight and the foundation for addressing the
superfluid properties of realistic systems. This approach is
equivalent to the one used in Ref. [20] based on thermodynamic
potentials, but has several advantages.

In the mean-field BCS approximation, we obtain the general
result for the superfluid weight given in Eq. (12) expressed
in terms of the BdG Hamiltonian H and the corresponding
eigenstates |ψi〉 and eigenvalues Ei . Our essential finding is
that even those quasiparticle states that are not adiabatically
connected in the noninteracting limit to the isolated partially
filled band of interest can provide an important contribution to
the superfluid weight in the isolated band limit, i.e., the limit
where the band gap diverges. This contribution is crucial for
understanding the transport properties of (quasi)flat bands.

Linear response theory explains the cause behind this
counterintuitive phenomenon in terms of the off-diagonal
(interband) matrix elements of the current operator [Eq. (15)]
that are proportional to the band gap and therefore can be quite
large in general. We also find that in the case of TRS breaking it
is necessary to include band mixing in the quasiparticle states
to obtain the correct result for the superfluid weight in the

isolated band limit, while band mixing is absent in the case of
TRS and uniform pairing.

The multiband effects on the superfluid properties that we
find are interaction effects, since in the noninteracting limit
all terms with off-diagonal matrix elements of the current
operator disappear. Remarkably, the interband effects in the
isolated band limit can be expressed solely in terms of the
properties of the isolated band. Specifically, we find that they
lead to a contibution proportional to the quantum metric, a
band structure invariant obtained from the Bloch functions,
both in the case with TRS and without TRS. We call this the
geometric contribution to the superfluid weight.

With respect to Ref. [20], we extend the general result
in the TRS case to an isolated but not necessarily flat band,
Eq. (1), and provide a relation between superfluid weight and
Berry curvature, Eq. (2), that is useful even in the case of a
band with zero Chern number and is therefore of more general
applicability. We emphasize that it is the nontrivial geometry
rather than the nontrivial topology that affects the superfluid
weight.

A physical interpretation of the connection between the
superfluidity and geometry has started to emerge recently, at
least in the TRS case [31]. It can be traced back to the fact that
the Hubbard interaction produces pair-hopping terms between
overlapping Wannier functions, and these hopping processes
provide the kinetic energy to the Cooper pairs even if the band
is perfectly flat and the kinetic energy is zero for unpaired
particles. The quantum metric enters precisely as a measure
of the overlap between the Wannier functions. More work is
need to understand the case without TRS.

The quantum metric also appears in the orbital magnetic
susceptibility [22,23], which, like the superfluid weight, is
a response of an electron system to an external magnetic
field. The role played by quantum geometry in these response
functions is an interesting topic for further study.

As an application of our theory we study the superfluid
weight in the attractive KMH and HH models, confirming our
BCS mean-field results using state of the art DMFT and ED
methods. We focus on a specific set of hopping parameters
such that both the case of a quasiflat and a highly dispersive
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band can be studied by tuning the filling in the same models.
For the flat band, the geometric contribution to the superfluid
weight is important at both zero and finite temperature. Using
our results for the superfluid weight, we calculate the BKT
temperature and find that the flat band, indeed, has higher
transition temperature in the weak-coupling limit. Our results
could also be of immediate experimental interest, as the
Haldane-Hubbard model has recently been realized in cold
atomic gases experiments [27,28], and a realization of the
Kane-Mele-Hubbard model has also been proposed [27]. In
these experiments, the tunable atom-atom interaction would
provide an ideal platform for studying the interplay of Bloch
band geometry and superfluidity.

A very interesting topic for further research is the relevance
of ours findings in the context of solid state systems. We have
pointed out that the interplay of complex lattice geometry,
band structure and interaction can produce qualitatively new
effects on the superfluid properties that cannot be captured
by single-band Hamiltonians such as a Hubbard model on a
square lattice. As shown in Fig. 6, a flat band can significantly
enhance the critical transition temperature in the range from
weak to intermediate interactions, 0 � U � 1.5t in our case,
with respect to a dispersive band. Thus flat bands or quasiflat
bands may be at the root of high-Tc superconductivity, since
most unconventional superconductors are characterized by
complex orbital structure and are in a interaction regime
where the geometric term should be important. In contrast,
in conventional superconductors driven by weak electron-
phonon coupling the geometric term, if present, is likely to be
overshadowed for very small values of U by the conventional
one, both in the case of a dispersive band or in a quasiflat band,
as seen in Figs. 2 and 10.

The superfluid weight, which is related to the magnetic
penetration depth, is a powerful probe of the microscopic
properties of carriers of the supercurrent and is currently
being intensively investigated in high-Tc superconductors
[62]. Note that the results of these recent experiments are
interpreted in the framework of BCS theory but only ac-
counting for the conventional contribution to the superfluid
weight and neglecting the geometric contribution which may
be large. Further work is necessary in order to assess the
importance of the geometric term in unconventional high-Tc

superconductors.
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APPENDIX A: EQUIVALENCE OF THE SUPERFLUID
WEIGHT DEFINED THROUGH THERMODYNAMIC

POTENTIAL AND LINEAR RESPONSE THEORY

In this appendix, we show that the definition of the
superfluid weight used in Ref. [20] is equivalent to the one
used in the present work. Following Ref. [32], we define
the superfluid weight through the static Meissner effect.
The order of qx → 0 and qy → 0 does not affect the one-loop
result [32], so Ds

μν = Kμν(q → 0,iω = 0). In Ref. [20], the
superfluid weight is defined as the second order derivative of
the free energy with respect to a vanishing constant phase
q of the order parameter. Here, q is nothing but a constant
vector potential A. The free energy is F (A) = −β−1 ln Z(A),
with the partition function Z(A) = Tr exp {−βH (A)}. It is
enough to expand H (A) to the second order of A, H (A) ≈
H + j

p
μAμ + TμνAμAν/2. Taking the second-order derivative

of the free energy with respect to A, we get, Ds
μν = 〈Tμν〉 −∫ β

0 dτ 〈jμ(τ )jν(0)〉 = Kμν(q → 0,iω = 0).
We briefly discuss the relation between the superfluid

weight and the phase stiffness. Phase fluctuations are intro-
duced to the order parameter as �(r) = �e2iφ(r). A factor
of 2 is introduced because the Cooper pair carries twice
the charge of the fermion. To get an effective theory for
the phase fluctuations, we perform a local U(1) transforma-
tion c†(r) → c†(r)e−iφ(r). The phase then enters the kinetic
energy, i.e., tij → tij e

−i[φ(ri )−φ(rj )], and it is clear that the
phase fluctuations can be absorbed into the gauge field. For
long-wavelength fluctuations, we can perform the gradient
expansion φ(ri) − φ(rj ) ≈ (ri − rj )∂rφ(r). Integrating over
fermions, the effective action for the phase fluctuations in the
long-wavelength limit is

Seff[θ ] =
∫

dr
∫

dτ
1

8
Ds

μν∂μθ∂νθ, (A1)

where we have defined θ = 2φ such that the periodicity of
the variable θ is 2π . Assuming that the superfluid weight
is proportional to the identity (see Appendix D), Eq. (A1)
becomes a classical XY model. In two dimensions, the XY
model has a finite-temperature BKT transition and the critical
temperature is given by the universal relation [60,61] TBKT =
πDs(TBKT)/8.

APPENDIX B: DERIVATION OF THE ISOLATED BAND
LIMIT OF THE SUPERFLUID WEIGHT

1. Derivation of Eq. (21)

Suppose the band m̄ is the isolated band we are interested
in, that is to say, the chemical potential μ lies within εm̄ and the
other bands are far away from m̄. Without loss of generality,
we take m̄ to be the lowest band and write the dispersions
of other bands as εn = Wn + εm̄, where the band gaps Wn

are positive and Wn >> |εm̄ − μ|,|�|. Now we can perform
a large Wn expansion to simplify the superfluid weight. It is
easy to verify that for the conventional superfluid weight, the
contribution from band n �= m̄ is of order 1/W 3

n and thus can be
neglected.
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The geometric contribution containing the isolated band is

Ds
geom,μν

= 2�2
∑

k,m�=m̄

[
tanh (βEm̄/2)

Em̄

− tanh (βEm/2)

Em

]

× Wm

Wm + 2εm̄ − 2μ
(〈∂μm̄|m〉〈m|∂νm̄〉 + H.c.)

≈ 2�2
∑

k

tanh (βEm̄/2)

Em̄

gm̄
μν

− 2�2
∑

k,m�=m̄

1

Wm

[
1 + 2

εm̄ − μ

Em̄

tanh (βEm̄/2)

]

× (〈∂μm̄|m〉〈m|∂νm̄〉 + H.c.). (B1)

We have used the approximation tanh (βEm/2)/Em ≈ 1/Wm

and the correction to this approximation is of order 1/W 2
m. For

the strictly flat band, εm̄ = μ, the 1/Wm correction in Eq. (B1)
is negative.

The remaining terms are (m,n �= m̄)

�2
∑

k,m�=n

[
tanh (βEm/2)

Em

− tanh (βEn/2)

En

]

× εn − εm

εm − εn − 2μ
(〈∂μm|n〉〈n|∂νm〉 + H.c.).

≈ �2
∑

k,m�=n

[
1

Wn

− 1

Wm

]
(Wm − Wn)

Wm + Wn + 2εn̄ − 2μ

×(〈∂μn|m〉〈m|∂νn〉 + H.c.), (B2)

which are at least of order 1/Wn. If all the gaps are of the same
order, i.e., Wn ∼ W and |Wm − Wn| << W , then Eq. (B2) is
of order 1/W 3. Therefore, in this case, Eq. (B1) is exact up to
order 1/Wm, which is negative for the strictly flat band. Thus
the lowest-order result, Eq. (21) in the main text, is actually an
upper bound of the geometric superfluid weight.

2. Derivation of Eq. (28)

Here, we present a derivation of the geometric superfluid
weight in the HH model and show that it is also related to the
quantum metric in the isolated band limit. The BCS mean-field
Hamiltonian for the HH model is HMF = ∑

k 	
†
kH(k)	k. The

Nambu field is 	k = (cAk↑,cBk↑,c
†
A−k↓,c

†
B−k↓)T and the BdG

Hamiltonian reads

H(k) =
[
H↑(k) − μ �

� −H∗
↑(−k) + μ

]
, (B3)

where H↑(k) = h0(k)I + h(k) · σ is the Bloch Hamiltonian
with the eigenvalues εd (k) = h0(k) − |h(k)| and εu(k) =
h0(k) + |h(k)|. The corresponding eigenvectors can be con-
structed as

|dk〉 = P−|A〉√
(1 − ĥz)/2

, |uk〉 = P+|A〉√
(1 + ĥz)/2

, (B4)

with P± = [1 ± ĥ(k)σ ]/2 is the projection operator and |α =
A〉 is a reference state chosen arbitrarily. In the presence
of inversion symmetry, one has εd/u(k) = εd/u(−k) and

� = �I . It is convenient to choose |A〉 = (1,0)T , and then
−|d−k〉 = R|dk〉 and |u−k〉 = R|uk〉 with R = ei arg (hx−ihy )σx

is a representation of the inversion symmetry. The BdG
Hamiltonian in the bases |dk〉|+〉, −|d∗

−k〉|−〉, |uk〉|+〉 and
|u∗

−k〉|−〉 can be written as

H(k) = (h0 − μ)I ⊗ τ z − |h|sz ⊗ τ z

−�intras
z ⊗ τ x − �inters

x ⊗ τ x, (B5)

with �intra = �

√
1 − ĥ2

z is the intraband pairing and �inter =
�ĥz is the interband pairing. The Pauli matrix si acts
in the two-dimensional space spanned by |dk〉 (−|d∗

−k〉)
and |uk〉 (|u∗

−k〉) and τ i acts in particle-hole space. Note
that γ = iI ⊗ τ y anticommutes with H, while it commutes
with H2 = (h0 − μ)2 + �2 + |h|2 + 2|h|E0P , where E0 =√

(h0 − μ)2 + �2ĥ2
z , and

P = −[(h0 − μ)sz ⊗ I + �ĥzs
y ⊗ τ y]/E0, (B6)

whose eigenvalues are ±1. Now it is clear that the eigenvalues
of the BdG Hamiltonian are ±Ed and ±Eu, where

Ed =
√

(h0 − μ)2 + �2 + |h|2 − 2|h|E0 (B7)

and

Eu =
√

(h0 − μ)2 + �2 + |h|2 + 2|h|E0. (B8)

Using the projection operators,

P +
d = 1

4

(
1 + H(k)

E−

)(
1 − P

)
(B9)

and

P +
u = 1

4

(
1 + H(k)

E+

)(
1 + P

)
, (B10)

the eigenvectors corresponding to Ed and Eu can be con-
structed as

|ψ+
d 〉 = 1

Nd

P +
d |A〉|+〉,|ψ+

u 〉 = 1

Nu

P +
u |A〉|+〉, (B11)

where the normalization factors are Nd =
√

〈+|〈A|P +
d |A〉|+〉

and Nu =
√

〈+|〈A|P +
u |A〉|+〉. Explicitly,

|ψ+
s 〉 =

∑
t=u,d

(ust |tk〉|+〉 + vst |t∗−k〉|−〉). (B12)

The eigenvectors corresponding to the negative eigenvalues
are |ψ−

d 〉 = γ |ψ+
d 〉 and |ψ−

u 〉 = γ |ψ+
u 〉.

The superfluid weight can be calculated directly after
obtaining the BdG wave functions. We are interested in the
geometric contribution at zero temperature, given by

Ds
geom,μν =

∑
k

s = u,d

Cs
1

8|h|2
Es

gμν −
∑

k
s = u,d

Cs
2

16|h|2
Es

∂μĥz∂νĥz

1 − ĥ2
z

+
∑

k

32|h|2
Ed + Eu

[
C3gμν − C4

∂μĥz∂νĥz

1 − ĥ2
z

]
.

(B13)

The coefficients are Cs
1 = (usdvsu + usuvsd )2, Cs

2 =
usdvsdusuvsu, C3 = (uddvuu + uduvud )(uuuvdd + uudvdu),
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FIG. 7. Geometric contribution of the superfluid weight in the
Haldane-Hubbard model. The red solid curves are the exact results
(in the mean-field sense) obtained using Eq. (B13). The blue dash
curves are obtained using Eq. (B15), which is valid in the isolated
band limit. Red and blue curves are in good agreement for weak
couplings.

and C4 = (uddvuuuuuvdd + uduvuduudvdu). We observe that
ulh and uhl are smaller than the other coefficients because the
bands |u〉|+〉 and |d〉|+〉 are decoupled up to first order in �.
As a result, the terms containing udu or uud can be dropped in
the isolated band limit and Eq. (B13) can be simplified as

Ds
geom,μν

≈ �2
∑

k

|h|(1 − ĥ2
z

)
(E0 + h0)2

2E3
0Ed

[
gμν − ∂μĥz∂νĥz

1 − ĥ2
z

]

+�2
∑

k

h2
z(Ed + E0 − |h|)2

2E2
0E

3
d

gμν. (B14)

The second term in the right-hand side comes from the
interband pairing and is related to the quantum metric. This
kind of contribution is absent in systems with TRS and uniform
pairing since there is no band mixing in the quasiparticle
states. In order to recover, this term it is necessary to calculate
the quasiparticle states |ψ±

s 〉 adiabatically connected to the
isolated band up to first order in � before taking the isolated
band limit. The first term in Eq. (B14) comes from intraband
pairing, and has the same origin as in the time-reversal
symmetric systems. However, TRS breaking induces an extra
term ∝ − ∂μĥz∂νĥz/(1 − ĥ2

z) that cancels the contribution of
the quantum metric. Because of the cancellation, this term is
small in TRS breaking systems, and therefore Eq. (B14) can
be further simplified as

Ds
geom,μν ≈ �2

∑
k

h2
z(Ed + E0 − |h|)2

2E2
0E

3
d

gμν. (B15)

In Fig. 7, we compare the approximation, Eq. (B15) to the exact
mean-field result, Eq. (B13). They are in qualitative agreement
for weak couplings where the isolated band approximation is
good. For strong couplings, Eq. (B15) also gives qualitatively
the correct behavior.

APPENDIX C: SUPERFLUID WEIGHT
IN SUPERCONDUCTING GRAPHENE

In this appendix, we apply Eqs. (19) and (25) to super-
conducting graphene. The low energy properties of graphene
are well described by the two Dirac points in the Brillouin
zone. The two Dirac points are related by the inversion
symmetry, so it is enough to consider one and then multiply
the result by a factor of 2. Near one Dirac point, the
low-energy effective Hamiltonian can be written as H↑(k) =
vf kxσ

x + vf kyσ
y − μI , where vf is the Fermi velocity. The

energy spectrum is ε± = ±vf k − μ and the corresponding
BdG excitation is E± =

√
ε2
± + �2. The quantum metric is

gμν = (k2δμν − kμkν)/(2k4). Substituting these into Eqs. (19)
and (25) and using the fact that Ds

xx = Ds
yy ≡ Ds and Ds

xy = 0,
we find the superfluid weight at zero temperature,

Ds
conv = 2

1

2

∑
s=±

∫
kdkdθ

(2π )2

�2

E3
s

[(∂xεs)
2 + (∂yεs)

2]

= 1

π

√
μ2 + �2, (C1)

Ds
geom = 2

1

2

∑
s=±

∫
kdkdθ

(2π )2

s�2vf k

μEs

(gxx + gyy)

= 1

π

�2

|μ| ln
|μ| +

√
�2 + μ2

|�| . (C2)

The factor of 2 counts the two Dirac points. The total superfluid
weight is

Ds = Ds
conv + Ds

geom

= 1

π

(√
�2 + μ2 + �2

|μ| ln
|μ| +

√
�2 + μ2

|�|
)

,

(C3)

which coincides with Eq. (32) in Ref. [34]. Note that to
compare with our result, the phase factor k in Eq. (32) in
Ref. [34] should be rescaled by a factor of 2, see Eq. (7) in the
cited article.

APPENDIX D: SUPERFLUID WEIGHT IN A SYSTEM
WITH C6 SYMMETRY

In this appendix we prove that for a system with C6

symmetry, the superfluid weight in an orthogonal basis
is diagonal and proportional to the identity. Suppose the
superfluid weight in a nonorthogonal primitive basis {e1,e2}
(see Fig. 3) is Ds

n = (
Ds

11 Ds
12

Ds
21 Ds

22
). Notice that the superfluid

weight is a symmetric tensor, i.e., Ds
12 = Ds

21. Because of
the C6 symmetry, Ds

n is invariant under π/3 rotation. This can
be viewed as a basis transformation and the basis after and
before the π/3 rotation is related by a matrix A = (0 −1

1 1 ).

Invariance under rotation means that Ds
n = AT Ds

nA [63]. This
gives Ds

11 = Ds
22 = 2Ds

12. In the orthogonal basis {ex,ey},
the superfluid weight is Ds

o = (
Ds

xx Ds
xy

Ds
yx Ds

yy
). Similarly, Ds

n and

Ds
o are related by a basis transformation, Ds

n = BT Ds
oB
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with B = (
1 cos π/3
0 sin π/3). We then find Ds

xx = Ds
yy = Ds

11 and

Ds
xy = Ds

yx = 0.

APPENDIX E: ORDER PARAMETER AND SUPERFLUID
WEIGHT FROM DMFT

In this appendix, we provide some details and further
results from our DMFT [64,65] calculations. In this work, we
have used single-site DMFT to determine the superconducting
order parameter � and the superfluid weight Ds . Because
the unit cell of the hexagonal lattice includes two lattice
sites, we get two single-site impurity problems that are
solved independently. For weak and intermediate interactions
(U � 8), we use a continuous-time interaction-expansion (CT-
INT) impurity solver [66,67] and for larger U , we resort to
exact diagonalization [64,68] in solving the impurity problem.

We evaluate the superfluid density in a straightforward
manner by adding a small constant (in time and space)
vector potential Aν to the model. This modifies the hopping
amplitudes by multiplying them with a Peierls phase factor
tij → e−iA·(rj −ri )tij . We then calculate the current as a function
of Aν and determine the superfluid weight from the linear
response formula 〈jμ〉 = DμνAν for small Aν .

Note that this procedure may seem contradictory, as a con-
stant vector potential is gauge equivalent to a vanishing one,
and thus should produce no current. In an exact calculation this
is indeed true, provided that the vector potential is consistent
with the periodic boundary conditions of the problem, i.e.,
A · L = 2πn, where L is a period of the lattice. For DMFT
or mean-field theory, however, the single-unit-cell calculation
implicitly imposes the constraint that the order parameter field
� = 〈ci↑ci↓〉 is uniform in space, which effectively breaks the
gauge symmetry. Perhaps the easiest way to understand this is
to perform a gauge transformation

c′
iσ = exp(iA · ri)ciσ . (E1)

In the primed variables, the Hamiltonian does not have any
Peierls phases, but the order parameter gains a position
dependent phase twist,

�′
i = 〈c′

i↑c′
i↓〉 = exp(2iA · ri)�. (E2)

Thus we can see that we are in fact calculating the current
response of the system to a phase twist of the order parameter.
This is equivalent to the phase stiffness definition of the
superfluid weight discussed in Appendix A, as the current is
the first derivative of the free energy. In this way, it is also easy
to understand why the BCS mean-field calculation produces
the same result for longitudinal and transverse gauge fields, as
discussed in reference [32] for example.

This procedure should also be applicable to cluster DMFT
without the need to calculate two-body correlation functions.
However, it can only be applied in the phase where the gauge
symmetry of the model is broken by a finite superconducting
order parameter �. In the symmetric case, it is necessary to
perform a more careful analysis of the self-energy [69].

The expectation value of the current operator, or indeed any
single particle operator O = ∑

ij Mij c
†
i cj , can be evaluated

using the DMFT self-energy once the iteration has converged.
In principle, the expectation value can be expressed in terms

FIG. 8. DMFT results for the order parameter � and the super-
fluid weight Ds as a function of the filling for different values of U

for T = 0.1t . (a) and (b) are for the Kane-Mele model and figures (c)
and (d) for the Haldane-Hubbard model.

of the Greens function Gij (τ ) = 〈ci(τ )c†j (0)〉 as

〈O〉 = Tr(M) − Tr(MG(τ = 0+)), (E3)

where i and j index the orbitals of the whole lattice model. In
practice, we do not want to calculate the whole Greens function
G(τ = 0+) in real space, and the trace has to be calculated in
the Fourier transformed representation. The Green’s function
in frequency and momentum space is given by

Gk(iωn) = (−iωn + Tk − �(iωn))−1, (E4)

where Tk is the noninteracting Bloch Hamiltonian [given by
Eq. (7) with � = 0] and � is the DMFT self-energy including
the anomalous components. The expectation value of O is then
given by

〈O〉 = 1

N

∑
k

Tr(Mk) − 1

βN

∑
n

∑
k

Tr(MkGk(iωn)), (E5)

where β is the inverse temperature, N is the number of k points
and Mk is the k-space representation of M . To perform the
frequency summation of the large frequency tail, we perform
a fitting procedure to find the lowest moments of the expansion
of

∑
k Tr(MkGk(iωn)) in powers of (iωn)−1, and calculate the

contribution from the tail analytically, as is commonly done
with the Fourier transform of G itself.

When dealing with almost flat bands it is not always easy
to obtain a DMFT solution with a desired density. We alleviate
this problem by tuning the chemical potential μ in the course
of the iteration so that the sum of the chemical potential and
the Hartree energy, μh = μ + Eh is always given by some
predefined value. We find that tuning μh instead of μ directly
makes it easier to attain a specific density. Of course, one has
to check that the chemical potential μ actually converges.
We stress that this procedure is not a modification of the
DMFT equations, but just a modified iterative method for their
solution.

In Fig. 8, we plot the DMFT superfluid weight as a function
of the filling for different interaction strengths. For weak values
of the interaction U , one can observe two domes corresponding
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FIG. 9. 18- and 24-site clusters used in ED calculations.

to the two bands. For stronger U , the bands are mixed and the
two-dome structure disappears.

APPENDIX F: ED CALCULATIONS
OF THE DRUDE WEIGHT

The Drude weight is the singular part of the real part of the
optical conductivity, given by

Dμν = 〈0|Tμν |0〉 + 2�〈0|jp
μ

1

E0 + i0+ − H
jp
ν |0〉. (F1)

We calculate the ground-state energy E0 and ground-state
wave function |0〉 using the Lanczos algorithm realized on
graphics processing units (GPU) [70] and the Green’s function
in the second term of Eq. (F1) is evaluated through the
continued fraction expansion method [71].

In the main text, we compare the mean-field results of the
superfluid weight against the Drude weight obtained from ED
on a 32-site cluster. Since the cluster is large, we can only
calculate at low and high fillings, corresponding to the bottom
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FIG. 10. Zero-temperature superfluid weight for the KMH model
[(a) and (b)] and the HH model [(c) and (d)] at filling n = 1/3 [(a) and
(c), flat band], 5/3 [(b) and (d), dispersive band]. ED is performed on
18- and 24-site clusters. Finite size effects can be seen, especially for
weak interactions.

of the flat band and the top of the dispersive band. In this
appendix, we present our results for intermediate fillings, n =
1/3 and 5/3. We perform ED calculations on 18- and 24-site
clusters that preserve the C6 symmetry, see Fig. 9. As shown
in Fig. 10, for strong interactions, the ED results on both
clusters are in good agreement with mean-field results. For
weak interactions, finite size effects are visible and increasing
the cluster size improves the agreement significantly.
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Hubbard Mott Insulator: From Tetrahedral Spin Crystal to Chiral
Spin Liquid, Phys. Rev. Lett. 116, 137202 (2016).

[49] Z.-L. Gu, K. Li, and J.-X. Li, Topological phase transitions
and topological Mott insulator in Haldane-Hubbard model,
arXiv:1512.05118.

[50] Y.-C. Zhang, Z. Xu, and S. Zhang, Topological superfluids
and BEC-BCS crossover in attractive Haldane-Hubbard model,
arXiv:1511.03833 [cond-mat.quant-gas].

[51] T. I. Vanhala, T. Siro, L. Liang, M. Troyer, A. Harju, and
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