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We study noncentrosymmetric superconductors with the tetrahedral Td , tetragonal C4v , and cubic point group
O. The order parameter is computed self-consistently in the bulk and near a surface for several different singlet to
triplet order parameter ratios. It is shown that a second phase transition below Tc is possible for certain parameter
values. In order to determine the surface orientation’s effect on the order parameter suppression, the latter is
calculated for a range of different surface orientations. For selected self-consistent order parameter profiles the
surface density of states is calculated showing intricate structure of the Andreev bound states as well as spin
polarization. The topology’s effect on the surface states and the tunnel conductance is thoroughly investigated,
and a topological phase diagram is constructed for open and closed Fermi surfaces showing a sharp transition
between the two for the cubic point group O.
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I. INTRODUCTION

Noncentrosymmetric materials lack a center of inversion in
their crystal lattice. They have attracted increasing attention
in recent years due to the fact that spin-orbit interaction has a
strong effect on their physical properties [1–7]. In crystals with
a center of inversion the band-diagonal elements of the spin-
orbit interaction in a Bloch basis, Lnn(k), vanish by symmetry.
This is not the case for noncentrosymmetric materials, where
these diagonal elements can be nonzero and indeed large
(30–300 meV) [8]. Anderson, in discussing heavy-fermion
materials, used group classification to study the possibilities
for spin-triplet superconductivity in spin-orbit coupled mate-
rials [9]. Experimental signatures of spin-triplet (as well as
spin-singlet) pairing were found in the noncentrosymmetric
heavy-fermion superconductor CePt3Si, discovered in 2004
[10]. Since then many more noncentrosymmetric supercon-
ductors (NCSs) have been identified, including Y2C3 [11],
Li2(Pd1−xPtx)3B [12], CeIrSi3 [13], UIr [14], BiPd [15], and
PbTaSe2 [16], among others [17–24]. These materials show
signs of both spin-singlet and spin-triplet superconductivity
to a varying degree. The system Li2(PdxPt1−x)3B has been
studied in more detail [25,26], indicating that the difference
between the two end compounds, x = 0 and x = 1, can at
least in part be explained by a dominating triplet component
for x = 0, i.e., Li2Pt3B, whereas Li2Pd3B seems to have a
dominating s-wave singlet component, indicated by the rather
low value of the upper critical magnetic field extrapolated
to zero temperature. Some systems, such as LaNiC2 and
LaNiGa2, are candidates for a nonunitary spin-triplet pairing
state [27].

Furthermore, it has been shown that, as spin-orbit inter-
action is time-reversal invariant, these superconductors can
be topologically nontrivial [2,4,28–35]. The topology and
the singlet-triplet admixture are both a consequence of the
spin-orbit coupling (SOC) term in the Hamiltonian of these
materials, which is derived from the nonrelativistic limit of the
Dirac equation and is proportional to the gradient of the crystal
lattice potential. The lack of a center of inversion in the unit
cell allows the gradient of the potential to be large throughout
the Brillouin zone (BZ), and thus the SOC cannot be neglected.
The above-mentioned property, that diagonal elements of

the SOC in a Bloch basis are in general nonvanishing in
noncentrosymmetric materials, allows us to study the effects
of the SOC in a minimal one-band model [8], which is not
possible in centrosymmetric materials.

In this paper we theoretically study NCSs with the emphasis
on self-consistent superconducting order parameters for var-
ious surface orientations, as well as for all the topological
phases of the crystal point groups Td , C4v , and O with a
closed Fermi surface. The SOC vector is expanded in terms
of harmonic functions, constrained by the symmetries of the
point group, to second order. The relative weight of the first
and second order terms is parametrized by g2. Second-order
terms are investigated for the point groups C4v and O: one
nonzero value of g2 for C4v and three for O. Besides the
gapped topologically trivial phases all point groups have one
nontrivial gapless phase, and O has, for a closed Fermi surface,
four nontrivial gapped phases, and we have chosen values of g2

to correspond to these phases. In the literature the point group
C4v with g2 = 0 has been studied extensively [36–40], as well
as O with values of g2 equivalent to our choice of g2 = 0.7
[41–43]. All results we present in this paper are self-consistent,
and for parameter combinations not discussed so far in the
literature. Non-self-consistent results for surface spectra for
various point groups and surface orientations were obtained in
Ref. [40], and subsequently in Ref. [43]. Topological aspects
were in the focus of attention in Ref. [44], whereas in Ref. [45]
the possibility of a surface instability was suggested.

II. THEORY

A. Normal-state band dispersion

Within an effective one-band model, the SOC term in the
Hamiltonian is given by H SO

k = αlk · σ , where α is the SOC
strength, σ = (σ1,σ2,σ3) is a vector of spin Pauli matrices, and
lk is the SOC vector which is real, invariant under crystal point
group operations g,

lk ≡ l(k) = gl(g−1k), (1)

and odd in k, l−k = −lk. We normalize the SOC vector
such that its maximum magnitude within the BZ is unity,
maxk∈BZ |lk| = 1.
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The kinetic part of the normal-state Hamiltonian can thus
be written as

Ĥk =
∑
kαβ

c
†
kα(ξkσ0 + αlk · σ )αβckβ (2)

with ξk = εk − μ, where εk is the band dispersion in the
absence of SOC (we will use for simplicity a nearest-neighbor
tight-binding dispersion), μ is the chemical potential, and
ckα (c†kα) are fermion annihilation (creation) operators for
a quasiparticle with spin α ∈ {↑,↓}. We will study simple-
cubic (CUB) and body-centered-cubic (BCC) lattices. The
corresponding nearest-neighbor tight-binding dispersions are

εCUB
k = t1[cos(kx) + cos(ky) + cos(kz)] (3)

and

εBCC
k = 8t1 cos(kx/2) cos(ky/2) cos(kz/2), (4)

where t1 is the hopping integral.
The point groups considered here are the cubic point

group O, relevant for, e.g., Li2PdxPt3−x [12,25,26,46,47]; the
tetragonal point group C4v , relevant for, e.g., CePt3Si [10]; and
the tetrahedral point group Td , relevant for, e.g., Y2C3 [48]. We
use dispersion (3) for the cubic point group, O, and for sake
of simplicity also for the tetragonal point group, C4v , whereas
dispersion (4) will be used for the tetrahedral point group
Td . The SOC vectors are obtained as lattice Fourier series,
lk = ∑

n ln sin(k · Rn), where Rn are Bravais lattice vectors,
and where the invariance under point group operations, Eq. (1),
leads to restrictions on the ln [8].

The Hamiltonian, Eq. (2), is diagonalized and brought to
the so-called helicity basis by the canonical transformation
Uk(lk · σ )U †

k = |lk|σ3, where

Uk =
(

cos
(

θl

2

)
e−iφl sin

(
θl

2

)
−eiφl sin

(
θl

2

)
cos

(
θl

2

)
)

, (5)

with φl = tan−1(ly/ lx) and θl = tan−1(
√

l2
x + l2

y/ lz) being the

spherical angles of the SOC vector, lk = (lx,ly,lz)T , yielding

Ĥk =
∑
kλ

ξλ
k b

†
kλbkλ, bkλ =

∑
α

Ukλαckα, (6)

where the helical index takes the values λ = {+,−}, and the
helical band dispersion is given by ξ±

k = ξk ± α|lk|. Note that
ξλ

k = ξλ
−k even though the SOC vector is antisymmetric. This

is a consequence of Eq. (2) being time-reversal invariant.
Furthermore, the quasiparticle spin is fixed with respect
to its momentum on each band, being parallel (λ = +) or
antiparallel (λ = −) to lk.

B. Superconducting state

Superconductivity is modeled within the Nambu-Gor’kov
formalism. Under the canonical transformation defined above
the Nambu spinor Ĉk = (ck↑,ck↓,c

†
−k↑,c

†
−k↓)T transforms into

its helical equivalent B̂k = (bk+,bk−,b
†
−k+,b

†
−k−)T ≡ ÛkĈk

with Ûk ≡ diag(Uk,U
∗
−k), and the “hat” denotes Nambu

structure. It is straightforward to construct 4 × 4 helical
Green’s functions, e.g., the retarded ĜR

k1k2
(t1,t2) = −i
(t1 −

t2)〈{B̂k1 (t1),B̂†
k2

(t2)}〉H, where 
 is the Heaviside step function,
〈•〉H denotes a grand-canonical average, {•,•} is an anticom-
mutator, and B̂k(t) a Heisenberg operator. The quasiclassical
propagator is obtained by integrating out fast oscillations from
the full Green’s functions. In the case when the magnitude of
the SOC is much smaller than the Fermi energy, α 	 EF , it
suffices to integrate over ξk and treat the SOC term perturba-
tively. For this case, in Wigner coordinates the quasiclassical
propagator is given by ǧ(kF ,R,ε,t) = ∫

dξkτ̂3Ǧ(k,R,ε,t),
with k parametrized by (ξk,kF ), ξk = vF · (k − kF ), τ̂ =
(τ̂1,τ̂2,τ̂3) are Pauli matrices in particle-hole space, and the
“check” denotes Keldysh matrix structure.

The SOC term enters the transport equations as a source
term. Within this approximation the Eilenberger equation [49]
for the quasiclassical Green’s function takes the following
form in the helicity basis:

ivF · ∇RĝR,A,M + [zτ̂3 − �̂ − v̂SO,ĝ]R,A,M = 0̂ (7)

with z = iεn = iπT (2n + 1) for Matsubara, and z = ε ± i0+
for retarded (advanced) quantities. [•,•] is a commutator, the
SOC term is v̂SO = α|lkF

|σ3τ̂0, and the gap has the form

�̂ =
(

0 �

�̃ 0

)
, (8)

where the “tilde operation” is defined as the particle-hole
conjugate, Q̃(kF ,R,z,t) ≡ Q∗(−kF ,R, − z∗,t). Equation (7)
is supplemented by the normalization condition (ĝR,A,M)2 =
−π21̂. In order to simplify notation, we will henceforth drop
the subscript F at the Fermi momentum; all momenta in the
quasiclassical theory are Fermi momenta. The subscript will
be written out only when it is necessary to avoid confusion.
We consider time-independent situations, such that the time
variable t will be dropped from here on.

The lack of a center of inversion allows for an admixture
of spin-singlet and spin-triplet pairing. [37] The spin-triplet
vector is set to be parallel to the SOC vector in order to
maximize Tc [38]. In spin basis the order parameter is written

�(k) = Yk(�s + �t lk · σ )iσ2, (9)

where Yk is a crystal basis function corresponding to irre-
ducible representation of the dominant pairing channel, and
�s and �t are referred to as the singlet and triplet component,
respectively. In the helicity basis the order parameter takes the
form �(k) = Yk · diag[�+(k)t+(k),�−(k)t−(k)], where

�±(k) = �s ± �t |lk|, (10)

and the phase factors are given by

t±(k) = −e∓iφl (k), φl(k) = tan−1(ly/ lx). (11)

Note that t±(−k) = −t±(k).
Equation (7) can be parametrized in terms of co-

herence functions, γ (k,R,z) and γ̃ (k,R,z) [50], in such
a way as to automatically fulfill the normalization
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condition,

ĝR,A,M ≡
(

g f

f̃ g̃

)R,A,M

= ∓iπ [N−1G]R,A,M,

N =
(

(σ0 − γ γ̃ ) 0
0 (σ0 − γ̃ γ )

)
,

G =
(

(σ0 + γ γ̃ ) 2γ

−2γ̃ −(σ0 + γ̃ γ )

)
, (12)

where the top (bottom) sign corresponds to ĝR (ĝA), and in the
case of ĝM, to positive (negative) Matsubara frequencies. With
this, Eq. (7) transforms into two decoupled Riccati differential
equations,

(ivF · ∇R + 2z)γ = γ �̃γ + [α|lk|σ3,γ ] − �, (13)

(ivF · ∇R − 2z)γ̃ = γ̃ �γ̃ + [α|lk|σ3,γ̃ ] − �̃. (14)

In the homogeneous case, i.e., in the bulk, the solution is
γh = Yk · diag[γ+(k)t+(k),γ−(k)t−(k)] with the abbreviations
γ± = −�±/(z + i

√
|Yk�±|2 − z2). For this case the SOC

term drops out.
The surface problem is treated by solving Eqs. (13) and

(14) along classical trajectories parallel to vF , using the
homogeneous solutions as initial conditions at a sufficient
distance from the surface. This is done by discretizing the path
and treating the order parameter as a series of step functions in
the middle between the desired grid points. Each step is solved
analytically [51]. Parametrizing the path as R = R0 + ρvF and

writing the order parameter �(ρ) = �0 + 
(ρ)(�1 − �0) at
one of these steps, γ (ρ) with ρ > 0 is given by

γ (ρ) = γh + ei�1ρδ0[ei�2ρ + C(ρ)δ0]−1 (15)

with δ0 = [γ0 − γh], where γ0 ≡ γ (0) is the initial value and
γh is the homogeneous solution for ρ > 0, �1 = z − γh�̃ and
�2 = −z + �̃γh, and C(ρ) = C0e

i�1 − ei�2C0, where C0 is
the solution to C0�1 − �2C0 = �̃. The solution for γ̃ (ρ) is
completely analogous.

The reflection at the surface is in leading approximation
(as α 	 EF ) considered to be specular in spin space, with the
momentum component parallel to the surface, k‖, conserved.
Writing the momentum for incoming trajectories k = (k⊥,k‖)
this gives the momentum for outgoing trajectories as k =
(−k⊥,k‖). Following Ref. [50], incoming (outgoing) quantities
are written with lowercase (uppercase) symbols and the surface
boundary conditions become

U
†
k�(k,ε)U ∗

−k = �s(k,ε) = γ s(k,ε) = U
†
kγ (k,ε)U ∗

−k (16)

and

UT
−k�̃(k,ε)Uk = �̃s(k,ε) = γ̃ s(k,ε) = UT

−kγ̃ (k,ε)Uk, (17)

where the s superscript indicates that the coherence functions
are expressed in the spin basis.

C. Gap equation

The pairing potential in spin space can be written as a sum
of singlet, triplet, and a mixture term [37]

Vs1s2s3s4 (k,k′) = V

2
YkY∗

k′
{
vs(iσ2)s1s2 (iσ2)†s3s4

+ vt (lk · σ iσ2)s1s2 (lk′ · σ iσ2)†s3s4

+ vm

[
(lk · σ iσ2)s1s2 (iσ )†s3s4

+ (iσ )s1s2 (lk′ · σ iσ2)†s3s4

]}
, (18)

where vs , vt , and vm are free parameters that describe the relative coupling strength of each term, respectively, V is the overall
pairing potential strength, and Yk is the basis function of the irreducible representation with the highest Tc. To avoid ambiguity,
we normalize the relative pairing strengths according to

v2
s + v2

t + v2
m = 1 (19)

and for later reference introduce spherical coordinates

(vs,vt ,vm) = ( cos(φv) sin(θv), sin(φv) sin(θv), cos(θv)). (20)

In helicity space the pairing potential takes the form

V (k,k′) = V

2
YkY∗

k′

(
vs + vt |lk||lk′ | − vml+ vs − vt |lk||lk′ | − vml−
vs − vt |lk||lk′ | + vml− vs + vt |lk||lk′ | + vml+

)
(21)

with l± = |lk| ± |lk′ |. The self-consistency equation in the
Matsubara formalism is expressed in terms of Fermi surface
averages 〈•〉, defined as

〈•〉 = 1

NF

∫
d2kF

(2π )3|vF | (•), NF =
∫

d2kF

(2π )3|vF | . (22)

With this, the self-consistency equation takes the form

(
�+(k)
�−(k)

)
= T NF

|εn|<εc∑
εn

〈
V (k,k′)

(
f+(k′,εn)
f−(k′,εn)

)〉
k′
, (23)

where f± are defined by

f(k,εn) =
(

f+(k,εn)t+(k) 0
0 f−(k,εn)t−(k)

)
, (24)

the phase factors are defined in Eq. (11), and εc is the
BCS technical cutoff. Using the relations �s = 1

2 (�+ + �−)
and �t |lk| = 1

2 (�+ − �−), the implicit form of the self-
consistency equation for the singlet and triplet components
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of the order parameter reads(
�s

�t

)
= T

|εn|<εc∑
εn

NF V

〈
Ak

(
f+
f−

)〉
, (25)

where

Ak = 1

2
Y∗

k

(
vs − vm|lk| vs + vm|lk|
vt |lk| − vm −vt |lk| − vm

)
. (26)

After elimination of the cutoff and the pairing strength V

in favor of the superconducting transition temperature, one
obtains(

�s

�t

)
=

[
ln

(
T 〈Lk〉

T
λmax
c

)]−1

T
∑
εn

〈
Ak

(
f+
f−

)
− π

|εn|Lk

(
�s

�t

)〉
,

(27)

where the matrix exponent in the logarithm, T 〈Lk〉, is taken
element-wise, i.e.,

[T 〈Lk〉]ij ≡ T 〈[Lk]ij 〉, (28)

and with

Lk =
(

vs |Yk|2 −vm|Yklk|2
−vm|Yk|2 vt |Yklk|2

)
. (29)

Furthermore, λmax ≡ max{λ1,λ2}, and λ1,2 are the eigenvalues
of the matrix 〈Lk〉. We follow Ref. [52] in eliminating the
cutoff dependence in close vicinity to the surface as well. For
details on the numerical procedure to achieve self-consistency
see Appendix A.

D. Bulk superconducting phase

At T = Tc the self-consistency equation reduces to

ln

(
2eγ εc

πTc

)
〈Lk〉

(
�s

�t

)
= 1

NF V

(
�s

�t

)
, (30)

where γ = 0.5772 . . . is the Euler-Mascheroni constant. The
number of positive eigenvalues of 〈Lk〉 determines the number
of nucleation channels, with Tc determined by the largest
eigenvalue λmax. Using Eq. (20), the eigenvalues can be
mapped onto the unit sphere. How the number of nucleation
channels depends on the spherical angles φv = tan−1(vt/vs)
and θv = tan−1(

√
v2

s + v2
t /vm) can be seen in Fig. 1. When

both eigenvalues are positive there are two possible nu-
cleation channels, the dominant and the subdominant one.
The dominant channel is responsible for the transition to
superconductivity due to its larger critical temperature. The
dominant channel also determines the singlet to triplet order
parameter ratio, �s/�t , and their relative sign. The subdom-
inant channel nucleates at a lower temperature T sub.

c � Tc.
With a finite mixing, vm �= 0, an admixture of singlet and
triplet components is obtained. For certain choices of the
parameters (vs,vt ,vm) it is possible to achieve a crossover
from dominating singlet component at T = Tc to a dominating
triplet component at T = 0. An example in the single-channel
region is (vs,vt ,vm) = (1,0,a/[〈|lk|2〉 − a2]) (ignoring nor-
malization) with the parameter a being slightly larger than
the maximum value of the SOC vector on the Fermi surface,

FIG. 1. Dependence of the number of nucleation channels, i.e.,
positive eigenvalues to the matrix defined in Eq. (29), on the angles
φv = tan−1(vt/vs) and θv = tan−1(

√
v2

s + v2
t /vm). The ovals are given

by 2 cot(θv) � sin(2φv). The number of channels is independent of
the SOC as long as it is finite.

e.g., a = 1.01 max |lk|. This means that the topology of the
system can be sensitive to its subcritical temperature.

In certain parameter ranges for (vs,vt ,vm) it is possible to
construct a configuration with two active channels in which the
subdominant channel has a lower free energy at T = 0, thus
inducing a second phase transition below Tc. The simplest
way to get a second phase transition is to choose (vs,vt ,vm) in
such a way as to get a dominant channel with a large triplet
component, as well as a rather large subdominant critical
temperature. An example for such a choice is (vs,vt ,vm) =
(0.999〈|lk|2〉,1,0) (ignoring normalization) giving a dominant
pure triplet channel, and a subdominant pure singlet channel.
The subdominant critical temperature is T sub.

c = 0.996Tc for
the point groups and SOC vectors in Table I (assuming Yk =
1). The condensation energy at zero temperature, assuming the
same density of states on both Fermi surface sheets (which is
the approximation employed here as the splitting is small), is
given by

δ� = −NF

2
(|�s |2 + 2|�s�t |〈|lkF

|〉 + |�t |2〈|lkF
|2〉), (31)

and yields a lower value for the subdominant channel, for all
three point groups and SOC vectors considered in this work,
with this choice of (vs,vt ,vm).

TABLE I. The scaled bulk singlet to triplet ratios, rbulk
� ≡

�s/[�t max |l(kF )|], chosen for the different point groups, O, C4v ,
and Td , and their respective g2 values used in this work.

g2 rbulk
�

O 0.0 0 0.26 0.38 0.50 0.62 0.74 0.86 0.98 1.1
O 0.7 0 0.20 0.33 0.46 0.59 0.72 0.84 0.97 1.1
O 1.03 0 0.09 0.23 0.38 0.52 0.67 0.81 0.96 1.1
O 2.5 0 0.17 0.30 0.44 0.57 0.70 0.83 0.97 1.1
C4v 0.0 0 0.14 0.28 0.41 0.55 0.69 0.83 0.96 1.1
C4v 4.0 0 0.14 0.28 0.41 0.55 0.69 0.83 0.96 1.1
Td N/A 0 0.14 0.28 0.41 0.55 0.69 0.83 0.96 1.1
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E. Angle-resolved density of states

The angle-resolved surface density of states (DOS) is
given by N (k,ε) = −(2π )−1NF ImTrλ[gR(k,ε)], or explicitly
in terms of coherence functions

N (k,ε)

NF

= ReTrλ

{
[σ0 − γ (k,ε)�̃(k,ε)]−1 − 1

2
σ0

}
. (32)

The spin-resolved DOS along the quantization axis j ∈
{x,y,z} is given by N

(j )
± (k,ε) = N (k,ε) ± N (j )(k,ε), where

N (j )(k,ε)

NF

= ReTrs

{
σj [σ0 − γ s(k,ε)�̃s(k,ε)]−1 − 1

2
σj

}
.

(33)

Note that all quantities in Eq. (33) are expressed in the spin
basis. Using a non-self-consistent order parameter, with the
bulk solution all the way to the surface, it is straightforward
to show that there are two classes of trajectories giving rise to
Andreev bound states (ABSs) at zero energy (see Appendix B
for details). Introducing the notation ϒk ≡ sgn[Yk�−(k)] the
first class of trajectories is simply given by ϒk = −ϒk �= 0.
With the spherical angles (φl,θl) and (φl,θl) corresponding to
lk and lk respectively, the second class is given by solutions to

F (φl,θl,φl,θl) = −1, (34)

with the definition F (φl,θl,φl,θl) = cos(θl) cos(θl) +
cos(φl − φl) sin(θl) sin(θl), provided that (ϒk,ϒk) = (0, − 1),
(ϒk,ϒk) = (−1,0), or (ϒk,ϒk) = (−1, − 1). This second
class of bound states arises due to the phase factors t±(k)
defined in Eq. (11), which can yield an extra phase shift of π .
These results remain true for self-consistent order parameters
as long as the gap does not completely close at some distance
from the surface.

F. Point contact spectra

The point contact conductance between a normal metal and
an NCS is computed using the following assumptions: the size
of the point contact is much smaller than the coherence length
but much larger than the Fermi wavelength, the Fermi surfaces
on both sides of the interface are considered to be equal, and
the proximity effect is ignored. The normal metal having index
1, and the NCS index 2, the scattering matrix of the interface
in the spin/helicity basis is given by

S =
(

S11 S12

S21 S22

)
=

(
rσ0 tU

†
k

t∗U−k −rUkU
†
k

)
(35)

with the transmission amplitude

t(αk) = t0 cos(αk)√
1 − t2

0 sin2(αk)
, (36)

where t0 is the tunneling parameter and αk is the angle
between the surface normal and the Fermi velocity of the
outgoing trajectories in the normal metal. The reflection
amplitude is given by r = √

1 − t2. The zero-temperature
tunnel conductance is given by [40]

G(eV ) = 〈n · vF1 [||B(ε)||2 − ||S12A2(ε)||2]〉out

+〈n · vF1 ||B(−ε)γ2(−ε)S̃21||2〉out, (37)

where the expression is evaluated at ε = eV , vF1 is the Fermi
velocity in the normal metal, 〈•〉out indicates that the average
is only for outgoing trajectories in the normal metal, B(ε) =
S12[σ0 + A2(ε)S22],

A2(ε) = (
σ0 − γ2(ε)S̃22γ̃2(ε)S22

)−1
γ2(ε)S̃22γ̃2(ε), (38)

and || • ||2 ≡ 1
2 Tr[(•)(•)†]. The normal-state conductance,

GN , is simply obtained by setting the coherence functions
to zero.

G. Topology

We characterize the topology of a system by comput-
ing three topological invariants. The starting point is the
Bogoliubov–de Gennes (BdG) Hamiltonian

H (k) =
(

h(k) �(k)
�†(k) −hT (−k)

)
(39)

obeying time-reversal symmetry, T , particle-hole symmetry,
C, as well as the combined “chiral” symmetry S = iT C. The
BdG Hamiltonian is thus of the symmetry class DIII [53].
It anticommutes with S and in the basis where S is block
diagonal H becomes block off-diagonal, H̄ = V HV †. The
flat-band block off-diagonal Hamiltonian Q(k) is constructed
by projecting all bands above (below) the gap to +1 (−1)

Q(k) =
(

0 q(k)
q†(k) 0

)
(40)

where q(k) is a 2 × 2 matrix in the one-band model (we set
for simplicity Yk = 1)

q(k) = 1

2
[A|lk|λ1 + Bkλ2]σ0 + 1

2
[A|lk|λ2 + Bkλ1]

lk
|lk| · σ

(41)

with A = α + i�t , Bk = ξk + i�s , λ1 = λ−1
+ − λ−1

− , λ2 =
λ−1

+ + λ−1
− , where λ± = |A|lk| ± Bk|. Note that Q(k), and thus

q(k), is ill defined for nodal order parameters.
Fully gapped systems are classified by calculating the 3D

winding number which is defined as

ν =
∫

BZ

d3k
24π2

εabcTr[(q−1∂aq)(q−1∂bq)(q−1∂cq)], (42)

where Einstein summation is implied, εabc is the Levi-
Civita pseudotensor, a,b,c ∈ {kx,ky,kz}, and the integral is
over the entire first BZ. From the definition of q it is
clear that ν is only well defined if the order parameter
on the negative helical Fermi surface does not have nodes,
i.e., �−(k−

F ) �= 0. There are two ways this can be true:
either sgn[�−(k−

F )] = +1 ∀k−
F =⇒ �s/�t > max |l(k−

F )|, or
sgn[�−(k−

F )] = −1 ∀k−
F =⇒ �s/�t < min |l(k−

F )|. We cal-
culate ν numerically using the procedure in Appendix C.

Nodal systems are classified by calculating the 1D winding
number which is defined as

NL =
∮
L

dl

2πi
Tr[q−1∇lq], (43)

where l parametrizes the loop L in the BZ, and ∇l is the
directional gradient along this loop. The loop L cannot pass
through nodes of the order parameter, but is other than that
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arbitrary. The 1D Hamiltonian for this loop is in general not
time-reversal invariant and is thus of symmetry class AIII
[53]. In order to characterize a nodal phase the loop needs to
be constructed in such a way as to always encircle a line node
of �−(k−

F ) for any Fermi surface geometry.
With increasing singlet to triplet ratio the first nodes appear

at the points where �s/�t = min |l(k−
F )|. Increasing �s/�t

further the nodal rings continue to be positioned around these
points until they connect with one another. At this stage the
nodal rings become positioned around the points where they
eventually disappear �s/�t = max |l(k−

F )|. Thus a general
loop should pass through the points where the nodal rings
appear and disappear. This is accomplished by the loop

L : � → min |l(k−
F )| → ∂BZ → max |l(k−

F )| → �, (44)

where ∂BZ is the BZ boundary, and the arrows do not
necessarily imply straight lines.

In order to study the topology’s effect on the surface
states the 1D winding number is also computed for straight
noncontractible loops, i.e., loops traversing one or several of
the three circles making up the BZ torus T3 = S1 × S1 × S1,
that are perpendicular to the surface. Writing the momentum
k = (k‖,k⊥) and the surface normal n = (l,m,n) the 1D
winding number is written

N(lmn)(k‖) =
∫

dk⊥
2πi

Tr[q−1∇⊥q]. (45)

Restricting ourselves to time-reversal-invariant noncon-
tractible loops another topological invariant can be defined,
namely the Z2 invariant

W(lmn)(K‖) =
∏

K

Pf[iσ2q
T (K)]√

det[iσ2qT (K)]
, (46)

where K are time-reversal-invariant momenta on the loop, and
Pf[•] denotes the Pfaffian of an antisymmetric matrix •. The
1D Hamiltonian for this loop is of the symmetry class DIII
[53].

The singlet (triplet) component is said to be dominant
if the inequality �s/�t > max |l(k−

F )| is true (false). With
a dominant singlet component the material is fully gapped.
Increasing �s and/or decreasing �t the material becomes
nodal and eventually fully gapped again if min |l(k−

F )| > 0.
As is shown below the dominance of either component is
temperature dependent.

H. Surface band structure

The surface band structure is computed by first Fourier-
transforming the BdG Hamiltonian in the relative momentum
coordinate k⊥ in the direction of the surface normal n,

H (k‖,k⊥,R) → H (k‖,ρ,R). (47)

The helical dispersion, ξλ
k , contains for the tight-binding

approximation that we use trigonometric functions whose
Fourier transform gives rise to a series of delta functions

H (k‖,ρ,R) =
∑

j

Hj

(
k‖,R + 1

2
ρn

)
δ(j − ρ/ρ0), (48)

where H−j (k‖,R − 1
2ρn) = H

†
j (k‖,R + 1

2ρn), j is a layer
index, and ρ0 is the length one needs to move along the
direction of the surface normal in order to return to a
translation-equivalent point in the lattice unit cell. The sum
has a finite number of terms; i.e., there exist a number jc

such that Hj = 0 : |j | > jc. The terms Hj with j �= 0 can be
interpreted in terms of hopping across the layers. Discretizing
the center-of-mass coordinate R in steps of ρ0, the Schrödinger
equation for L layers can be written

j (l)∑
j=−j (l)

Hj

(
k‖,nρ0

[
l + 1

2
j

])
ψj (k‖) = El(k‖)ψl(k‖), (49)

where l = 0,1, . . . ,L − 1 and j (l) = min{jc,l} which takes
care of the boundary conditions, i.e., no hopping across the
boundary. Equation (49) can be written more compactly as a
matrix equation Heff(k‖)ψ(k‖) = E(k‖)ψ(k‖), and the band
structure is given by the eigenvalues of Heff. Nontrivial topol-
ogy gives rise to zero-energy ABSs. We are therefore mainly
interested in the band structure close to zero energy. This
allows us to avoid diagonalizing Heff, and instead only compute
the smallest magnitude eigenvalues using the Lanczos method.
Note that the order parameter is suppressed at both surfaces.

III. NUMERICAL RESULTS

In this work the SOC strength entering the quasiclassical
calculations is considered to be much smaller than the Fermi
energy, α 	 EF . In this case the Fermi surface is only
weakly split. Ignoring this splitting, and the Fermi velocity
renormalization, the quasiparticles with opposite helicity are
assigned to a single, common Fermi surface, and move
coherently along classical trajectories. In addition, for the
quasiclassical part of the numerical calculations, the Fermi
surface is approximated to be spherical, with |kF | being equal
to the average of the Fermi surface defined by ξ (kF ) = 0 with
(t1,μ) = (−40α,−50α). Here, t1 determines the bandwidth,
which must be large compared to the Fermi-surface splitting
in order for the approximation of equal Fermi surfaces for
both helicities to be valid, and μ < 0 must be smaller than
t1 − α in order for the Fermi surface to be closed. The
chosen values are consistent with the approximation of an
approximately spherical Fermi surface. The SOC term enters
the transport equations as a source term. In the following,
we restrict our discussion to the maximally symmetric basis
function corresponding to the irreducible representation A1,
i.e., Yk = 1.

A. The cubic point group O

To next-nearest neighbors in the sum over Bravais lattice
sites [8] the SOC vector corresponding to the cubic point group
O takes the form

lk =

⎛
⎜⎝

sin(kx){1 − g2[cos(ky) + cos(kz)]}
sin(ky){1 − g2[cos(kz) + cos(kx)]}
sin(kz){1 − g2[cos(kx) + cos(ky)]}

⎞
⎟⎠, (50)

where g2 is a free parameter which determines the relative
weight between the first and second order contributions. Its
magnitude and direction are illustrated in Fig. 2.
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FIG. 2. The magnitude (grayscale) and direction (arrows) of the
SOC vector corresponding to the point group O defined in Eqs. (50),
with the g2 = 1.03. The SOC is shown upon the spherical Fermi
surface defined by the average Fermi momentum given by ξ (kF ) = 0,
where ξ is the corresponding tight-binding dispersion in the absence
of SOC with (t1,μ) = (−40α,−50α). The Fermi surface is seen from
the k = (1,1,1) direction.

An important property of the SOC vector corresponding to
the cubic point group is its lack of line nodes in the BZ; it
only vanishes at specific points. With g2 = 0 these points are
simply �, X, M , and R [for the notation see Fig. 3(a)]. A finite
value of g2 brings about two more points. With g2 > 0 they are
positioned somewhere on the paths � → R and � → M , and
with g2 < 0 on � → R and X → R, in Fig. 3(a). The exact
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FIG. 3. (a) The high-symmetry points and axes in the BZ for
a simple cubic crystal. (b) The minima of the SOC vector on the
negative helical Fermi surface, with t1 = −40α. Note the transition
between a closed and open Fermi surface at μ = t1. The topological
phase diagram for an open and closed FS is shown in (c) and
(d), respectively. White areas indicate a gapped phase with trivial
topology, (NL,ν) = (0,0); gray a nodal phase with NL = 1 with a
loop defined by Eq. (44); colored areas gapped nontrivial phases with
ν taking the values (black, red, cyan) = (+10,−2,+2) in (c) and
(green, blue, yellow, magenta) = (+1,−5, +7, −1) in (d).

positions, k∗, of these points depend on the value of g2, and
are given by

� → R : k∗ = cos−1

(
1

2g2

)
(1,1,1)T , (51)

� → M : k∗ = cos−1

(
1

g2
− 1

)
(1,1,0)T , (52)

X → R : k∗ = (b,π,b)T , b = cos−1

(
1

g2
+ 1

)
. (53)

The lack of line nodes means that it is easy to construct a
Fermi surface for which the minimum value of the SOC on the
negative helical FS, min |l(k−

F )|, is not zero. The dependence of
min |l(k−

F )| on the chemical potential and the SOC parameter
g2 is shown in Fig. 3(b). The SOC minimum is zero along
certain lines in this parameter space. The line at μ = t1 marks
the transition between open and closed FS; i.e., the FS is
tangent to the X point in the BZ. These lines in Fig. 3(b) also
mark the boundaries of fully gapped regions with different
values of the 3D winding number ν. This is demonstrated in
Figs. 3(c) and 3(d) in which the topological phase diagram is
shown for an open, μ = −20α, and closed, μ = −50α, Fermi
surface, respectively. White indicates that the system is fully
gapped and topologically trivial, ν = 0, whereas the colored
regions (excluding gray) indicate that the system is fully
gapped and topologically nontrivial, ν �= 0. Gray indicates
a topologically nontrivial nodal phase, NL = 1, with loops
defined by Eq. (44).

The self-consistent order parameter is calculated for four
different values of g2, namely g2 ∈ {0,0.7,1.03,2.5}, one for
each distinct gapped topologically nontrivial phase with a
closed Fermi surface, i.e., the colored regions in Fig. 3(d).
This is done for nine values of the scaled bulk singlet to triplet
ratio, rbulk

� ∈ [0,1.1], with one active channel. These values are
shown in Table I.

In order to investigate how the order parameter suppression
depends on the surface orientation the order parameter is
computed for a range of different surface normals, tracing
out the path n = (1,0,0) → (1,1,0) → (1,1,1) → (0,1,2) →
(1,0,0). As a measure of the suppression the ratio rbulk

� /rsurf
� ,

where rsurf
� ≡ �surf

s /(�surf
t max |lkF

|) is the scaled surface
singlet to triplet ratio, is plotted in Figs. 4(a)–4(d). The
suppression is seen to be the largest for the surface normal
n = (1,1,1).

Along the same path of surface orientations the zero-bias
conductance, computed with Eq. (37), is plotted in Figs. 4(e)–
4(h). For singlet to triplet ratios in the interval min |lkF

| <

�s/�t < max |lkF
| very large zero-bias conductance is seen

for all surface orientations except the two high-symmetry axes,
n = (1,0,0) and n = (1,1,0). This is due to there being no
trajectories for which �− changes sign upon reflection for
these surface orientations. For all other surface orientations this
is not the case, including the high-symmetry axis n = (1,1,1).
Note that all lines for which �s/�t < min |lkF

| are degenerate,
and the zero-bias conductance is zero for �s/�t > max |lkF

|.
Furthermore, the surface suppression due to self-consistency
does not affect the zero-bias conductance. This reflects the fact
that the gap does not go to zero at some distance inwards from
the surface for the obtained gap profiles.
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FIG. 4. Plots (a)–(d) show the quantity r surf
� /rbulk

� = [�s/�t ]
surf[�t/�s]

bulk as a measure of the order parameter surface suppression. This
is done for a range of different surface normals along the path n = (1,0,0) → (1,1,0) → (1,1,1) → (0,1,2) → (1,0,0). In plots (e)–(h) the
zero-bias conductance, computed with t0 = 10− 1

2 , is shown for the same surface normals. The numbers in the legend hold for all plots and
correspond to the columns in Table I showing the scaled singlet to triplet ratios.

The Andreev bound states (ABSs) of NCSs have
intricate structures and are spin polarized [36]. This is a
consequence of the SOC being antisymmetric, lk = −l−k.
States corresponding to different Andreev bound state
branches have opposite spin polarization, and this spin
polarization changes sign for reversed trajectories. As a result,
the Andreev states carry spin current along the interface [36].
The existence of a surface spin current is a direct consequence
of the spin-orbit coupling in the system.

As an example, the momentum angle-resolved and spin-
resolved local density of states, N (z)(φ,ε), computed with
Eq. (33), is plotted in Fig. 5(a) for momenta in the xy plane
(parametrized by the azimuthal angle φ; the polar angle is
θ = π/2), at the surface with surface normal n = (1,0,0), for
g2 = 1.03 and a self-consistent pure triplet order parameter.
An energy broadening ε → ε + iδ with δ = 10−2 was used,
and the self-consistent order parameter was computed at
T = 0.2Tc. White (black) indicates relative polarization for
spin up (down) quasiparticles. The spin polarization axis is
along the z axis and N (x) = N (y) = 0. This is true for all values
of g2 with a pure triplet order parameter. However, the ABS
structure is very different for the four g2 values. Furthermore
the spin polarization axis is found to be dependent on the
singlet to triplet ratio, in addition to surface orientation.

The momentum-resolved zero-energy ABSs for n =
(1,1,1) are shown in Fig. 5(b), computed with the bulk
value of the order parameter all the way to the surface,
assuming rbulk

� = 0.67. The tunneling parameter was set to
t0 = 10− 1

2 (or t2
0 = 0.1, making sure to be in the tunneling

regime), and the broadening of the energies, ε ← ε + iδ, with
δ = 10−3. The disk is the projection of the spherical Fermi
surface onto the slab surface. Black indicates that there are
no ABSs for those momenta, green indicates ABSs for which
(ϒk,ϒk) = (+1, − 1), and yellow (ϒk,ϒk) = (−1, + 1). For
this choice of surface orientation and singlet to triplet ratio
these two types of trajectories are the only ones yielding ABSs.
This is not the case for lower singlet to triplet ratios, other g2

values, and/or other surface orientations. Then there can exist
solutions to Eq. (34). Indeed, for �s/�t < min |lkF

| they are
the only solutions yielding ABSs. For �s/�t > max |lkF

| no
zero-energy ABSs are seen.

Point contact conductance spectra for g2 = 1.03, t0 =
10− 1

2 , and n = (1,1,1) are shown in Fig. 5(c). A small energy
broadening ε → ε + iδ with δ = 10−2 was used for the plot,
except close to zero energy, where δ = 10−5 was used (and
2.5 times as many momentum directions in the momentum
average) in order to show the sharp zero-bias conductance
peak. The transmission parameter is set to t0 = 10− 1

2 . Further-
more, max(�) ≡ �bulk

s + �bulk
t max(|lkF |), and the plots are

shifted 0.2 upwards from each other for the sake of visibility.
The order parameters used are computed self-consistently at
T = 0.2Tc, and with only one active channel. The point contact
conductance spectra differ widely between surface orientations
and the values of g2, in addition to the less pronounced
difference between singlet to triplet ratios. The most striking
difference is the appearance of zero-bias conductance peaks
(ZBCPs) which are present for all singlet to triplet ratios in
the interval min |lkF

| < �s/�t < max |lkF
| provided there are

trajectories with sgn[�−(k)] = −sgn[�−(k)].
In Fig. 5(d) the topological invariants N(111) and W(111) are

plotted for rbulk
� = 0.67. However, W(111) = 1, i.e., trivial, for

this choice of parameters, and trivial topology is colored white.
Light green/blue corresponds to N(111) = ±1. The dashed
circle indicates the projection of the spherical Fermi surface
used in the quasiclassical calculations, i.e., Figs. 5(a)–5(c).
Even though the Fermi surface is not spherical, it is clear that
the zero-energy ABSs are directly related to the topology.
As is shown for the tetragonal point group C4v below, the
ABS given by solutions to Eq. (34), for the relevant values of
(ϒk,ϒk), is directly related to the Z2 invariant being nontrivial
(i.e., W(111) = −1).

Zero-energy states are present in the band structure when-
ever the aforementioned topological invariants have nontrivial
values. In Fig. 5(e) the surface band structure is shown for
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FIG. 5. All plots are for the cubic point group O with g2 = 1.03. (a) N (z)(k,ε), defined in Eq. (33), which is a measure of the spin
polarization along the z axis. It is shown for a self-consistent pure triplet order parameter and for momentum directions in the xy plane (i.e.,
θ = π/2), at the surface with the surface normal n = (1,0,0). (b) Momentum-resolved ABS at zero energy computed assuming a constant order
parameter with rbulk

� = 0.67. The disk is the projection of the Fermi surface onto the slab surface with n = (1,1,1). Green regions corresponds
to ABS for which (ϒk,ϒk) = (+1, − 1), and yellow regions to (ϒk,ϒk) = (−1, + 1). Momenta of trajectories not yielding ABSs are colored
black. (c) Point contact conductance spectra along n = (1,1,1) for self-consistent order parameters (the numbers refer to columns for rbulk

� in
Table I and to the curves from top to bottom), and with t0 = 10− 1

2 . (d) The topological invariant N(111), with rbulk
� = 0.67, where light green/blue

corresponds to N(111) = ±1, and white to trivial topology. (e) The surface band structure with k
‖
1 = 0, and rbulk

� = 0.67. (f) The lowest positive
eigenvalues of Heff for self-consistent order parameter with rbulk

� = 0.67. Black regions correspond to zero energy. Dashed circles in (d) and (f)
show for comparison the projection of the spherical Fermi surface used in the quasiclassical calculations.

rbulk
� = 0.67 along the k

‖
2 axis with k

‖
1 = 0, and L = 1.3 × 104

layers. N(111) �= 0 gives rise to singly degenerate zero-energy
flat bands, one on each surface, with the corresponding
wave functions decaying exponentially into the bulk. The
surface momenta of the zero-energy flat bands are given by
N(111)(k‖) �= 0, which can be seen in Fig. 5(f) where the lowest
positive eigenvalue of Heff [see Eq. (49)] is plotted for the
self-consistent order parameter. Note that the zero-energy flat
bands are given by the projection of nontrivial values of the
1D winding number.

B. The tetragonal point group C4v

To next-nearest neighbors in the sum over Bravais lattice
sites [8] the SOC vector corresponding to the tetragonal point
group C4v takes the form

lk =

⎛
⎜⎝

sin(ky)

− sin(kx)

g2 sin(kx) sin(ky) sin(kz)[cos(ky) − cos(kx)]

⎞
⎟⎠, (54)

where g2 determines the relative weight between first and
second order contributions, just like for the cubic point group
O. Its magnitude and direction on the Fermi surface are
illustrated in Fig. 6.

But unlike O, this point group has line nodes of the SOC in
the BZ. For all values of g2 the SOC is identically zero along the
three paths parallel to the z axis, � → Z, X → R, and M → A

in Fig. 7(a). Given the simple cubic first-order tight-binding
dispersion, for the range of μ we study the line node � → Z

intersects all closed, and the line node X → R intersects all
open Fermi surfaces. Thus min |l(k−

F )| = 0 for both cases. The
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FIG. 6. The SOC vector, defined by Eq. (54), with g2 = 0. See
the caption of Fig. 2.

024513-9



NICLAS WENNERDAL AND MATTHIAS ESCHRIG PHYSICAL REVIEW B 95, 024513 (2017)

FIG. 7. (a) High-symmetry points and axes in the BZ of a
tetragonal crystal. (b) Topological phase diagram for a closed Fermi
surface with μ = −50α and t1 = −40α. White areas: gapped phase
with trivial topology, (NL,ν) = (0,0); gray: nodal phase with NL = 1
[loop defined by Eq. (44)].

transition between the two is therefore seamless, and there
are no fully gapped phases with sgn[�−(k−

F )] = −1. The only
two distinct phases are a topologically trivial, ν = 0, and a
nodal nontrivial phase, NL = 1, shown in white and gray,
respectively, in Fig. 7 for a closed Fermi surface, μ = −50α.

Despite there only being a single topologically nontrivial
phase the order parameter is calculated self-consistently for
the two values g2 ∈ {0,4} in order to study the effect of
second-order contributions to the SOC vector. This is done
for nine values of the scaled bulk singlet to triplet ratio, rbulk

� ∈
[0,1.1], with one active channel. The exact values are shown
in Table I. The order parameter is calculated with the same
surface normals as for the cubic point group. How the order
parameter suppression depends on the surface orientation can
be seen in Figs. 8(a) and 8(b). Here the greatest suppression is
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FIG. 8. Plots (a) and (b) show the quantity r surf
� /rbulk

� =
[�s/�t ]

surf[�t/�s]
bulk as a measure of the order parameter surface

suppression. This is done for a range of different surface nor-
mals along the path n = (1,0,0) → (1,1,0) → (1,1,1) → (0,1,2) →
(1,0,0). In plots (c) and (d) the zero-bias conductance, computed with
t0 = 10− 1

2 , is shown for the same surface normals. The numbers in
the legend hold for all plots and correspond to the columns in Table I
showing the scaled singlet to triplet ratios.

not for the surface normal n = (1,1,1), but rather n = (1,1,0),
and n = (0,1,2) shows very little suppression.

The zero-bias conductances for the two g2 values are very
dissimilar for surface normals in the xy plane. With g2 =
0, Fig. 8(c), rather large conductances are seen for 0.69 �
rbulk
� � 0.96 in between the high-symmetry axes n = (1,0,0)

and n = (1,1,0), with the largest for rbulk
� = 0.83 and n ≈

(1,0.44,0). The lines corresponding to 0 < rbulk
� � 0.55 are

(almost) degenerate due to all of them having smaller singlet
to triplet ratios than the rather small difference between the
maximum and minimum value of the SOC in the xy plane of
the Fermi surface. Only a few trajectories around the poles
contribute to the ZBCPs. There are no ZBCPs for n = (1,1,0)
but rather a large domelike feature which is interestingly higher
than the peaks for the (almost) degenerate lines. With g2 = 4,
Fig. 8(d), the lines corresponding to 0.69 � rbulk

� � 0.96 show
a dip for n ≈ (1,0.4,0) due to the higher order contributions in
the SOC changing the shape of the nodal rings, causing their
projection onto the surface to largely overlap for these singlet
to triplet ratios.

The ABSs are heavily affected by self-consistency and
are, just like for O, spin polarized. In Fig. 9(a) the quantity
N (z)(k), Eq. (33), is plotted in the xy plane for a pure
triplet order parameter and n = (1,0,0). The largest effect of
self-consistency is seen for glancing trajectories and energies
between approximately |ε|/ max(�) ∈ [0.5,1]. The ABSs in
this range are not present in the non-self-consistent case. For
a pure triplet order parameter N (x) = N (y) = 0.

The momentum-resolved zero-energy ABS, for g2 = 0,
rbulk
� = 0.69, and n = (1,1,1), is shown in Fig. 9(b). Here,

not only the trajectories for which ϒk = −ϒk �= 0, colored
green and yellow, give rise to ABSs, but also trajectories for
which ϒk = ϒk = −1 and Eq. (34) holds, colored magenta.
This magenta line is there due to the SOC vanishing along
the high-symmetry axis � → Z, see Fig. 7(a), combined with
the SOC vector being perpendicular to this axis. This line
is present for g2 = 4 as well, but only for 0 � rbulk

� < 0.69,
whereas it is present for 0 � rbulk

� < 0.96 with g2 = 0, among
the ratios investigated.

In the tunnel conductance spectra, plotted for n = (1,1,1)
and t0 = 10− 1

2 in Fig. 9(c), ZBCPs are seen for all scaled
singlet to triplet ratios in the interval rbulk

� ∈ (0,1), due to
min |l(k)| = 0. Unlike the ZBCPs in the tunnel conductance
spectra for O with g2 = 1.03, Fig. 5(c), which emanate from
valleys around ε = 0, most of the ZBCPs here emanate
from a large dome. The domes are a consequence of the
magenta colored ABSs together with the “flatness” of the
coherence functions in the denominator of the expression for
the tunnel conductance when varying the momentum, such
that trajectories with momenta in close vicinity to the ABS
condition give rise to a large number of states that contribute
considerably to the tunnel conductance. With increasing rbulk

�

these states decrease in number. For rbulk
� > 0.83 they have

completely disappeared and thus the dome is gone and the
ZBCP emanates from a valley.

The topological invariants N(111) and W(111) are plotted in
Fig. 9(d). Light blue/green corresponds to N(111) = ±1 and
white to trivial values of both invariants. The dashed circle
is the projection of the spherical Fermi surface used in the
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FIG. 9. All plots are for the tetragonal point group C4v with g2 = 0. See the caption of Fig. 5; here rbulk
� = 0.69 in (b) and (d)–(f). The

vertical magenta line in (b) denotes an ABS for which ϒk = ϒk = −1. The vertical red line in (d) indicates W(111) = −1.

quasiclassical calculations. The red line is given by W(111) =
−1. Thus states corresponding to solutions of Eq. (34) are
directly related to the Z2 invariant being nontrivial, and are
topologically protected as well.

In Fig. 9(e) the band structure is shown for g2 = 0 and
rbulk
� = 0.69 along the k

‖
2 axis with k

‖
1 = 0, and L = 1.3 × 104

layers. Note that the states corresponding to W(111) = −1 are
doubly degenerate on each surface. Just like for O the zero-
energy bands are given by the projection of the nontrivial val-
ues of the topological invariants, which can be seen in Fig. 9(f).

C. The tetrahedral point group Td

To next-nearest neighbors in the sum over Bravais lattice
sites [8] the SOC vector corresponding to the tetrahedral point
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FIG. 10. The SOC vector, defined by Eq. (55). See the caption of
Fig. 2.

group Td takes the form

lk =

⎛
⎜⎝

sin(kx)[cos(kz) − cos(ky)]

sin(ky)[cos(kx) − cos(kz)]

sin(kz)[cos(ky) − cos(kx)]

⎞
⎟⎠ (55)

with no free parameter g2 in contrast with O and C4v . It
is illustrated in Fig. 10. This SOC exhibits line nodes in
the BZ along the paths � → P → H → � and P → N in
Fig. 11(a). Just like for C4v the line nodes intersect the
negative helical Fermi surface for all values of μ, i.e., all Fermi
surface geometries, given a BCC first-order tight-binding
dispersion. Thus min |l(k−

F )| = 0 and there are no gapped
phases with sgn[�−(k−

F )] = −1, which can be seen in the

FIG. 11. (a) The high-symmetry points and axes in the BZ of a
tetrahedral crystal. (b) The topological phase diagram for different
values of the chemical potential. The Fermi surface is open (closed)
for sgn[μ] = ∓1. White areas indicate a gapped phase with trivial
topology, (NL,ν) = (0,0); gray a nodal phase with NL = 1 [loop
defined by Eq. (44)].
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FIG. 12. (a) The quantity r surf
� /rbulk

� = [�s/�t ]
surf[�t/�s]

bulk as
a measure of the order parameter surface suppression. (b) The zero-
bias conductance for the same surface normals as in (a). The numbers
in the legend hold for both plots and correspond to the columns in
Table I showing the scaled singlet to triplet ratios.

topological phase diagram in Fig. 11(b). Just like for C4v there
are only two distinct topological phases: one gapped trivial,
(NL,ν) = (0,0), and a nodal nontrivial, NL = 1, phase.

Due to there being no free parameter to vary, the self-
consistent order parameter is only calculated with this single
SOC vector for this point group. This is done for nine values
of the scaled bulk singlet to triplet ratio, rbulk

� ∈ [0,1.1], with
one active channel. The exact values are shown in Table I. The
suppression of these order parameters is shown in Fig. 12(a)
for the same range of surface normals as for the previously
examined point groups. Here the largest suppression is for
n = (1,1,0) and n = (0,1,2) and barely any suppression at all
for n = (1,1,1).

In Fig. 12(b) the zero-bias conductance for these order
parameters and surface normals is shown. Unsurprisingly the
ZBC is very small for the high-symmetry axes n = (1,0,0) and
n = (1,1,0), it is quite large, but still a local minimum, for the

high-symmetry axis n = (1,1,1), and larger still in between
these surface normals.

The ABSs are spin polarized for this point group as well.
In Fig. 13(a) the quantity N (z)(k), Eq. (33), is plotted for
a pure triplet order parameter and n = (1,0,0). For a pure
triplet N (x) = N (y) = 0. Self-consistency does not drastically
alter the ABSs for this surface normal due to the states
being predominantly located at small energies for glancing
trajectories.

The momentum-resolved zero-energy ABSs for rbulk
� =

0.69 are shown in Fig. 13(b). The states in the middle are
from the nonoverlapping parts of the projection of the nodal
rings around the � → P high-symmetry axis, and the ones
around the edges of the disk from the projection of the nodal
rings around � → H and � → N .

Just like for the other point groups ZBCPs are seen in the
tunnel conductance spectra, with t0 = 10− 1

2 , for n = (1,1,1)
and singlet to triplet ratios in the interval min |lkF

| < �s/�t <

max |lkF
|, i.e., 0 < rbulk

� < 1; see Fig. 13(c). ABSs given
by Eq. (34) only appear for 0 � rbulk

� � 0.28, and then not
for k‖ = 0, which is the most important momentum when
calculating the tunnel conductance [54]. Hence the ZBCPs
emanating from valleys in the spectra.

The nontrivial values of the topological invariant N(111)

(W(111) being trivial for this singlet to triplet ratio) are shown
in Fig. 13(d). The dashed circle is the projection of the
spherical Fermi surface used in the quasiclassical calculations.
Compared to the other point groups considered the spherical
Fermi surface approximation does not work as well due to the
actual Fermi surface bulging out in the k = (1,1,1) direction.
Furthermore, the BZ is not cubic and thus the line integral
defining N(lmn) potentially goes through Fermi surfaces from
adjacent BZs, which is precisely what happens for this surface
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FIG. 13. All plots are for the tetrahedral point group Td . See the caption of Fig. 5; here rbulk
� = 0.69 in (b) and (d)–(f).
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normal. The slightly complicated structure near the circle thus
stems from the partial overlap of the nodal rings of the adjacent
Fermi surface combined with N(lmn) being additive.

Zero-energy flat bands are seen in the band structure for this
point group and surface normal as well, shown for rbulk

� = 0.69
along the k

‖
2 axis, with k

‖
1 = 0 and L = 1.3 × 104 layers, in

Fig. 13(e).
As seen in the plot of the lowest positive band, Fig. 13(f),

the zero-energy states around the origin are somewhat patchy
at this resolution, hence the slight gap at k

‖
2 ≈ ±0.28|kF | in

Fig. 13(e). Furthermore, there is a small gap at k
‖
2 ≈ ±0.8|kF |

in Fig. 13(e), but this is not an artifact of the lower resolution of
the band structure compared to the topological invariant plot,
Fig. 13(d), as there is a small region separating N(111) = ±1 at
these momenta.

IV. CONCLUSIONS

We have theoretically studied noncentrosymmetric super-
conductors self-consistently for the point groups O, C4v ,
and Td , with a closed Fermi surface. Four values of g2,
parameterizing the relative weight of first and second order
contributions in the spin-orbit coupling (SOC), given by the
Bravais lattice sum up to next-nearest neighbors, were chosen
for O in order to investigate all its gapped topological phases
for a closed Fermi surface. The point groups C4v and Td were
shown to have no gapped topological phases, yet two values
of g2 were chosen for C4v in order to study the effect of
second-order contributions in the SOC vector. For Td no higher
order terms in the SOC were seen up next-nearest neighbors.

The reason for the existence of gapped topological phases
for O was shown to be due to the fact that the SOC only
vanishes in the Brillouin zone at high-symmetry points,
whereas the SOC vanishes at certain high-symmetry axes for
C4v and Td . It was shown for O that the topology changes at
the Lifshitz transition, i.e., at the transition point between an
open and closed Fermi surface. This does not happen for C4v

and Td and the Lifshitz transition is topologically seamless.
In the bulk it was shown that there are two distinct mixed

states: with one or two nucleation channels. In both cases it
was demonstrated that there is a possibility of a crossover from
dominating singlet to dominating triplet, or vice versa, with
decreased temperature. Depending on the material this could
be important if experiments are done at different temperatures.
With two nucleation channels there is a possibility of a second
phase transition at the subdominant critical temperature and
it was shown by explicit construction that the subdominant
channel for certain parameter values indeed has lower free
energy. Whether this can be extended to more complicated
Fermi surface geometries and parameter values remains to be
seen.

The order parameter suppression’s dependence on surface
orientation and singlet to triplet order parameter ratio was stud-
ied for a range of different surface normals. The suppression
was seen to be highly dependent on surface orientation.

The Andreev bound states (ABSs) are found to be spin
polarized with different polarization axes for different singlet
to triplet ratios. The order parameter suppression affects the
ABSs heavily for glancing trajectories and subgap energies

close to the gap, and less for smaller energies. Zero-energy
states are not affected by the calculated suppression. Thus
the zero-bias conductance peaks are present in the non-self-
consistent tunnel conductance as well.

We showed that the zero-energy surface states are topolog-
ical in nature. Thus it is clear that the calculated suppression
should not affect the zero-energy states due to the gap not
vanishing at any distance from the surface. Whether this can
happen for other parameters and/or surface orientations is an
open question.
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APPENDIX A: TEMPERATURE DEPENDENCE
OF THE GAP

The self-consistency equation for the order parameter
Eq. (27) can be written symbolically in the form of a fixed
point equation

� = F(�), (A1)

where � = (�s,�t )T , and the function F(�) is simply a
shorthand notation for the right-hand side of Eq. (27). Any
� that obeys Eq. (A1) is called a fixed point. Then an iteration
scheme is employed to find a convergence to a fixed point. This
yields a series of points �1, �2, . . ., which hopefully converges
to a solution. The procedure is said to have converged when
the difference between iterations is sufficiently small,

|�n+1 − �n|
|�n| < c, (A2)

where the number c is the convergence criterion. In the bulk
the fixed points can be obtained by computing F(�) for a vast
number of points.

We illustrate the method for the case of two attractive chan-
nels. Because the number of possible independent attractive
fixed points is equal to the number of positive eigenvalues to
the matrix L, one has for values of (vs,vt ,vm) in the yellow oval
in Fig. 1 two nucleation channels. However, the subdominant
channel does in general not nucleate at Tc, but at a lower
temperature, T sub.

c < Tc. Thus, if one follows the procedure in
the previous paragraph for the initial guesses �0 one will not
see the possible transition to the subdominant channel. What
is needed in this case is to calculate the order parameter with
increasing temperature instead of decreasing. By computing a
few iterations, n ∼ 20, at a sufficiently low temperature, say
T = 0.1Tc (which must be smaller than T sub

c obviously), for
a number of random initial guesses, an attractive fixed point
corresponding to the subdominant channel is obtained, and
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FIG. 14. Two examples for convergence diagrams for a mixed
order parameter with two active channels (dominant and subdom-
inant), for point group O with g2 = 0, and (vs,vt ,vm) = (〈|lk|2〉,1,

−0.1〈|lk|2〉) (ignoring normalization). See text for explanation.

is denoted �sub. For the lowest temperature the initial guess
will thus be �sub, and subsequent guesses �0(T + δT ) =
�n(T ). By calculating the order parameter this way, it will
converge to the subdominant channel value until T � T sub

c .
At T = T sub

c the order parameter transitions to the dominant
channel value due to it being the only attractive fixed point
at these temperatures, unless the subdominant channel value
at T = T sub

c is zero, �n(T sub
c ) = 0, in which case it will stay

zero. In this manner, the subdominant critical temperatures are
obtained.

A choice of parameter values yielding an admixture of
singlet and triplet with an attractive subdominant channel
is, e.g., (vs,vt ,vm) = (1,1/〈|lk|2〉, − 0.1) (ignoring normaliza-
tion). In Fig. 14 examples for the fixed point iteration are
shown for the point group O (the plots look qualitatively
similar for all other point groups). The gray blobs correspond
to the function f (�) = |� − F(�)|. Darker indicates smaller
values of f (�), and pure black indicates the existence of a
fixed point. The colored circles connected by lines show the
convergence of 25 random initial guesses, �0, progressing a
number of iteration steps. The colors of the circles indicate
the iteration number n, starting with dark blue for n = 0,
transitioning through cyan, green, yellow, and ending with
red for n = nmax. Any fixed point that �nmax converges to is
an attractive fixed point; however there are repulsive fixed
points present in the subdominant channel. Concentrating on
the subdominant channel, Fig. 14, one notices in addition to
the attractive fixed points also two repulsive fixed points. From
numerical investigations this seems to be a general feature,
and the fixed points roughly fall on a parallelogram with the
attractive fixed points at the vertices.

A criterion of whether a second phase transition exists can
be obtained from the condensation energy, Eq. (31). Thus there
is a second phase transition if it holds that

[|�s |2 + 2|�s�t |〈|lk|〉 + |�t |2〈|lk|2〉]sub

> [|�s |2 + 2|�s�t |〈|lk|〉 + |�t |2〈|lk|2〉]dom (A3)

at zero temperature. For certain parameters this is indeed the
case. In general, how small T sub

c can be without losing the
second phase transition depends on the point group. The key
to getting a second phase transition is to choose (vs,vt ,vm)
in such a way as to get a dominant channel with a large

triplet component, as well as a rather large subdominant critical
temperature.

APPENDIX B: ZERO-BIAS ANDREEV BOUND STATES

In the bulk, for zero energy and for a real order parameter,
the coherence functions take a particularly simple form,

γ (k) = i

(
sgn[�+(k)]t+(k) 0

0 sgn[�−(k)]t−(k)

)
, (B1)

γ̃ (k) = −i

(
sgn[�+(k)]t∗+(−k) 0

0 sgn[�−(k)]t∗−(−k)

)
.

(B2)

The values for the parameters (vs,vt ,vm) were chosen to yield
positive singlet and triplet components, and we can therefore
simplify the expressions further to

γ (k) = i

(
t+(k) 0

0 ϒkt−(k)

)
, (B3)

γ̃ (k) = −i

(
t∗+(−k) 0

0 ϒkt
∗
−(−k)

)
, (B4)

where ϒk ≡ sgn[�s/�t − |lk|]. We are interested in zero-bias
states protected by topology, for which it suffices to discuss
the non-self-consistent order parameter, i.e., bulk values all
the way to the surface. Because ϒk and ϒk can take three
values each there are 32 = 9 different cases to consider. They
are listed below together with the equations for surface ABSs,
using the (real) reflection amplitude 0 � r � 1. The solutions
separate naturally into three groups. The first group,

ϒk = 1,ϒk = 1 : r2 + 1 = 0, (B5)

ϒk = 1,ϒk = 0 : r2 + 1 = 0, (B6)

ϒk = 0,ϒk = 1 : r2 + 1 = 0, (B7)

has no solutions. Therefore, there can be no ZBCPs for rbulk
� >

max |lkF |, because ϒk = +1 ∀k. The second group,

ϒk = 1,ϒk = −1 : r4 − 1 = 0, (B8)

ϒk = −1,ϒk = 1 : r4 − 1 = 0, (B9)

requires r = 1, as well as a sign change of ϒ when reflected
at the surface. The third group is

ϒk = 0,ϒk = 0 : F (φl,θl,φl,θl) + 2 + r2

r2
= 0, (B10)

ϒk = 0,ϒk = −1 : F (φl,θl,φl,θl) + 1

r2
= 0, (B11)

ϒk = −1,ϒk = 0 : F (φl,θl,φl,θl) + 1

r2
= 0, (B12)

ϒk = −1,ϒk = −1 : F (φl,θl,φl,θl) + 1 + r4

2r2
= 0, (B13)

where F (φl,θl,φl,θl) ∈ [−1,1] is defined after Eq. (34).
Equation (B10) has no solution for real r , and the remaining
equations have solutions only for r = 1. Thus, there are only
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FIG. 15. The first row shows the SOC vector field projected on the k = (1,1,1) direction for the point group O and indicated parameters
g2. The grayscale corresponds to |lkF

|, and the arrows show the direction of lkF
for selected points. Note the different grayscale bars (black

and white correspond to nonzero local minima and local maxima). The second and third rows show the angle-resolved surface ABSs at zero
energy for surface normals n = (1,1,1) (second row) and n = (0,1,2) (third row). Here, the green and yellow regions are given by solution to
Eqs. (B8) and (B9), respectively. The magenta colored dots in the second and third row correspond to solutions to Eqs. (B11)–(B13). The order
parameters for the four columns from left to right correspond to the scaled singlet to triplet ratios rbulk

� = {0.74,0.71,0.66,0.70}, respectively.
Only one pairing channel is active, and T = 0.2Tc.

two classes of trajectories giving rise to ABSs at zero energy,
the first class given by Eqs. (B8) and (B9) and the second class
given by Eqs. (B11)–(B13).

Figure 15 shows solutions to Eqs. (B8) and (B9) and
Eqs. (B11)–(B13) for two surface normal directions.

APPENDIX C: 3D WINDING NUMBER

The 3D winding number is given by [32]

ν =
∫

BZ

d3k

24π2
Tr[εabcMaMbMc], (C1)

where Ma = q−1∂aq. Introducing the notation q(k) =
C0(k)σ0 + C(k) · σ with C = (C1,C2,C3), and q−1 =
[C2

0 − |C|2]
−1

(C0σ0 − C · σ ), and R = [C2
0 − |C|2], and the

4 × 4 matrix

Z =

⎛
⎜⎜⎜⎝

C0 C1 C2 C3

∂xC0 ∂xC1 ∂xC2 ∂xC3

∂yC0 ∂yC1 ∂yC2 ∂yC3

∂zC0 ∂zC1 ∂zC2 ∂zC3

⎞
⎟⎟⎟⎠, (C2)

we find the exact formula for the trace

Tr[εabcMaMbMc] = 12iR−2 det(Z). (C3)

[1] Non-Centrosymmetric Superconductors, edited by Ernst Bauer
and Manfred Sigrist, Lecture Notes in Physics Vol. 847
(Springer-Verlag, Berlin, Heidelberg, 2012), 1st ed.

[2] Xiao-Liang Qi and Shou-Cheng Zhang, Topological in-
sulators and superconductors, Rev. Mod. Phys. 83, 1057
(2011).

024513-15

https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/RevModPhys.83.1057


NICLAS WENNERDAL AND MATTHIAS ESCHRIG PHYSICAL REVIEW B 95, 024513 (2017)

[3] Sungkit Yip, Noncentrosymmetric superconductors, Annu. Rev.
Condens. Matter Phys. 5, 15 (2014).

[4] Y. Ando and L. Fu, Topological crystalline insulators and
topological superconductors: From concepts to materials, Annu.
Rev. Condens. Matter Phys. 6, 361 (2015).

[5] Y. Nakajima, R. Hu, K. Kirshenbaum, A. Hughes, P. Syers, X.
Wang, K. Wang, R. Wang, S. R. Saha, D. Pratt, J. W. Lynn, and
J. Paglione, Topological RPdBi half-Heusler semimetals: A new
family of noncentrosymmetric magnetic superconductors, Sci.
Adv. 1, e1500242 (2015).
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