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Superconductivity on a quasiperiodic lattice: Extended-to-localized crossover of Cooper pairs
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We study a possible superconductivity in quasiperiodic systems by portraying the issue within the attractive
Hubbard model on a Penrose lattice. Applying a real-space dynamical mean-field theory to the model consisting
of 4181 sites, we find a superconducting phase at low temperatures. Reflecting the nonperiodicity of the Penrose
lattice, the superconducting state exhibits an inhomogeneity. According to the type of the inhomogeneity, the
superconducting phase is categorized into three different regions which cross over each other. Among them,
the weak-coupling region exhibits spatially extended Cooper pairs, which are nevertheless distinct from the
conventional pairing of two electrons with opposite momenta.
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Quasicrystal is a crystal without translational symmetry.
Prominent spots observed in its diffraction pattern manifest an
orderly structure while they do not conform to any periodicity.
An example of such structures holds the icosahedral point-
group symmetry, as first discovered by Shechtman et al. [1],
and various other structures have hitherto been reported [2–4].
These structures may originate novel electronic properties
distinct from those of conventional periodic crystals. In
fact, previous theoretical works revealed various nontrivial
properties, such as the presence of a confined state [5,6],
fractal dimensions [7–9], singular continuous spectral mea-
sure [8,10,11], pseudogap in the density of states [12], and
a conductance decaying in power of system size [13,14], for
free electrons on the quasiperiodic lattices. Moreover, recent
observation of quantum critical behavior in Au51Al34Yb15 [15]
has stimulated theoretical studies [16–25] on the role of
electron correlations in these systems.

Another interesting recent observation is a superconduc-
tivity in approximant crystals (i.e., periodic crystals with the
same local structure as the quasicrystals), Au64Ge22Yb14 and
Au63.5Ge20.5Yb16 [26]. A superconductivity has also been
reported in Al-Cu-(Mg, Li) quasicrystalline alloys [27,28].
These observations raise fundamental questions about a pos-
sible superconductivity in quasicrystals: How can a supercon-
ductivity emerge in a system without translational symmetry?
If it exists, what differs from the superconductivity in periodic
systems? These questions also have a relevance to experiment
of ultracold atomic gases, for which optical quasiperiodic
lattices have been available [29–32].

According to an early consideration by Anderson [33] about
the impurity effect on superconductivity, Cooper pairs can
exist in principle even in the absence of the translational
symmetry. In this case, an electron finds its partner in the
time-reversed state, which is a generalization of the standard
pairing of k ↑ and −k ↓. However, as a matter of course,
this does not guarantee the presence of superconductivity
in quasiperiodic systems. This many-body problem requires
an explicit calculation taking into account both the pairing
interaction and the lattice geometry.

In this paper we address the above issues in a simple setting,
i.e., the attractive Hubbard model on a Penrose lattice [34].
On periodic lattices, the attractive Hubbard model is known

to show the superconductivity at any finite value of the
attraction U < 0 in the ground state while the character of
the superconducting transition changes with U [35]: For small
|U | (typically smaller than the bandwidth), it follows well the
Bardeen-Cooper-Schrieffer (BCS) theory [36] while for large
|U | it behaves like a Bose-Einstein condensation (BEC) of
incoherent pairs preformed above the transition temperature.

We study the attractive Hubbard model on the Penrose
lattice within the real-space dynamical mean-field theory
(RDMFT) [20,37–39] explained below. At low temperatures,
we find a superconducting phase in a wide range of U

and electron density. The on-site pair amplitude shows a
site dependence, yielding various spatial patterns depending
on the electron density and U . Analyzing them, we find
three distinct regions, which cross over each other, within
the superconducting phase; (i) weak-coupling region, where
the Cooper pairs are spatially extended, (ii) low-density and
strong-coupling region, where the BEC picture holds aside
from the electron-density modulation, and (iii) high-density
and strong-coupling region, where the density modulation is
relatively weak and the Cooper pairs are short ranged. We show
that the superconducting state (i) reflects the geometry of the
Penrose lattice most strongly and constitutes a new pairing
state which departs from both the BCS and BEC pictures.

The Hubbard Hamiltonian reads

H = −t
∑

〈ij〉σ
c
†
iσ cjσ − μ

∑

iσ

niσ + U
∑

i

ni↑ni↓, (1)

where ciσ (c†iσ ) annihilates (creates) an electron of spin σ at
site i on the two-dimensional Penrose lattice and niσ ≡ c

†
iσ ciσ .

t is the transfer integral between the nearest-neighbor sites 〈ij 〉
and μ is the chemical potential. We consider an open-boundary
cluster of N = 4181 sites, generated by iteratively applying
the inflation-deflation rule [40]. The cluster holds a fivefold
rotational symmetry as illustrated in Fig. 1. We take t = 1
as the unit of energy. At U = 0, the difference between the
highest and lowest eigenenergies (i.e., the “bandwidth”) is
about 8.46, which is close to the value (8.47) estimated for
the infinite lattice [5]. We have chosen the two-dimensional
lattice, rather than three-dimensional one, in order to study a
long-range behavior reflecting the quasiperiodicity.
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FIG. 1. Two-dimensional Penrose lattice of 4181 sites. The sites
are located at vertices of rhombuses. Top-right panel is an enlarged
view of a part of the lattice.

In the RDMFT, the effective impurity model is defined and
solved at each symmetrically independent site (which amounts
to 444 sites for N = 4181). As the impurity solver, we use a
finite-temperature exact-diagonalization (ED) method [41,42]
extended to the superconducting state [43,44]. The calculated
local self-energy �i has a dependence on the site index i while
the nonlocal self-energies are neglected.

In the superconducting state, �i is a 2 × 2 Nambu matrix
while here we use a plain notation just for the sake of brevity.
We define the lattice Green’s function Ĝlat as a real-space
matrix:

[Ĝlat(iωn)−1]ij = [iωnσ0 + μσ3 − �i(iωn)]δij − tσ3δ〈ij〉,

(2)

where ωn = (2n + 1)πT is the Matsubara frequency at a
temperature T , and σ0,3 is the Pauli matrix. δ〈ij〉 = 1 for
nearest-neighbor sites 〈ij 〉 and 0 otherwise. Taking the matrix
inverse of the right-hand side of Eq. (2), we obtain Green’s
function reflecting the hopping structure of the Penrose lattice.
The dynamical mean field g0

i (iωn) at each site i is determined
self-consistently by

g0
i (iωn) = {[Ĝlat(iωn)−1]ii + �i(iωn)}−1. (3)

In order to apply ED, we fit g0
i (iωn) with a function involving

six bath sites, which indeed give a sufficiently accurate fitting
for the parameters studied in this paper.

The RDMFT can describe both the BCS and BEC regimes
on equal footing [43,45–49]. Although the RDMFT neglects
the spatial fluctuations, we take this approach to study the
sufficiently large cluster reflecting the quasiperiodicity of our
primary interest, at sacrifice of two dimensionality.

Figure 2 shows that the on-site superconducting order
parameter OPi ≡ 〈ci↑ci↓〉 indeed becomes finite at low T [50].
The phase of OPi is always found to be uniform in space
(so that we take all OPi’s to be positive hereafter) while its
amplitude depends on sites as represented by the scattering
red crosses. Despite the inhomogeneity in OPi , the normal-to-
superconducting transition occurs simultaneously at every site
within the precision of the present calculation [Fig. 2(a)]. The
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FIG. 2. (a) T dependence of OPi (red crosses) and OP (black
dots) for n̄ = 0.5 and U = −4. Blue curve plots the DMFT results
for the Bethe lattice with the bandwidth 8t at quarter filling. (b) The
same for U dependence for n̄ = 0.5 and T = 0.01.

mean value OP ≡ 1
N

∑
i=1,...,N OPi (denoted by black dots)

increases monotonically with |U |, similarly to the case of
the Bethe lattice in infinite dimensions (blue dashed curve)
[Fig. 2(b)]. Note that the transition temperature and OP show
scales similar to those of the Bethe lattice with a similar
bandwidth.

Figure 3 depicts the spatial patterns of OPi , as well as
of ni ≡ ∑

σ 〈niσ 〉, at T = 0.01. The patterns change with U

and the average density n̄ ≡ 1
N

∑
i=1,...,N ni , holding a fivefold

rotational symmetry. Here we show three distinct examples.
Figure 3(a) shows a representative result for a weak coupling,
where OP is not large [see Fig. 2(b)]. While ni clearly shows an
orderly structure, OPi does not show an appreciable pattern. At
strong coupling, we find two different patterns depending on
n̄. Figure 3(b) represents the result for a relatively low density,
where OPi oscillates in a short length (of the order of the
nearest-neighbor distance) concomitantly with ni . Figure 3(c)
represents the result for a relatively high density, where OPi

oscillates in a longer length (of the order of ten sites) and shows
a pattern different from that of ni though some correlation
between them is still recognizable. This result indicates a
presence of another factor, in addition to ni , determinant to
the spatial structure of OPi .

(b) n=0.5, U=-16 (c) n=0.9, U=-8

ni

OPi

ni

OPi

- -(a) n=0.5, U=-2-

ni

OPi

FIG. 3. Spatial patterns of OPi and ni at T = 0.01 for three
different sets of U and n̄. The sites with Qi > Q (Qi < Q) with
Q = OP and n are colored by red (yellow).
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FIG. 4. OPi plotted against ni/2(1 − ni/2) for various sets of n̄

and U at T = 0.01. In order of (a)-(b)-(f)-(c)-(d), |U | increases at
a fixed n̄ = 0.5. In order of (e)-(f)-(g)-(h), n̄ increases at a fixed
U = −8. Thick gray dashed curve in (d) shows the result calculated
for the infinite-dimensional Bethe lattice with the bandwidth 8t .

This second factor is the number of bonds (the coordination
number) Zi at each site, which ranges from two to seven,
depending on the local geometry of each site. To see this, in
Fig. 4, we first plot OPi against the product of the particle
and hole densities ni/2(1 − ni/2), which is apparently related
to the density of the Bogoliubov quasiparticles [51,52]; This
quantity takes the maximum (0.25) for ni = 1 (half-filling)
and decreases monotonously as ni goes away from 1. We
then find that the data points are well categorized by Zi while
they exhibit several different characteristics depending on n̄

and U .
For small |U | [Fig. 4(a)], the data points are rather scattered.

However, as |U | increases in order of Figs. 4(a)-4(b)-4(f)-
4(c)-4(d), all the data points merge into one curve, which
increases monotonously with ni/2(1 − ni/2). While the extent
of ni/2(1 − ni/2) remains to be similar (0.05 � ni < 0.25) for
all the studied values of U , OPi ranges considerably wider for
larger |U |; 0.12 � OPi � 0.26 for U = −4 and 0.2 � OPi �
0.5 for U = −16.

At U = −16, each section of the curve is well grouped by
Zi : There remains a tendency that ni/2(1 − ni/2) is larger
for larger Zi . This suggests that ni is determined mainly
by Zi while OPi is governed by ni/2(1 − ni/2) (or more
simply ni) rather than Zi itself. This is likely because the
Cooper pairs at U = −16 are so strongly localized that Zi is
not directly relevant. In Fig. 4(d) we also plot the result for
the infinite-dimensional Bethe lattice (with bandwidth 8t) at
U = −16 and T = 0.01, where the electron density is changed
from 0.04 to 1.0 (gray dashed curve). Its nice agreement with
the Penrose results confirms that OPi in this region follows
the behavior expected from a local physics controlled only
by the electron density. Namely, provided an inhomogeneity
in the electron density, the superconductivity in this region is
well understood within the BEC picture.

In turn, this demonstrates that the superconductivity at
smaller |U | [Figs. 4(a) and 4(b)], where the data points do
not follow a simple curve, is not determined solely by the
local physics and instead reflects the geometry around each
site. Namely, the Cooper pairs in this region are extended

in space. Since the lack of the translational symmetry in the
Penrose lattice does not allow the conventional Cooper pairing
formed at the opposite Fermi momenta, this extended Cooper
pairs [depicted in Fig. 3(a)] should be unconventional. We
shall substantiate this point below.

By changing n̄ in order of Figs. 4(e)-4(f)-4(g)-4(h), we
find even different characteristics in the OPi-ni/2(1 − ni/2)
plot. The structure at n̄ = 0.3 [Fig. 4(e)] is similar to Fig. 4(d)
discussed just above. Then, as n̄ increases with fixing U = −8,
the data points overall shift to a higher value of ni/2(1 − ni/2),
and eventually at n̄ = 0.9, most of the points are within 0.2 �
ni/2(1 − ni/2) � 0.25, i.e., {ni} approaches a homogeneous
distribution.

Here a caveat is needed: In general a charge order due
to the attractive interaction can occur for n̄ � 1 while we
have suppressed it by mixing g0

i (iωn) in Eq. (3) with the one
obtained in the previous self-consistency loop. This is to focus
on the inhomogeneity inherent to quasiperiodicity rather than
highlighting the charge ordering which may occur particularly
easily in the present bipartite lattice. In the limit of strong
coupling, the present results at half-filling would be connected
to the antiferromagnetic phase found in the Heisenberg model
on the Penrose lattice [53–55].

In Fig. 4(h), a comparison at a fixed ni shows that OPi

decreases with Zi . This decrease can be explained by the curve
in Fig. 2(b): The sites with large Zi are considered to be
weakly correlated compared to those with smaller Zi , and
then, according to Fig. 2(b), the former OPi is smaller than
the latter. Thus, OPi in Fig. 4(h) is determined by Zi rather
than ni and this is again beyond the local physics. On the
other hand, the fact that for each Zi the points follow one
curve indicates the short-ranged pairs: The geometry beyond
the nearest neighbors does not play a significant role (other
than changing ni slightly). This is distinct from Fig. 4(a),
where a longer-range geometry beyond the nearest neighbors
plays a role. We therefore conclude that the superconducting
state depicted in Figs. 4(h) and 3(c) constitutes another type
of unconventional superconductivity.

In order to examine the change of the spatial extent of the
Cooper pairs, we calculate the off-site pair amplitude OPij ≡
〈ci↑cj↓〉. Figure 5(a) plots it (after the normalization by OP)
against the Euclidean distance ||ri − rj || (ri : the Cartesian
coordinate of site i) for the three states in Fig. 3. For n̄ = 0.5
and U = −2 (yellow), OPij decays slowly, demonstrating that
the Cooper pairs are extended in space. On the other hand,
for n̄ = 0.5 and U = −16 (red) and for n̄ = 0.9 and U = −8
(blue), OPij decays much faster: The inset shows that the
former decays even faster than the latter. These results support
the above interpretations of the three different superconducting
states.

Figures 5(b)–5(f) further clarify the nature of the Cooper
pairs. Here we have defined a Fourier-transformed pair am-
plitude OPkk′ ≡ 〈ck↑ck′↓〉. In periodic systems, OPkk′ is finite
only along the k′ = −k line, as demonstrated in Figs. 5(b)
and 5(c) for a square lattice: Figure 5(b) shows a prototype
in the BCS region where OPk,−k is substantial only around
the Fermi momenta, while Fig. 5(c) shows a prototype in the
BEC region where OPkk′ is distributed along the k′ = −k
line.
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FIG. 5. (a) Off-site pair amplitude OPij ≡ 〈ci↑cj↓〉 (normalized
by OP) plotted against the Euclidean distance ||ri − rj || for the three
states shown in Fig. 3. Inset: Enlarged view for the short-distance
part of red triangles and blue crosses. (b) and (c) Intensity map of
|OPkk′ | calculated for a square lattice with the bandwidth 8t at quarter
filling for U = −2 and −16, respectively. Just for plotting purpose,
we set kx = ky = k and k′

x = k′
y = k′. (d)–(f) The same quantity for

the three states in (a), plotted with a cutoff at |k|,|k′| = 10.

This latter BEC feature is found in Figs. 5(e) and 5(f) of
Penrose, although OPkk′ is not strictly zero even for k′ 	= −k.
Meanwhile, in Fig. 5(d) several high-intensity lines are
discernible besides k′ = −k. In addition, high-intensity spots
exist on the k′ = −k line, despite that the Fermi momentum is
undefined on the Penrose lattice. Because a similar structure
is obtained even when we use only inner sites for the Fourier
transformation, this cannot be attributed to a boundary effect.
This nontrivial structure differs from a disordered BCS state,
suggesting a unique pairing intrinsic to the Penrose lattice.
Note that the lack of the inversion symmetry in the Penrose
lattice suggests that this pairing is a mixture of spin singlet
and triplet.

We summarize the results in Fig. 6. The phase diagram is
calculated at T = 0.01, where only the ground state has a sub-
stantial Boltzmann weight except for n̄ � 0.3 and/or |U | � 2.
The yellow, red, and blue regions denote the superconducting
states represented by Figs. 3(a), 3(b), and 3(c), respectively. In
the yellow region, the Cooper pairs are spatially extended while
the pairing departs from the BCS theory. The red region follows
the BEC picture aside from the electron-density modulation.
In the blue region, the Cooper pairs are nonlocal but short

FIG. 6. Phase diagram on the n̄-U plane at T = 0.01. SC denotes
the superconducting phase. The yellow, red, and blue regions, which
are judged from the characteristics seen in the OPi-ni/2(1 − ni/2)
plots like Fig. 4, denote the superconducting states represented by
Figs. 3(a), 3(b), and 3(c), respectively.

ranged. These three states cross over each other, as expressed
by the overlaps of colors.

These results reveal that a quasiperiodic system is a fertile
ground of novel superconductivity, which would become
particularly fruitful when the fractal geometry interplays
with the macroscopic quantum nature of superconductivity.
Many issues remain open, such as a functional form of
the extended non-BCS Cooper pairs, physical properties of
these superconductors, and the effect of nonlocal correlations.
Studies for more realistic models, with including phonons,
orbital degrees of freedom, and a variation in the transfer
integrals, are also an intriguing future subject.
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