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Nodal lines and nodal loops in nonsymmorphic odd-parity superconductors
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We discuss the nodal structure of odd-parity superconductors in the presence of nonsymmorphic crystal
symmetries, both with and without spin-orbit coupling, and with and without time-reversal symmetry. We
comment on the relation of our work to previous work in the literature, and also the implications for unconventional
superconductors such as UPt3.
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I. INTRODUCTION

Power-law temperature dependences of certain physical
properties in heavy electron superconductors that were dis-
covered in the 1980s indicated the possible presence of nodes
of the superconducting order parameter that form lines on
the Fermi surface [1]. This motivated a study by Blount [2]
where he showed that in the presence of spin-orbit coupling,
one would not expect line nodes for an odd-parity order
parameter: the constraint of having all three components
of the triplet vanish can happen at most at points on the
Fermi surface. This was an issue when an odd-parity order
parameter was proposed to explain experimental data in
UPt3 [3,4] which was consistent with later phase sensitive
Josephson tunneling measurements [5]. In 1995, though, one
of the authors found a possible solution to this problem, by
showing that there is a counterexample to Blount’s theorem
for nonsymmorphic odd-parity superconductors (UPt3 being
such an example given its P 63/mmc space group) [6]. By
explicit construction of the pair wave functions, it was found
that on the zone face, kz = π/c, all components of the triplet
belonged to the same group representation (as opposed to
what happens on the kz = 0 zone plane), meaning that for
the proposed E2u symmetry, line nodes are indeed possible
(two of the Fermi surfaces of UPt3 intersect this zone face).
This was a consequence of the nonsymmorphic phase factors
associated with the c axis (which is a screw axis for this space
group). These considerations also potentially apply to other
superconductors. For instance, UBe13 has the nonsymmorphic
space group Fm3̄c.

In 2009, a more rigorous treatment of this problem for the
general nonsymmorphic case was formulated by us based on
group theoretical arguments [7]. Very recently, this problem
has been revisited by Yanase [8] and Kobayashi et al. [9].
The former found that the nodal “lines” actually reconstruct
to form nodal “loops” (called “rings” in the latter) which,
as we demonstrate here, shrink to zero as the ratio of the
superconducting gap to the spin-orbit interaction increases.
This is discussed in greater detail in Sec. III. The latter
also discussed the mirror eigenvalues associated with these
nodal loops, as well as contrasted the group theoretical and
topological approaches to this problem. It is our purpose here
to clarify matters by a general group theoretical approach
that in addition generalizes our previous work to the case

where spin-orbit interactions are absent, and also to the case of
time-reversal symmetry breaking. We also consider the effect
of glide-plane symmetries, and find that these do not protect
line nodes as do the screw-axis symmetries.

II. GROUP THEORY

The nodal structure of superconducting order parameters
can be understood from representations of the symmetry
group of the underlying crystal. The absence of certain
representations on high-symmetry planes or lines in the
Brillouin zone implies the presence of line or point nodes
of the Cooper-pair wave function, respectively, in cases where
the Fermi surface intersects these planes or lines. Representa-
tions of the superconducting order parameter in symmorphic
crystals are readily found from the underlying point-group
symmetries [10]. Nonsymmorphic crystals, however, contain
symmetries which consist of the combined operation of
point-group elements with translations by fractions of a lattice
vector. These nonprimitive translations generate additional
phase factors which have to be accounted for in the derivation
of the Cooper-pair representations. Indeed, these phase factors
may conspire in a way to exclude some of the symmetry-
allowed representations on high-symmetry planes, implying
the possibility of new symmetry-enforced line nodes of the
order parameter which are absent in symmorphic crystals [6,7].
A convenient way to derive space-group representations of the
Cooper-pair wave function is to construct antisymmetrized
products of the irreducible single-particle space-group repre-
sentations [11–13], as we discuss next.

A. Induced Cooper-pair representations

Consider a centrosymmetric crystal generated by a nonsym-
morphic space group. In the following, we denote space-group
elements by (g,t), where g refers to the point-group operation
and t accounts for possible nonprimitive lattice translations,
e.g., (I,0) is the inversion symmetry, etc. Our focus here
is on line nodes in odd-parity superconductors protected by
nonsymmorphic symmetries. We therefore concentrate on
odd-parity representations of the Cooper-pair wave function
at Brillouin-zone points k belonging to symmetry planes
of nonsymmorphic symmetry operations. Specifically, we
consider symmetry planes kz = 0,π of a glide operation
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(σz,tσ ) and the combined action of inversion and twofold screw
axis, (2z,t2)(I,0) (from now on, we set the lattice constant
to unity). Here and in the following, 2z denotes the twofold
rotation around the z axis, σz is reflection in the z plane, and
t2/σ is half a primitive translation along/perpendicular to the z

direction.
One can construct representations of the Cooper-pair

wave function from the single-particle representations γk of
symmetry operations m ∈ Gk leaving k invariant (the “little
group”) [12]. To this end, one induces representations P − of
the antisymmetrized Kronecker product with vanishing total
momentum (modulo a reciprocal lattice vector) [11–13]

χ [P −(m)] =χ [γk(m)]χ [γk(ImI)], (1)

χ [P −(Im)] = − χ [γk(ImIm)], (2)

where χ are the characters of the representation and for nota-
tional convenience we introduced I ≡ (I,0). In the presence
of the spin-orbit interaction, the above equations characterize
the pseudospin-triplet components of the Cooper-pair wave
function. In the absence of spin-orbit, spin rotational symmetry
is conserved and they account for the Cooper pair’s orbital
degree of freedom of a spin-triplet state.

Single-particle representations γk entering Eqs. (1) and (2)
are double or single valued, depending on the presence of
the spin-orbit interaction. Time-reversal symmetry θ can
moreover induce extra degeneracies. These are detected by
Herring’s criterion [14,15] and taken into account by passing
to the corresponding corepresentations (see Appendix A). We
next apply the outlined procedure to construct Cooper-pair
representations for the symmetries of interest.

B. Twofold screw axis

Consider first the presence of a twofold screw symmetry
(2z,t2) along the z axis. Line nodes can be enforced on the
symmetry planes kz = 0,π characterized by the little group
Gk = {(E,0),(σz,t2)}. Notice that in spite of its nonprimitive
translation vector (σz,t2) = (2z,t2)I is a symmorphic oper-
ation since the former can be removed by redefinition of the
spatial origin (that is, it is a mirror plane, not a true glide plane).
We next induce representations in the described manner,
i.e., by defining characters for the symmetry operations in
Gk ∪ IGk = {(E,0),(σz,t2),(I,0),(2z,t2)}.

Recalling the multiplication rule for nonsymmorphic group
elements [12], (g1,t1)(g2,t2) = (g1g2,t1 + g1t2), it is verified
that I(σz,t2)I = e−ikz (σz,t2). We can thus simplify characters
in Eqs. (1) and (2) for the symmetry planes of interest as
summarized in Table I. From this table we then read off

TABLE I. Character table for representations P − of antisym-
metrized Kronecker deltas induced by single-particle representations
of dimension d on the high-symmetry planes. For notational conve-
nience, we suppress γk.

(E,0) (σz,t2) (I,0) (2z,t2)

kz = π d2 −χ 2[(σz,t2)] −d χ [(σ 2
z ,0)]

kz = 0 d2 χ 2[(σz,t2)] −d −χ [(σ 2
z ,0)]

TABLE II. Character table for the irreducible representations of
the Cooper-pair wave function on high-symmetry planes of a screw
axis/glide plane (t = tz/σ for a screw axis/glide plane). The second
column determines the mirror eigenvalue of the Cooper pair.

(E,0) (σz,t) (I,0) (2z,t)

Ag 1 1 1 1
Au 1 −1 −1 1
Bg 1 −1 1 −1
Bu 1 1 −1 −1

irreducible components of the Cooper-pair representations
given in Table II. Notice that the second column in Tables I
and II determines the mirror eigenvalue of the Cooper pair.
We are thus left with the task of finding characters in the
second and fourth columns which depend on the underlying
symmetries.

In the presence of the spin-orbit interaction, γk are
double valued with purely imaginary eigenvalues. That is,
χ [γk(σ 2

z ,0)] = −d and χ [γk(σz,t2)] = ±id with d the di-
mension of γk. Time-reversal symmetry may induce extra
degeneracies. Applying Herring’s criterion, one indeed detects
(Kramers) degeneracies on both symmetry planes. That is,
d = 2 and one has to consider the corresponding double-
valued corepresentations (see Appendix A for details). If
time-reversal symmetry is broken, γk are one-dimensional. In
the absence of the spin-orbit interaction, γk only account for
the orbital degree of freedom, i.e., are single valued. That is,
χ [γk(σ 2

z ,0)] = d and χ [γk(σz,t2)] = ±d. Herring’s criterion
then signals degeneracies induced by time-reversal symmetry
on the Brillouin-zone face kz = π . The latter are known as
“sticking of bands” induced by a twofold screw axis [14–16],
and one has to pass to the single-valued corepresentation (see
again Appendix A for details). When time-reversal symmetry
is broken, γk are again one dimensional.

All characters of the induced representations are sum-
marized in Appendix B. Table III gives the decomposition
of the resulting Cooper-pair representations into irreducible
components of Table II. The first four rows apply in the limit

TABLE III. Decompositions of Cooper-pair representations into
their irreducible components. Here g and u denote the even- and
odd-parity representations and Ag/Bu and Bg/Au are representations
which are even and odd under reflection in the symmetry plane
(i.e., mirror eigenvalues ±1), respectively. The results depend on the
presence of time-reversal symmetry (TRS) and the spin-orbit (SO)
interaction.

SO TRS BZ plane Irreducible components

Yes Yes kz = π P − = Ag + 3Bu

kz = 0 P − = Ag + Bu + 2Au

Yes No kz = π P − = Bu

kz = 0 P − = Au

No Yes kz = π P − = Ag + Bu + 2Au

kz = 0 P − = Bu

No No kz = π P − = Au

kz = 0 P − = Bu
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of a strong spin-orbit interaction. Following Anderson [17],
analogs of Cooper-pair singlet and triplets can then be
constructed from Kramers degenerate states k,θIk and their
time-reversed partners θk,Ik. The pseudospin singlet d0

belongs to the one-dimensional even-parity representation
(g) and the pseudospin-triplet states dx,dy,dz span the three-
dimensional odd-parity representation (u) [18]. On the high-
symmetry planes, the representations are additionally charac-
terized by their mirror eigenvalue, i.e., pair-wave functions
are even (Ag,Bu) or odd (Bg,Au) under reflection about the
plane [19].

The first two rows show that transformation properties of
pseudospin triplets with respect to the mirror plane change
from the basal plane to the Brillouin zone face. That is,
in the presence of time-reversal symmetry, all possible pair
representations are allowed on the basal plane kz = 0. This is
in accordance with Blount’s theorem, since dx and dy belong
to one representation, and dz to the other. On the Brillouin
zone face, on the other hand, odd-parity representations which
are odd under reflection in the plane are absent (that is,
all components of d belong to the same representation).
This opens the possibility of symmetry-protected line nodes
when the Fermi surface intersects the Brillouin zone face and
provides a counterexample to Blount’s theorem as previously
discussed in Refs. [6,7]. The third and fourth lines describe
situations in which Kramers degeneracy is lifted by strong
time-reversal symmetry breaking. In this case, only one of the
four Cooper-pair functions survives, i.e., the pseudospin-triplet
component formed from degenerate states k,Ik (we consider
pairing of nondegenerate states later). Time-reversal symmetry
breaking thus opens the possibility of symmetry-protected line
nodes on both symmetry planes. This has also been discussed
in a recent work by Nomoto and Ikeda [20].

The last four rows apply in the absence of the spin-orbit
interaction. The indicated representations then classify the or-
bital part of the pair wave function. This is combined with one
of the three symmetric spin-triplet states to guarantee overall
antisymmetry of the pair wave function. In the absence of band
degeneracies, representations are thus one dimensional, as in
the last three rows, allowing for symmetry-protected line nodes
on both symmetry planes. In the presence of time-reversal
symmetry, the twofold screw axis induces, however, sticking
of bands on the Brillouin zone face [14–16] (fifth row).
One thus finds four allowed representations and both mirror
eigenvalues are realized. In the absence of both the spin-orbit
interaction and time-reversal breaking, symmetry-protected
line nodes are thus possible on the basal plane but do not
exist on the Brillouin-zone face. The difference from the
first two lines of this table is that this sticking of bands
allows the formation of interband pairs in this case [8]. The
interband pairs are odd in the band index, implying that the
intraorbital part of the Cooper-pair wave function is even
to guarantee overall odd parity (that is, they have opposite
mirror eigenvalues to the intraband pairs). We will return to
this point below. In the absence of time-reversal symmetry,
protected line nodes can appear on both symmetry planes,
independent of the spin-orbit interaction. Finally, we note
that for time-reversal symmetry breaking, the inversion of the
sign of the Cooper-pair mirror eigenvalue of one-dimensional
representations in the presence (third and fourth rows) and

TABLE IV. Character table for representations P − of antisym-
metrized Kronecker deltas induced by single-particle representations
of dimension d on the high-symmetry planes. For notational conve-
nience, we suppress γk, and assume tσ parallel to the x axis.

(E,0) (σz,tσ ) (I,0) (2z,tσ )

kz = π,0 d2 e−ikx χ 2[(σz,tσ )] −d −χ
[(

σ 2
z ,0

)]

absence (seventh and eighth rows) of the spin-orbit interaction
is readily related to the double and single valuedness of the
representations.

C. Glide plane

Consider next a glide-plane symmetry (σz,tσ ), where
without loss of generality we can assume tσ parallel to the x

axis. The little group on the symmetry planes kz = 0,π is Gk =
{(E,0),(σz,tσ )} and we induce representations for the symme-
try operations in Gk ∪ IGk = {(E,0),(σz,tσ ),(I,0),(2z,tσ )}.
Here (2z,tσ ) in spite of its nonprimitive translation is a
symmorphic operation (again the translation can be removed
by redefinition of the spatial origin). Using the commutation
relation I(σz,tσ )I = e−ikx (σz,tσ ), characters of the induced
representations can be simplified, as shown in Table IV. The
induced representations are identical on both symmetry planes.
The dimension d and characters for (σz,tσ ) and (σ 2

z ,0) depend
again on the underlying symmetries.

Let us first consider the presence of the spin-orbit interac-
tion with double-valued representations, χ [γk(σ 2

z ,0)] = −d.
If time-reversal symmetry is preserved, Herring’s criterion
indicates the presence of (Kramers) degeneracies on both
symmetry planes. That is, d = 2 and we need to pass to
the double-valued corepresentation (see Appendix A for
details). If time-reversal symmetry is broken, γk remain one
dimensional and χ [γk(σz,tσ )] = ±ieikx/2. In the absence of
the spin-orbit interaction, on the other hand, all single-particle
representations are one dimensional, independent of time-
reversal symmetry.

All characters of the induced representations are summa-
rized in Appendix B. Table V shows the decompositions of the
resulting Cooper-pair representations into irreducible compo-
nents of Table II. If the spin-orbit interaction and time-reversal
symmetry are both present, all odd-parity representations are
allowed on both planes. That is, glide-plane symmetries do
not provide us with counterexamples to Blount’s theorem. In
the absence of either time-reversal symmetry or the spin-orbit

TABLE V. Decompositions of Cooper-pair representations into
their irreducible components. The latter depend on the presence of
TRS and the SO interaction. Here, g/u denote representations which
are even/odd under inversion and Ag/Bg , respectively, Bu/Au which
are even/odd under reflection in the symmetry plane.

SO TRS BZ plane Irreducible components

Yes Yes kz = π,0 P − = Ag + Bu + 2Au

Yes No kz = π,0 P − = Au

No Yes/no kz = π,0 P − = Bu
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FIG. 1. Illustration of nodal loops in UPt3 based on the toy
model of Yanase [8]. Solid curves indicate the superconducting
state dispersion, and dashed curves the normal state dispersion. (a)
Dispersion along A-H for � = 0.1, where A is (0,0,π/c) and H

is (0,4/3a,π/c). (b) dispersion along A-L for � = 0.1, where A

is (0,0,π/c) and L is (2π/
√

3a,0,π/c). Here, � is the value of
the superconducting E2u order parameter in these energy units, this
being the f function of Yanase which pairs electrons between two
near-neighbor uranium sites (taken here as a constant for illustrative
purposes). The nodes in (a) (due to the absence of intraband pairing
for E2u symmetry) and their lack thereof in (b) (due to interband
pairing, which is allowed for this symmetry) lead to the two nodal
lines closing to form nodal loops in the kz = π/c zone face. (c) Same
as (a), but for � = 0.5, showing the disappearance of the nodes along
A-H , and thus the collapse of the nodal loops [23]. (d) dispersion
along kz normal to the second node along A-H in (a), illustrating that
these are nodal loops, and not toroidal Fermi surfaces. This can also
be seen from plots like in (a), where the nodes lift when kz deviates
from π/c.

interaction, symmetry-protected line nodes can occur on both
symmetry planes.

Our discussion so far has shown that in the presence of
time-reversal symmetry and the spin-orbit interaction, only
twofold screw axes can protect line nodes in odd-parity
superconductors. Next, we discuss that these line nodes
typically form as loops.

III. NODAL STRUCTURE OF ODD-PARITY
SUPERCONDUCTORS

As pointed out by Yanase [8], the nodal lines discussed
above in the kz = π zone face actually reconstruct to form
nodal loops in the case of UPt3. The latter are, in contrast
to line nodes, contractible, i.e., they continuously shrink to
zero as the ratio of the superconducting gap to the spin-orbit
interaction increases. The formation of these nodal loops can
be understood from the results of Sec. II. In particular, along

FIG. 2. Nodal loops in the kz = π/c zone face using the param-
eters from Fig. 1. They form due to the energy gap from interband
pairing that occurs along the A-L lines.

the A-L lines of this zone face, the spin-orbit interaction
vanishes, leading to band sticking (this band sticking effect
has been seen in UPt3 from breakdown orbits in de Haas–van
Alphen measurements [21]). This means that interband pairs
can form at these sticking points on the Fermi surface, and
since they have opposite mirror eigenvalues, they are allowed
representations for the case where the intraband pairs are not
allowed. This leads to a gapping of the Fermi surface at these
points, thus converting the nodal lines to nodal loops, as we
illustrate in Figs. 1 and 2. As the order parameter increases,
these nodal loops will eventually shrink to zero, leading to
a topological transition [Fig. 1(c)]. In Ref. [9], topological
arguments are presented (following earlier work [22]) that
confirm the group theoretical ones. There, a claim was made
that the topological arguments are more general than the group
theory ones, but in fact they are equivalent. In particular, as we
showed in Sec. II, in the presence of time-reversal symmetry
breaking, the nodal structure of the pairs changes due to lifting
of the degeneracy of the single-particle states.

Although much of the discussion above was motivated by
UPt3, there are other superconductors that have nonsymmor-
phic space groups. We earlier mentioned UBe13. But its space
group does not have a screw axis, but rather a glide plane, so we
would not expect nodal lines in this case for odd-parity pairing,
which is consistent with specific heat data [24]. But, URhGe,
UCoGe, and UIr have screw axes, although the last breaks
inversion symmetry, meaning even and odd parity can mix [1].
Moreover, the presence of magnetism can induce nonsym-
morphic behavior and nodal lines as recently discussed in the
context of UCoGe and UPd2Al3 [20]. Yet to be explored are the
consequences of the effects discussed here on potential topo-
logical surface states. This will be addressed in future work.
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APPENDIX A: HERRING’S CRITERION AND
COREPRESENTATIONS

As stated in the main text, time-reversal symmetry θ can
induce additional degeneracies. In this case, one should pass
from the representations to corresponding corepresentations of
the magnetic group Gk = Gk + IθGk. Degeneracies induced
by θ can be detected by Herring’s criterion from the sum of
characters [15],

∑
B∈Gk

χ [γk(IθB)2] =
⎧⎨
⎩

+|Gk|, case (a)
−|Gk|, case (b)

0, case (c).
(A1)

Here |Gk| is the order of the little group. In case (a)
no degeneracies are induced, while (b) and (c) indicate
the presence of degeneracies. The latter are accounted for
by passing to corepresentations γk �→ �k ≡ (γk

γ̄k
), where

γ̄k(m) = γk(m) in case (b) and γ̄k(m) = γ ∗
k [(Iθ )−1 m Iθ ] in

case (c), respectively, with “∗” the complex conjugation. We
next consider the cases of interest.

Twofold screw axis. In the presence of the spin-orbit inter-
action, the sum of characters for double-valued representations
reads

χ ([Iθ (E,0)]2) + χ ([Iθ (σz,t2)]2)

= −χ [(E,0)] − eikzχ
[(

σ 2
z ,0

)]

= −1 + eikz, (A2)

where we used θg1θg2 = −g1g2. For double-valued corep-
resentations on the basal plane [case (c)], we then employ
γ̄k[(σz,t2)] = γ ∗

k [(Iθ )−1(σz,t2) Iθ ] = γ ∗
k [(σz,t2)]. For single-

valued representations, on the other hand, θg1θg2 = g1g2 and

χ ([Iθ (E,0)]2) + χ ([Iθ (σz,t2)]2)

= χ [(E,0)] + eikzχ
[(

σ 2
z ,0

)]

= 1 + eikz . (A3)

For the single-valued corepresentation on the
Brillouin-zone face [case (c)], we use that γ̄k[(σz,t2)] =
γ ∗

k ((Iθ )−1(σz,t2) Iθ ) = −γ ∗
k ((σz,t2)).

Glide-plane symmetry. In the presence of the spin-orbit
interaction

χ ([Iθ (E,0)]2) + χ ([Iθ (σz,tσ )]2)

= −χ [(E,0)] + χ
[(

σ 2
z ,0

)]

= 0, (A4)

TABLE VI. Character table for representations P − of anti-
symmetrized Kronecker deltas on symmetry planes induced by
single-particle representations. Depending on the presence of TRS
and the SO interaction, the latter are single or double-valued
(co-) representations.

SO TRS BZ plane (E,0) (σz,t2) (I,0) (2z,t2)

Yes Yes kz = π 4 4 −2 −2
kz = 0 4 0 −2 2

Yes No kz = π 1 1 −1 −1
kz = 0 1 −1 −1 1

No Yes kz = π 4 0 −2 2
kz = 0 1 1 −1 −1

No No kz = π 1 −1 −1 1
kz = 0 1 1 −1 −1

and for the double-valued corepresentations [case (c)],
we then employ γ̄k[(σz,tσ )] = γ ∗

k [(Iθ )−1(σz,tz) Iθ ] =
eikx γ ∗

k [(σz,t2)], i.e., �k[(σz,tσ )] = ±eikx/2(i −i). In the
absence of the spin-orbit interaction

χ ([Iθ (E,0)]2) + χ ([Iθ (σz,tσ )]2)

= χ [(E,0)] + χ
[(

σ 2
z ,0

)]

= 2. (A5)

APPENDIX B: IRREDUCIBLE REPRESENTATIONS OF
THE COOPER-PAIR WAVE FUNCTION

We summarize the characters of induced representations
in the case of a twofold screw axis (Table VI) and a
glide-plane symmetry (Table VII). The decompositions of
Cooper-pair representations into their irreducible components
are done using the character table for the zero-momentum
representations of the Cooper-pair wave function defined in
Table II in the main text.

TABLE VII. Character table for representations P − of antisym-
metrized Kronecker deltas on symmetry planes induced by single- or
double-valued (co-)representations.

SO TRS BZ plane (E,0) (σz,tσ ) (I,0) (2z,tσ )

Yes Yes kz = π,0 4 0 −2 2
Yes No kz = π,0 1 −1 −1 1
No Yes/no kz = π,0 1 1 −1 −1
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