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Józef Spałek,1,* Michał Zegrodnik,2,† and Jan Kaczmarczyk3

1Marian Smoluchowski Institute of Physics, Jagiellonian University, ul. Łojasiewicza 11, 30-348 Kraków, Poland
2Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland

3Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
(Received 22 September 2016; revised manuscript received 18 November 2016; published 13 January 2017)

Selected universal experimental properties of high-temperature superconducting (HTS) cuprates have been
singled out in the last decade. One of the pivotal challenges in this field is the designation of a consistent
interpretation framework within which we can describe quantitatively the universal features of those systems.
Here we analyze in a detailed manner the principal experimental data and compare them quantitatively
with the approach based on a single-band model of strongly correlated electrons supplemented with strong
antiferromagnetic (super)exchange interaction (the so-called t-J -U model). The model rationale is provided by
estimating its microscopic parameters on the basis of the three-band approach for the Cu-O plane. We use our
original full Gutzwiller wave-function solution by going beyond the renormalized mean-field theory (RMFT)
in a systematic manner. Our approach reproduces very well the observed hole doping (δ) dependence of the
kinetic-energy gain in the superconducting phase, one of the principal non-Bardeen-Cooper-Schrieffer features
of the cuprates. The calculated Fermi velocity in the nodal direction is practically δ-independent and its universal
value agrees very well with that determined experimentally. Also, a weak doping dependence of the Fermi
wave vector leads to an almost constant value of the effective mass in a pure superconducting phase which is
both observed in experiment and reproduced within our approach. An assessment of the currently used models
(t-J , Hubbard) is carried out and the results of the canonical RMFT as a zeroth-order solution are provided for
comparison to illustrate the necessity of the introduced higher-order contributions.
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I. INTRODUCTION

High-temperature superconductivity (HTS) in the quasi-
two-dimensional cuprates is regarded as a fundamental phe-
nomenon because of a number of reasons [1–4]. We name
just a few here. First, by doping the system with holes
(cf. Fig. 1), a series of quantum phase transitions appears,
starting from an antiferromagnetic Mott-Hubbard insulator
(AFI) for the doping δ � 0.02 [5], through the HTS phase
(often mixed with other phases up to an almost optimal doping
[6]), to the normal Fermi-liquid-like state for δ � 0.3 [7]. On
microscopic level, in the high-δ regime, HTS disappears, most
likely by a pair-correlation dilution in real space concomitant
with an increased single-particle hopping via hole states.
Second, when the doping is low, the pairing also weakens
and the non-Bardeen-Cooper-Schrieffer (non-BCS) character
of HTS shows up [1,8–11] in the form of the kinetic energy
gain at the transition, which exemplifies the fact that the
electronic-correlation effects are the strongest there. Third,
the electronic spectrum in the nodal direction (kx = ky in the
two-dimensional Brillouin zone) exhibits a universal character
[12,13]. Namely, in spite of changing the carrier concentration
by doping (which normally should lead to the corresponding
changes in the Fermi-surface volume), the value of the Fermi
velocity in the nodal direction remains almost unchanged
in the whole doping range, where various phases such as
superconducting, magnetically or charge-ordered can appear.
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Fourth, the effective mass in the nodal direction also exhibits
a universal behavior [14]. These crucial features are regarded
as representative to all the cuprate superconductors and our
principal aim here is to address these and related properties in
a fully quantitative manner.

It is accepted that the coper-oxide (CuO2) planes, which
appear in the crystal structure of HTS, are instrumental
for achieving a stable paired phase [2–5]. That is why the
theoretical analysis of the cuprates often limits to models that
describe a single CuO2 plane [4]. Within such an approach,
one can eliminate the oxygen degrees of freedom via the
Zhang-Rice singlet hypothesis [15,16] or by perturbation
expansion [17–23], which leads to an effective single-band
model of correlated 3d electrons due to Cu atoms on a
square lattice (cf. Fig. 1). One of the canonical models for
the description within the paradigm of strong correlations
is the t-J model [16,24–27], in which HTS appears in the
range 0 < δ � 0.4 in a natural manner already within the
renormalized mean-field theory RMFT [28,29], also with
the so-called statistical consistency constraints included ex-
plicitly (SGA method [30,31]). The RMFT approach in the
SGA version can be related directly to the slave-boson method
[32–34] (for review, see Refs. [35,36]). However, within the
Gutzwiller-type approach no extra Bose fields are required, as
the interelectronic correlations are evaluated directly. Another
model that is used in the theoretical analysis of HTS is the
single-band Hubbard model, which, however, requires more
sophisticated calculation methods than RMFT to obtain the
paired phase stability. The difference between the approach
based on the t-J model and the one that starts from the
Hubbard model is that in the former case the intersite pairing
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FIG. 1. Schematic representation of the single plane of Cu ions
with active electrons located on the 3dx2−y2 orbitals and “dressed”
with 2pσ orbitals (not shown). The microscopic parameters of such
single narrow-band model of correlated electrons are (i) hopping
integral tij = t = −0.35 eV for nearest-neighbor hopping and tij =
t ′ = 0.25|t | for next-nearest-neighbor hopping, (ii) intra-atomic
(Hubbard) Coulomb interaction U ≈ 8 eV, (iii) interatomic (intersite)
Coulomb interaction Vij (omitted in the main text of the paper),
and (iv) antiferromagnetic exchange integral Jij ∼ 0.12 eV. The
empty sites (with no electrons, red circles) are called holes, with
δ characterizing the average probability of their appearance per site.

correlations are included already via kinetic exchange whereas
in the latter model one has to introduce them by including
correlations beyond RMFT, as discussed also below.

Recently, the full Gutzwiller wave-function (GWF) solution
for the superconducting state for both the t-J [37] and the
Hubbard [38] models has been reported, in which RMFT (in
the SGA form) appears as the zeroth-order approximation to
the full solution. Within this approach, one can track down the
evolution of the results by using the so-called diagrammatic
expansion method (DE-GWF) [39,40], starting from the
mean-field theory as the zeroth-order result and proceed
with incorporating systematically the nonlocal correlations of
increased range in higher orders. In such a manner, the exact
GWF description is approached asymptotically step by step.

Here, we apply the GWF solution to analyze the current
approaches of strongly correlated electrons and single out the
so-called t-J -U model, which may be regarded as an extended
t-J model with a relatively strong kinetic exchange and the
direct Coulomb interactions included at the same time. Such
a combination of seemingly excluding each other processes
requires a brief elaboration provided in Appendix. However,
one should note at the start, that as the exchange interactions
are coming mainly from the interband d-p processes, they are
related only indirectly to the split-Hubbard-subband structure
of 3d states due to copper [17–23]. As shown earlier, the t-J -U
model description leads to the antiferromagnetic (AF) phase
stability for δ < 1% [41], which is in rough agreement with
experiment [42]. The appearance of both the AF exchange
interaction and the direct Coulomb interaction within such
approach brings into mind the competition between the spin-
density-wave phase and the charge-density wave phase, the
latter of which has been discovered in the cuprates recently
[6,43]. With the DE-GWF solution, not only we reproduce the

results of the variational quantum Monte Carlo calculations
[44,45], sometimes with a better accuracy, but also carry out
calculations for infinite systems within a reasonable computing
time. This last factor allowed us to test a number of theoretical
models (t-J , t-J -U , t-J -U -V , Hubbard) and single out the one
that reproduces quantitatively the principal experimental data.

In brief, the principal aim of this paper is to confront the
results obtained for the t-J -U and related models with the
experimental data for the HTS state in a proper quantitative
manner. Explicitly, our purpose here is threefold: (i) not only
to make a detailed comparison of selected experiments with
theory, but first and foremost, to single out the universal
characteristics such as Fermi velocity vF , effective mass
m�, Fermi wave vector kF , and the non-BCS feature of
the pairing; (ii) to characterize a whole class of theoretical
single-band models based on strong correlations among the
electrons and single out the one that allows for quantitative
predictions of selected dynamic properties (at least within the
DE-GWF solution); (iii) to demonstrate the indispensability of
the approach going beyond any current mean-field approach
(RMFT) on the example of DE-GWF.

From the formal point of view, we have reanalyzed the
origin of the t-J model [24–26]. Namely, since the principal
contribution to the antiferromagnetic exchange J comes from
superexchange via 2p states and the value of Hubbard interac-
tion U to the bare bandwidth is not too high, U/W ∼ 2.5–3,
we have extended the concept of t-J model by incorporating
explicitly the Coulomb interaction, allowing a small number
of double occupancies, in addition to having a rather high
value of J , which leads to the effective single-band model in
the t-J -U or even t-J -U -V form. The relevant microscopic
interaction parameters of the starting model are schematically
defined in Fig. 1. The intersite Coulomb interaction ∼V has
been disregarded in the main text, but its role is elaborated
briefly in the concluding section. Here, we concentrate only
on the quantitative analysis of the pure superconducting (SC)
phase. Important issues that also can be tackled within the
present approach, i.e., the description of electrodynamics in
an applied magnetic field, are listed at the end.

II. MODEL AND METHOD

The starting model is of the form of the extended Hubbard
Hamiltonian with the antiferromagnetic exchange interaction
[41,46,47,63]

Ĥ =
∑
ijσ

′
tij ĉ

†
iσ ĉjσ + U

∑
i

n̂i↑n̂i↓

+
∑
〈ij〉

′(
Vij − 1

4
Jij

)
n̂i n̂j +

∑
〈ij〉

′
Jij Ŝi · Ŝj , (1)

where the primed summation means that i 	= j and 〈ij 〉
means that only pairs of nearest neighbors are taken into
account. The first two terms represent the Hubbard model
(consisting of the hopping and the intrasite repulsion terms,
respectively), the third expresses the intersite Coulomb
interaction (the part ∼Jij /4 comes from the full expression
for the exchange operator), and the last accounts for the
antiferromagnetic exchange interaction (in the strict one-band
representation of correlated electrons the exchange integral is
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Jij = 2t2
ij /(U − Vij ) [46]). In the bulk of the paper, we have

disregarded the third term, as it does not influence much the
quality of the comparison with the discussed here experimental
data (see the discussion at the end of the paper). We should note
that such a model has been introduced formally in Ref. [47]
as interpolating between the Hubbard- and t-J -model limits.
The general form of the single-band model with all two-site
interactions would require the inclusion of the pair hopping and
the so-called correlated hopping terms [46,48,49]. However,
those two terms should be small as U is relatively large; an
additional check on their very small relevance, as well as of
the three-site terms [26], eventually comes from the quality of
our quantitative description of selected experimental results.

The main task within our approach is to calculate the
ground-state energy and its properties for the full Gutzwiller
wave-function solution. This is carried out in a direct analogy
to an earlier treatment of both the Hubbard [38] and the t-J
models [37]. Explicitly, the ground-state energy per lattice site
is of the form

EG ≡ 〈�G|Ĥ|�G〉
N〈�G|�G〉 ≡ 1

N
〈Ĥ〉G, (2)

where N is the number of lattice sites and |�G〉 ≡ P̂G|�0〉 is
the Gutzwiller-type wave function, defined with the help of the
operator P̂G and the normalized uncorrelated state |�0〉 (taken
as the uncorrelated paired state with nonzero anomalous real-
space average 〈�0|ĉ†i↑ĉ

†
j↓|�0〉, for i 	= j , when considering the

SC phase). The P̂G operator is of the form

P̂ =
∏

i

P̂i =
∏

i

∑
�

λi,�|�〉ii〈�|, (3)

where the variational parameters λi,� ∈ {λi∅,λi↑,λi↓,λid}
correspond to four states from the local basis
|∅〉i ,|↑〉i ,|↓〉i ,|↑↓〉i , respectively. In our analysis we assume
spatial homogeneity, so λi,� ≡ λ� . Moreover, we also limit to
the spin-isotropic case, which means that λ↑ = λ↓ = λ1.

Within the diagrammatic expansion method [37–40,50] one
imposes the condition that

P̂ 2
i ≡ 1 + xd̂HF

i , (4)

where x is yet another variational parameter and d̂HF
i =

n̂HF
i↑ n̂HF

i↓ , n̂HF
iσ = n̂iσ − n0, with n0 = 〈�0|n̂iσ |�0〉. All the λ�

parameters can be expressed with the use of the x parameter
due to (4) and (3), which means that we are left with only one
variational parameter in the considered case.

The expectation values of the consecutive terms which
appear in the t-J -U Hamiltonian (1) (we omit the intersite
Coulomb repulsion term here) can be expressed in the form of
the power series

〈�G|ĉ†iσ ĉjσ |�G〉 =
∞∑

k=0

xk

k!

∑
l1...lk

′〈c̃†iσ c̃jσ d̂HF
l1...lk

〉0,

〈�G|ŝ†iσ ŝj σ̄ |�G〉 = λ4
1

∞∑
k=0

xk

k!

∑
l1...lk

′〈ŝ†iσ ŝj σ̄ d̂HF
l1...lk

〉0, (5)

〈�G|d̂i |�G〉 = λ2
d

∞∑
k=0

xk

k!

∑
l1...lk

′〈d̂i d̂
HF
l1...lk

〉0,

where ŝiσ = ĉ
†
iσ ĉiσ̄ , c̃

(†)
iσ = P̂i ĉ

(†)
iσ P̂i , d̂HF

l1...lk
= d̂HF

l1
. . . d̂HF

lk
, and

d̂HF
∅

≡ 1. The primmed summation on the right-hand side
has the restrictions lp 	= lp′ , lp 	= i,j for all p, p′. Next, by
using Wick’s theorem, the noncorrelated averages in Eq. (5)
can be expressed in terms of Pij ≡ 〈�0|ĉ†iσ ĉjσ |�0〉 and Sij ≡
〈�0|ĉ†i↑ĉ

†
j↓|�0〉. Due to the fact that the Gutzwiller operator

may change the norm of the noncorrelated wave function,
one has to divide the above expressions by 〈�G|�G〉, while
calculating the ground-state energy. It is convenient to use
the linked-cluster theorem [37,51] to simplify the expressions
obtained in the described manner. Such approach allows us to
evaluate the ground-state energy to a sufficient accuracy by
including the first 4–6 orders of the diagrammatic expansion
[39], depending on the model at hand.

From the minimization condition of the ground-state energy
(2), one can derive the effective Hamiltonian, which for the
case of pure superconducting phase has the form

Ĥeff =
∑
ijσ

teff
ij ĉ

†
iσ ĉjσ +

∑
ij

′(
�eff

ij ĉ
†
i↑ĉ

†
j↓ + H.c.

)
, (6)

where the effective hopping and the effective superconducting
gap parameters are defined through the corresponding relations

teff
ij ≡ ∂F

∂Pij

, �eff
ij ≡ ∂F

∂Sij

. (7)

For i = j , the teff
ij has an interpretation of an effective

chemical potential. The expression for the ground-state energy
functional per atomic site F = EG − μGnG (where μG and
nG are the chemical potential and the number of particles per
lattice site determined in the correlated state, respectively) is
obtained via the corresponding diagrammatic expansions of all
the averages contained in it. It should be noted that within this
approach one can also calculate the correlated superconducting
gap parameter �G = 〈ĉ†i↑ĉ

†
j↓〉G, which is analyzed in the

main text. Namely, the correlated and the effective gaps
are expressed through the uncorrelated quantities Pij , Sij ,
and the variational parameter x. In result, one has to solve
a set of integral equations for Pij , Sij , μG, and x, from
which the electronic structure, the correlated gap �G, and
the ground-state energy are explicitly evaluated for a given set
of parameters tij , U , J , and the band filling nG ≡ (1 − δ).

Some methodological remarks are in place here. Namely,
the application of the Wick’s theorem allows us to express
the elements of the sums in (5) as diagrams with the lattice
sites playing the role of vertices and Pij , Sij being the
edges connecting those vertices. In the obtained diagrammatic
sums, the site indices l1, . . . ,lk run over all the lattice sites.
However, the Pij and Sij with significantly large distance
|�R| = |Ri − Rj | lead to small contributions [50]. Therefore,
during the calculations, one may limit to terms with lines that
correspond to distances smaller than some Rmax. Moreover,
it is convenient to introduce an additional condition that a
given diagram contribution is included in the calculations if
the sum of all the lines length (in the Manhattan metrics) which
correspond to this diagram is smaller than some specified
value Rs .

Furthermore, beginning from some particular value of the
expansion order k = kmax one can neglect the terms of the
summation in Eqs. (5). In such a situation, one includes
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FIG. 2. Universal Fermi velocity vF in the nodal direction for
La2−xSrxCuO4 as determined from the linear part of the dispersion
relation Ek (data taken from Ref. [12]). The slopes of the straight
lines determine vF in the extreme cases. The extracted from the data
mean value v

exp
F = (2.0 ± 0.2) eV Å is in very good accord with our

theoretical result vth
F = (1.91 ± 0.19) eV Å obtained within the full

GWF (see main text). The stoichiometry parameter x in the legend
characterizes the hole concentration δ.

diagrams with number of vertices up to kmax + 1 (kmax + 2)
corresponding to one- (two-) site terms of the Hamiltonian (1).
The order of the approach is then equal to kmax. In practice,
it is convenient to include diagrams with number of lines up
to some particular value, Nl . It should be noted that including
only the zeroth-order diagrams leads to calculations which are
equivalent to the SGA version of the renormalized mean-field
theory.

All the presented results have been obtained for the
calculation parameters set to R2

max = 10, Rl = 26, and Nl =
13. The value of Nl = 13 means that we include diagrams up
to the fifth order and some additional diagrams which are of
the sixth order. The set of integral equations for Pij , Sij , μG,
and x has been solved with the use of GSL numerical library
with the typical accuracy set to 10−7.

III. RESULTS

In our analysis, we take into account both the nearest-
neighbor and the next-nearest-neighbor hoppings, with the
respective hopping integrals set to t = −0.35 eV (the value
|t | is taken as the energy unit, if not specified explicitly)
and t ′ = 0.25|t |. The intersite exchange integral is assumed as
nonzero only for the nearest neighbors 〈i,j 〉, J〈ij〉 ≡ J . Below
we analyze concrete measurable quantities and compare them
to experiment in a quantitative manner.

A. Kinetic energy gain and condensation energy

To set the stage-reference point of our analysis in Fig. 2,
we show the dispersion relation obtained experimentally
for La2−xSrxCuO4 close to the Fermi energy according to
Refs. [12,13]. The universal Fermi velocity vF in the nodal
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FIG. 3. (a) The border between the BCS-like and non-BCS super-
conducting regimes (with �Ekin > 0 and �Ekin < 0, respectively) for
the Hubbard model (the red dashed line provides the optimal doping,
δopt vs U ). (b) Correlated gap (�G) and the kinetic energy loss �Ekin,
both vs doping for the t-J model with J = 0.25. In (c), we show
that the kinetic energy gain (�Ekin < 0) appears also for the case of
the t-J model but very close to half-filling and the non-BCS region
slightly broadens with decreasing J . The subsequent curves represent
changing the J value by 0.025 between J = 0.3 and J = 0.175 with
the blue one corresponding to J = 0.25.

direction is estimated from the data by taking the slopes of the
extreme curves as marked by the straight lines, which leads
to the average result v

exp
F = (2.0 ± 0.2) eV Å (in these units

vF ≡ �vF , in physical units vF ≈ 2 × 107 cm/s). This value is
in very good agreement with the one determined theoretically
here (see below) vth

F = (1.91 ± 0.19) eV Å, which illustrates
the quality of our approach, the results of which we discuss in
detail next.

To single out the model that describes properly the high-
temperature superconductivity, we have analyzed the Hubbard,
t-J , t-J -U , and t-J -U -V models separately, all within the
full Gutzwiller wave-function solution (the parameters are
visualized in Fig. 1). As we show below, the t-J -U model
reproduces the universal characteristics quantitatively.

In Figs. 3(a)–3(c) and 4(a), 4(b), we discuss one of the
principal non-BCS features of the SC state, namely, the kinetic
energy gain in the superconducting state with respect to the
normal paramagnetic (PM) state [8–11]. This gain is defined
as

�Ekin ≡ ESC
G|0 − EPM

G|0, EG|0 ≡ 1

N

∑
ijσ

′
tij 〈ĉ†iσ ĉjσ 〉G, (8)
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FIG. 4. (a) and (b) BCS-like and non-BCS superconducting states
for the t-J -U model for J = 0.1 and 0.25, respectively. The latter
value matches the experiment (see main text). Note that in (b) the
non-BCS state appears only in the underdoped regime.

where the kinetic energy difference is taken between the
SC and PM states. Subscript “G” means that the average
〈· · · 〉 is taken in the Gutzwiller state |�G〉. Note that the
condensation energy, corresponding to the total ground-state-
energy difference, �Ec ≡ ESC

G − EPM
G , is always negative

for the SC phase to be stable. In Fig. 3(a), we display
the results for the Hubbard model concerning the stability
of the d-wave SC with respect to the normal (PM) state on
the plane doping δ—intra-atomic Coulomb repulsion U . The
BCS-like (with �Ekin > 0) and non-BCS (with �Ekin < 0)
regimes are separated in this case by an almost vertical dashed
line which illustrates the fact that the latter regime appears as
stable if only U � 12. The optimal doping (i.e., the doping
with the maximal value of the transition temperature Tc) is
denoted by δopt and for a given U is determined theoretically by
taking the value of the doping that corresponds to the maximal
correlated gap, �G ≡ 〈ĉ†i↑ĉ

†
j↓〉G for Ri − Rj = (1,0)a (where

a is the lattice constant). For comparison, in Figs. 3(b) and
3(c) the results for �Ekin and the magnitude of the gap
are displayed vs δ for the case of t-J model. As shown in
Fig. 3(c), the non-BCS (�Ekin < 0) state appears only close
to half-filling for this model. However, it should be noted
that the result differs from those obtained within the cluster
DMFT [52]. As one can see, the decreasing of the value
of J leads to the appearance of the non-BCS behavior for
slightly larger dopings, δ. Nonetheless, it is impossible to fit
the experimental data [8] with a reasonable value of J . One
should note that for J = 0 and d2 = 0 the non-BCS behavior
appears in the whole doping range of the paired state stability,
as we show at the end of this section [cf. Fig. 8(b)]. It would
be important to carry out a detailed comparison between the
CDMFT [9] results and those presented here. Note that none
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FIG. 5. (a) Kinetic energy gain �Ekin vs relative doping δ − δopt

(δopt is the optimal doping). Theoretical curves have been obtained for
the t-J -U model within the GWF solution for J = 0.25, U = 22.6
(blue solid line) and for J = 0.2, U = 16 (red solid line), while the
experimental points are taken from Ref. [8]. For comparison, the
results for the same model within the SGA method (gray dashed line)
and for the t-J (J = 0.25) model in GWF methodology (dot-dashed
curve) are also drawn. Note that only the GWF solution of the t-J -U
model reproduces quantitatively the experimental data. (b) and (c)
Correlated gap magnitude �G and the condensation energy �EC ,
both as a function of doping, are drawn for the same values of the
parameters and the same models.

of the results shown in Figs. 3(a)–3(c) do reflect the proper
behavior of the experimental data, according to which the
non-BCS behavior appears up to almost optimal doping [8–11]
(as we also show explicitly below). In Fig. 4(a) and 4(b),
we exhibit the phase diagram for the t-J -U model for two
values of the exchange integral, J = 0.1 and 0.25, respectively.
As can be seen, by including both U and J simultaneously
one obtains the transition from the non-BCS to the BCS-like
regime very close to the optimal doping (δopt) for proper
values of the model parameters. Moreover, for J = 0.25,
the non-BCS region appears only up to the optimally doped
case.

The actual behavior of the data concerning the non-BCS
regime appearance [8] is displayed in Fig. 5(a), where the
blue and red continuous lines represent the GWF solution for
t-J -U model for J = 0.25, U = 22.6 and J = 0.2, U = 16,
respectively, whereas the experimental data are taken from
Ref. [8]. For the sake of comparison, we plot the corresponding
results (the full GWF solution) obtained for the t-J model
(dot-dashed line) and those for the t-J -U model within the
SGA method (dashed line), which is a more sophisticated
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FIG. 6. Fermi velocity in the nodal direction (kx = ky) vs δ;
the theoretical curves are drawn for the same parameter values and
labeling as that in Fig. 5(a). The experimental data are taken from
Ref. [53] (BSCCO), Ref. [12] (LSCO), and Ref. [54] (YBCO).
Note that only the GWF solution of the t-J -U model reproduces
quantitatively the experimental data. The representive theoretical
value vF = (1.91 ± 0.19) eV Å listed in Fig. 2 was obtained by fitting
a horizontal line vF = const to our results for LSCO, as marked. In
the inset, we show the theoretical dispersion relations close to kF for
selected δ values. The calculated curves do not contain any abrupt
change in the dispersion relations at ∼80 meV seen in the experiment
(cf. Fig. 2) and ascribed to a strong electron-lattice coupling [55].

form of the RMFT. As one can see, we have obtained a good
agreement with the experiment for the case of the t-J -U model
only for the solution going beyond the RMFT method. In
Figs. 5(b) and 5(c), we present, respectively, the values of
the correlated real-space gap �G and the condensation energy
�Ec for all the approaches considered in Fig. 5(a) and with
the same values of respective parameters characterized by
the corresponding colors of the curves. The superconducting
state with the gap magnitude �G > 10−4 (>0.5 K) persists up
to the doping δc2 � 0.43, which is still substantially larger
than the observed value ∼0.3. The inclusion of a weak
intersite Coulomb interaction (V � 1) diminishes δc2 to the
experimental value. However, the influence of the last factor
must be discussed in conjunction with a detailed analysis of
other phases [53] as such investigation involves a delicate
balance of multiple coexisting orderings (ferromagnetism,
charge-density wave).

B. Universal Fermi velocity

In Fig. 6, we plot the doping dependence of the Fermi
velocity in the nodal direction for the case of the t-J -U model
(blue and red solid lines), as well as the results coming from
either the full solution of the t-J model (dot-dashed line)
and from the renormalized mean-field (SGA) solution of the
t-J -U model (dashed line). Again, only the full GWF solution
of the t-J -U model represents quantitatively the data trend for
La2−δSrδCuO4 (LSCO) [12] and Bi2Sr2CaCu2O8 (BSCCO)
[53], though the results of GWF and SGA coalesce in the over-
doped region, which can be regarded as a universal BCS-like

limit. For completeness, we have added few known points for
the YBCO [54], as marked by green crosses in the Figure. The
data for YBCO and BSCCO are scarce, but the values are still
close to those for LSCO illustrating the universality of the vF

value. Furthermore, we fit a line vF = const to our results for
LSCO, to obtain the overall value vth

F = (1.91 ± 0.19) eV Å,
provided already in Fig. 2 which agrees also very good with
the value v

exp
F = (2.0 ± 0.2) eV Å obtained from independent

experiments [12,13]. These two sets of data are not only
consistent with each other but also provide a strong support
for the interpretation of the vF universality. Note that the
fits in Figs. 5(a) and 6 for LSCO have been carried out for
the same set of the parameters: t = −0.35 eV, t ′ = 0.25|t |,
J = 0.25|t |, and U = 22.6|t | (blue solid lines). From the
above results concerning vF independence of δ one can draw a
very important conclusion. Namely, the electronic structure in
the nodal direction has a universal character in the sense that
it survives the effect of the shrinking of the Fermi surface with
the diminishing carrier (hole) concentration. Note also that
the value of vF is the same, independently of the circumstance
that other phases or pseudogap may appear in the system. Thus
these subsidiary phenomena must also have a gap node in that
direction, in which vF has been determined, so they do not
influence directly the dispersion-relation gradient at EF .

C. Fermi wave vector and effective mass

In Fig. 7(a), we provide a direct comparison of the
experimentally determined [56] value of the Fermi wave vector
kF ≡ (k2

x + k2
y)1/2 (in units of

√
2π/a), with the theoretical

results: GWF (red solid line) and SGA (dashed line). Both of
the approaches provide a correct trend, with a slight systematic
deviation for δ � 0.1 with the GWF results being closer to the
experiment. In Fig. 7(b), we present the calculated effective
mass enhancement in the nodal direction by using the full
GWF solution and the SGA approximation (red solid line and
gray dashed line, respectively) both as a function of doping
in comparison with the corresponding values for LSCO (blue
dots) and YBCO (green dots) measured by a combination of
dc transport and infrared spectroscopy (taken from Ref. [14]).
One should note that the Fermi velocity and the Fermi wave
vector are in direct relation to the effective mass through
the relation m� = �kF /vF , which allows us to determine the
dynamical value of m� (black inverted triangles) by using
ARPES measurements of kF (taken from Ref. [56]) and vF

(taken from Ref. [12]). Note the differences between the
two experimental data sets for m� corresponding to LSCO
(blue dots and black inverted triangles). Nevertheless, one
universal feature of the results presented in Fig. 7(b) is clearly
visible. Namely, the effective mass in the nodal direction
is almost constant, and if we ignore the upper data set,
the value is m� � 2me, which is in very good agreement
with our theoretical results within the GWF solution for the
t-J -U model. This value corresponds to the maximal value of
m�(δ) determined recently for YBCO [57], where its distinct
nonuniversal dependence has been observed. The question
arises as to what extent the domelike behavior shown in
Ref. [57] can be related to charge-density-wave evolution in
strong applied field.
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FIG. 7. (a) Fermi momentum kF as a function of doping for the
case of t-J -U model within the GWF solution (red solid line) and
for the SGA method (dashed line), compared with the experimental
data for LSCO taken from Ref. [56]. (b) Relative electron effective
mass in the nodal direction as a function of doping calculated for
the same approaches and parameters as in (a), compared with the
experimental data for LSCO and YBCO [14]. We also present the
effective mass values obtained by using the measured Fermi velocity
for LSCO (taken from Ref. [12]) and the Fermi momentum (taken
from Ref. [56]). The experimental data for YBCO (green dots) are
presented as a function of the oxygen content (top axis) while the data
for LSCO (blue dots and black inverted triangles) and the theoretical
lines are presented as a function of hole concentration (bottom axis).

D. Subsidiary characteristics

We have discussed already that the gain in the hopping
(kinetic) energy is one of the crucial features differentiating
between real-space-pairing models and singling out the t-J -U
model as the one that leads to a better agreement with
experiment. However, according to the CDMFT calculations
[52] also the t-J model gives some similar results in this
respect (although they have not compared their results quan-
titatively to experiment). The agreement shown by us (cf.
Figs. 5–7) is achieved only if the high-energy scale (with
U = 22.6|t | ∼ 7.9 eV), which is about three times larger than
the bare bandwidth (W ≈ 2.8 eV), is included in the analysis.
To illustrate the role of such a high-energy resonant level,
located at Eg ≡ U − W � 3 eV, we have plotted in Fig. 8(a)
the value of �G and d2 = 〈n̂i↑n̂i↓〉G, both as a function of
U . The small value of d2 � 10−2, speaks in favor of the
interpretation that the states in the upper Hubbard subband may
play minor but still relevant role of high-energy resonant states.
This circumstance can be put in accord with the canonical
approach based on the split Hubbard subbands which are
reproduced within the three band model—the original model
describing the Cu-O plane, as discussed in Appendix. In
Fig. 8(b), we show the doping dependence of the variational
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FIG. 8. (a) Correlated (�G) and the noncorrelated (�0) gaps, as
well as the double occupancy probabilities in the correlated (d2) and
uncorrelated (n2

0) states, all as functions of the Hubbard interaction
magnitude U . Note that with the increasing U the double occupancy
tends to d2 = 0 and the correlated gap approaches the value �G =
0.038|t |, which corresponds to that obtained in the t-J model (i.e.,
when d2 ≡ 0). Also, when the Coulomb interaction is weak, the
correlated and uncorrelated values of the SC gap coalesce as it should
be. (b) The variational parameter x [cf. Eq. (4)] as a function of doping
for the case of the t-J -U model with J = 0.25 and U = 22.6. Note
that as the doping approaches half-filling (δ → 0) the x parameter
tends to the value −4, which corresponds to the t-J model case with
no double occupancies (d2 = 0 → x = −1/(1 − n0)2, cf. Ref. [37]).
(c) The kinetic energy gain vs δ for the Hubbard model with U → ∞
and J = 0. The curve is similar to that in Fig. 5(c) since here �Ec ≡
�Ekin, but the actual values are now an order of magnitude smaller
showing that the kinetic energy gain alone in the U → 0 limit cannot
explain the observed Tc magnitude for HTS.

parameter x, which is introduced in the constraint (4), also
for the case of the t-J -U model. For the half-filled situation,
we obtain the value x = −4, which corresponds to no double
occupancy, in spite of having a finite value of the Hubbard
U . This particular value of x results from the fact that for the
case with d2 = 0, we have λd = 0, which leads directly to
the relation x = −1/(1 − n0)2 (cf. Section Model and Method
as well as Ref. [37]). Hence the t-J -U both in the U → ∞
limit and for the half-filled case with the finite U leads to
the results equivalent to the one obtained for the t-J model.
In Fig. 8(c), we provide �Ekin versus δ for the limiting case
J = 0 and d2 ≡ 0, which may be regarded as the U → ∞
limit of both the Hubbard and the t-J models. One can see that
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even though the general shape of the curve in Fig. 8(c) is the
same as that obtained for the t-J -U model [cf. Fig. 5(c)], the
corresponding values of �Ekin are smaller by at least an order
of magnitude. Therefore, only by combining the two factors,
nonzero d2 (finite U ) and a relatively large value of J , one can
bring the theory in the quantitative accord with experiment,
at least within the Gutzwiller wave function solution. This
required a generalization of the ideas of kinetic exchange as it
comes out from a direct perturbation expansion of the Hubbard
model [24,27], as mentioned above. The fundamental question
concerning the model is whether other methods of approach
(VMC, DMFT and others) can be applied to it and confirm the
presented here results obtained within the DE-GWF method.
The affirmative answer to this question would constitute, in
our view, a basis for comprehensive treatment of the pairing
as applied to high-temperature superconductors and other
strongly correlated systems.

IV. DISCUSSION AND OUTLOOK

The results presented in Figs. 2–7 provide a consistent
analysis for the same set of model parameters of the principal
experimental properties of the cuprates within the combined
concepts of real-space pairing and strong interelectronic
correlations. In carrying out our analysis, we had to go
beyond the renormalized mean-field theory (even in its statis-
tically consistent version, SGA [30]), i.e., discuss the results
within the full Gutzwiller wave-function solution (GWF) to
a relatively high order of the diagrammatic expansion. In
particular, we have explained here the following ground-state
characteristics: (i) the doping (δ) independence of the Fermi
velocity vF in the nodal direction, (ii) the kinetic energy gain in
the SC phase �Ekin, one of the main non-BCS features, (iii) the
optimal doping value δopt ≈ 0.16–0.2, (iv) the upper critical
concentration for disappearance of the HTS state, δc2 � 0.4,
and (v) the doping dependence of the Fermi wave vector kF (δ).
Additionally, we have extracted the δ dependence of effective
mass enhancement from the experimental data concerning
kF (δ) and vF (δ) and have shown that (m�/me)|E=EF

agrees
well with that obtained theoretically, as well as that determined
from an independent experiments.

The t-J -U model taken at the start requires a slight
modification of our thinking about HTS as doped Mott
insulators in terms of either the Hubbard or the original t-J
models [24–26,32,33]. In this respect, one formal point of the
model should be noted here. Namely, the antiferromagnetic
exchange is quite strong and must be coming from the
d − d superexchange via the antibonding 2pσ states due to
oxygen, as stated many times earlier [3,16–21]. In effect, as
the fitting to the experimental data provides us a posteriori
with the Hubbard interaction to the bare band-width ratio
U/W � 2.5, the electronic correlations in the effective narrow
band may not be regarded as extremely strong, particularly
for δ > 0, what results also in having a small but relevant
double occupancy probability d2 � 10−2. The presence of the
Hubbard interaction term introduces in an explicit form the
high-energy scale U ∼ 8 eV to the problem, what results in
comparable values of the effective Coulomb energy Ud2 �
80 meV and the exchange energy J ∼ 120 meV. Moreover,
the kinetic energy in the PM state, is also of the same order,

4|t |δ � 140 meV for δ = 0.1, constituting altogether a truly
correlated state, in which all the three factors play a role. In
connection with taking finite U value it should be noted that
the holon-doublon correction to the Gutzwiller wave-function
have also been considered [3]. It would be interesting to see
the connection between that extension and our approach.

In our considerations, we have disregarded the intersite
Coulomb repulsion [the third term of Eq. (1)], as it does
not influence much the quality of the comparison with
the discussed here experimental data. Explicitly, the LSCO
data displayed in Figs. 5(a) and 6 can be also fitted with
the set of parameters: t = −0.35eV, t ′ = −0.25|t |, J =
0.3|t |, U = 22|t |, and V = 0.2|t |, i.e. with V 	= 0. In effect,
V − J/4 ≈ 0.1|t | is small and can safely be disregarded here.
However, the role of V may become important when charge-
and spin-density-wave states are included, but that requires a
separate analysis [62].

We have not addressed at all the system thermodynamical
properties. The extension to the temperature T > 0 is indis-
pensable as the next step. In this respect, particularly important
is the question of the pseudogap appearance [58,59]. It is
intriguing to ask whether the pseudogap is partly connected
with the evolution of our effective gap �eff in the antinodal
direction or is it due to a different physical mechanism
[60]. A possible connection between the effective gap and
the measured gap in the antinodal direction is supported
by the intriguing coincidence that both of them increase
with the decreasing doping [37,61]. A similar behavior has
already been obtained within SGA by taking the bare (not
Gutzwiller-projected) value of the gap magnitude and fitting
it to the experiment [29,30]. Furthermore, the appearance of
other phases, such as spin- and charge-density-wave states on
the superconducting phase diagram depicted in Fig. 4 should
be treated separately, together with singling out the role of the
intersite Coulomb interaction [48,62].

The consistent scheme of analyzing concrete, though
selected data for high-TC SC phase is not the last word by
any means, also due to the following reasons. It would be
interesting to compare the present results with those of other
methods, which also go beyond the renormalized mean-field
theory. For example, an application of the plaquette or cluster
dynamic mean-field theory [52,63] to the present model could
be of principal importance as an independent checkout on the
validity of higher order corrections to RMFT. Furthermore, an
extension of our approach to the situation with nonzero applied
magnetic field would provide additional physical properties
(e.g., doping dependence of the penetration depth) for a further
quantitative testing of the present approach. We should be able
to see progress along these lines in the near future.

At the end, it is worth noticing that the DE-GWF method
can be applied to the multiband models of correlated electrons.
The itinerant ferromagnetism and Fermi-surface deformations
have already been analyzed within such an approach [64] for
the Hubbard Hamiltonian. For the multiband case, all the states
of the local multiorbital basis are included when constructing
the projection operator (3). However, so far no applications to
the multiband paired phase have been carried out within the
DE-GWF approach. The necessity of including the anomalous
averages when analyzing the superconducting state increases
significantly the number of diagrams and leads to significant
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complications while executing the diagrammatic expansion,
already in the single-band case. Nevertheless, it should be
possible to tackle the problem in the near future for a small
number of bands. So far, the local even-parity spin-triplet-
pairing has been analyzed by us in the two-band Hubbard
model only within the SGA method which is equivalent to the
zeroth-order approximation of the DE-GWF approach [65].

A simpler version of the DE-GWF approach to the
multiband models would correspond to the inclusion of local,
intraorbital states only when constructing the Gutzwiller
projection operator. Such analysis applied to the three-band
d-p model with regard to the copper-based high-temperature
superconductors or its canonically transformed version (in a
direct analogy to the t-J model), would be a next research
project, which is within the reach of our currently available
computational resources. Moreover, such an approach could
also be applied to the theoretical analysis of the paired
phase in iron-based superconductors. In these systems, the
interelectronic correlations are not so strong as in the cuprates.
However, the SC phase can still appear as an effect of the cor-
relations. With respect to various extensions of the DE-GWF
method one should also note recent application of the approach
to the Anderson lattice model [66]. The present approach has
also been applied to the bilayer system very recently [67].
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APPENDIX: METHODOLOGICAL REMARKS: PHYSICAL
SIGNIFICANCE OF THE EXTENDED MODEL

We would like to estimate the physical relevance of the
considered here t-J -U model. In the canonically transformed
extended Hubbard model [25,27,46], the antiferromagnetic
exchange interaction is of the form Jij = 2t2

ij /(U − Vij ) and
therefore no Hubbard extra term should appear [68], if we are
in the strong-correlation limit W � U (not only |tij | � U ).
Namely, the contribution to the N -particle wave function
coming from double occupancies is of the order of t/|U |
[68]. Before discussing the application of that limit to real
calculations, let us estimate its value by taking the standard mi-
croscopic parameters: U = 8–10 eV, t = −0.35 ÷ −0.4 eV,
and t ′ = |t |/4. When neglecting V in above formula for Jij , we
obtain the value of J � 150 K at most. If the bare parameter
V is taken as U/3 (maximum), then the value of J increases
by 50%, which is still much lower than the typical value of
measured J ∼ 0.13 eV ≈ 1.5 × 103 K in the insulating phase
[68,69] [note that here the values of J are 1/2 of those
for the full exchange as there is no factor 1/2 before the
last term in (1)]. On the other hand, the bare bandwidth

of the planar states is W = 8|t | � 2.8 eV ∼ 3 eV. Therefore
the U/W ratio is in the interval 2.9–3.6 ∼ 3, which is still
not in the asymptotic limit of being �1. Hence one may
expect that the double occupancy probability is not exactly
vanishing, particularly for δ > 0 as then the admixture of
double occupancy to the single-particle state is of the order [68]
of |t |/U ∼ 0.04. In our calculations (cf. Fig. 8), d � 10−2 for
δ = 0.1 and U/W = 2.5. Such a small value does not influence
at all the spin magnitude in the Mott insulating state, since
then 〈S2〉 = (3/4)(1 − 2d2) ∼ 1/2(1/2 + 1) + o(10−2) [70]
and the zero-point spin fluctuations are much more important.

After mentioning the relevance of the Hubbard term, the
basic question still remains as to what is the dominant contri-
bution to J . As said earlier, this is due to the superexchange
[17–21] via p orbitals with inclusion of the fact that HTS
are charge-transfer insulators with the corresponding gap
� = εp − εd � 3 eV and the p-d hybridization magnitude
tpd � 1.3 eV, as well as the p-d Coulomb interaction Upd �
1 eV. In effect, the nearest neighbors superexchange can be
estimated as [17–19,21]

J = 2 t4
pd

(�pd + Upd )2

(
1

Ud

+ 1

�pd + Upp/2

)

� 0.13 eV = 1560 K, (A1)

a value close to that determined experimentally [69]. This
reasoning provides a direct support for the effective value of
J as not coming from the large-U expansion of the Hubbard
model [24,26,27].

One should note that the mechanism introduces also the
Kondo-type coupling between the p holes and d electrons
with the corresponding Kondo exchange integral

JK = 2 t2
pd

(
1

�pd

+ 1

�pd + U

)
� 2.5 eV � J. (A2)

This coupling causes a bound configuration of the hole and
d electron of Cu2+ ion composing the Zhang-Rice singlet
[15,16]. Also, the hopping amplitude for d electron between
the nearest neighboring sites 〈i,j 〉 can be estimated as

t ∼ t2
pd

(�pd + Upp − Upd )2
tpp. (A3)

Taking tpp = 0.1 eV and Upp = 3 eV, we obtain t =
−0.34 eV, also a quite reasonable value. In effect, we have
J/|t | = 0.38 which is a reasonable ratio in view of simplicity
of our estimates. In such a reduction procedure to the one-band
model, the effective Hubbard interaction is U � Udd − Upp �
7.5 eV, if we take the value Udd = 10.5 eV for the original d

atomic states. In the fitting to experiment, we have obtained
a slightly larger value of U = 8 eV and |t | = 0.35 eV. This
brief discussion summarizes the meaning of the starting
Hamiltonian (1) [15–21,46].

The general three-band model would include a direct
single-particle hopping between the oxygen sites ∼tpp. Under
these circumstances, the Kondo-type coupling (A2) between
the oxygen and copper sites must be also taken into account
explicitly, and we end up in the Emery-Reiter type of model
[22,23] in the limit of localized 3d electrons. In this respect,
we have selected here the most general one-band model
of correlated d electrons with the Zhang-Rice-singlet idea
implicitly assumed.
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[36] J. Jędrak, J. Kaczmarczyk, and J. Spałek, Statistically-consistent
Gutzwiller approach and its equivalence with the mean-field
slave-boson method for correlated systems, arXiv:1008.0021v2.

[37] J. Kaczmarczyk, J. Bünemann, and J. Spałek, High temperature
superconductivity in the two-dimensional t-J model: Gutzwiller
wave function solution, New J. Phys. 16, 073018 (2014).

[38] J. Kaczmarczyk, J. Spałek, T. Schickling, and J. Bünemann,
J. Superconductivity in the two-dimensional Hubbard model:
Gutzwiller wave function solution, Phys. Rev. B 88, 115127
(2013).

024506-10

https://doi.org/10.1007/BF01303701
https://doi.org/10.1007/BF01303701
https://doi.org/10.1007/BF01303701
https://doi.org/10.1007/BF01303701
https://doi.org/10.1088/0034-4885/71/3/036501
https://doi.org/10.1088/0034-4885/71/3/036501
https://doi.org/10.1088/0034-4885/71/3/036501
https://doi.org/10.1088/0034-4885/71/3/036501
https://doi.org/10.1038/nature01544
https://doi.org/10.1038/nature01544
https://doi.org/10.1038/nature01544
https://doi.org/10.1038/nature01544
https://doi.org/10.1038/nature14165
https://doi.org/10.1038/nature14165
https://doi.org/10.1038/nature14165
https://doi.org/10.1038/nature14165
https://doi.org/10.1103/PhysRevLett.90.207003
https://doi.org/10.1103/PhysRevLett.90.207003
https://doi.org/10.1103/PhysRevLett.90.207003
https://doi.org/10.1103/PhysRevLett.90.207003
https://doi.org/10.1103/PhysRevB.72.092504
https://doi.org/10.1103/PhysRevB.72.092504
https://doi.org/10.1103/PhysRevB.72.092504
https://doi.org/10.1103/PhysRevB.72.092504
https://doi.org/10.1103/PhysRevB.74.064510
https://doi.org/10.1103/PhysRevB.74.064510
https://doi.org/10.1103/PhysRevB.74.064510
https://doi.org/10.1103/PhysRevB.74.064510
https://doi.org/10.1126/science.1069947
https://doi.org/10.1126/science.1069947
https://doi.org/10.1126/science.1069947
https://doi.org/10.1126/science.1069947
https://doi.org/10.1038/ncomms1354
https://doi.org/10.1038/ncomms1354
https://doi.org/10.1038/ncomms1354
https://doi.org/10.1038/ncomms1354
https://doi.org/10.1038/423398a
https://doi.org/10.1038/423398a
https://doi.org/10.1038/423398a
https://doi.org/10.1038/423398a
https://doi.org/10.1103/PhysRevB.78.104513
https://doi.org/10.1103/PhysRevB.78.104513
https://doi.org/10.1103/PhysRevB.78.104513
https://doi.org/10.1103/PhysRevB.78.104513
https://doi.org/10.1103/PhysRevB.72.060511
https://doi.org/10.1103/PhysRevB.72.060511
https://doi.org/10.1103/PhysRevB.72.060511
https://doi.org/10.1103/PhysRevB.72.060511
https://doi.org/10.1103/PhysRevB.41.7243
https://doi.org/10.1103/PhysRevB.41.7243
https://doi.org/10.1103/PhysRevB.41.7243
https://doi.org/10.1103/PhysRevB.41.7243
https://doi.org/10.1103/PhysRevB.37.3759
https://doi.org/10.1103/PhysRevB.37.3759
https://doi.org/10.1103/PhysRevB.37.3759
https://doi.org/10.1103/PhysRevB.37.3759
https://doi.org/10.1016/0022-4596(90)90202-9
https://doi.org/10.1016/0022-4596(90)90202-9
https://doi.org/10.1016/0022-4596(90)90202-9
https://doi.org/10.1016/0022-4596(90)90202-9
https://doi.org/10.1103/PhysRevB.48.9788
https://doi.org/10.1103/PhysRevB.48.9788
https://doi.org/10.1103/PhysRevB.48.9788
https://doi.org/10.1103/PhysRevB.48.9788
https://doi.org/10.1103/PhysRevB.45.7959
https://doi.org/10.1103/PhysRevB.45.7959
https://doi.org/10.1103/PhysRevB.45.7959
https://doi.org/10.1103/PhysRevB.45.7959
https://doi.org/10.1103/PhysRevB.53.8751
https://doi.org/10.1103/PhysRevB.53.8751
https://doi.org/10.1103/PhysRevB.53.8751
https://doi.org/10.1103/PhysRevB.53.8751
https://doi.org/10.1140/epjb/e2013-40115-3
https://doi.org/10.1140/epjb/e2013-40115-3
https://doi.org/10.1140/epjb/e2013-40115-3
https://doi.org/10.1140/epjb/e2013-40115-3
https://doi.org/10.1103/PhysRevB.38.4547
https://doi.org/10.1103/PhysRevB.38.4547
https://doi.org/10.1103/PhysRevB.38.4547
https://doi.org/10.1103/PhysRevB.38.4547
https://doi.org/10.1134/S0021364016060114
https://doi.org/10.1134/S0021364016060114
https://doi.org/10.1134/S0021364016060114
https://doi.org/10.1134/S0021364016060114
https://doi.org/10.1088/0022-3719/10/10/002
https://doi.org/10.1088/0022-3719/10/10/002
https://doi.org/10.1088/0022-3719/10/10/002
https://doi.org/10.1088/0022-3719/10/10/002
https://doi.org/10.1103/PhysRevB.37.533
https://doi.org/10.1103/PhysRevB.37.533
https://doi.org/10.1103/PhysRevB.37.533
https://doi.org/10.1103/PhysRevB.37.533
https://doi.org/10.12693/APhysPolA.111.409
https://doi.org/10.12693/APhysPolA.111.409
https://doi.org/10.12693/APhysPolA.111.409
https://doi.org/10.12693/APhysPolA.111.409
https://doi.org/10.1088/0953-2048/1/1/009
https://doi.org/10.1088/0953-2048/1/1/009
https://doi.org/10.1088/0953-2048/1/1/009
https://doi.org/10.1088/0953-2048/1/1/009
https://doi.org/10.1080/00018730701627707
https://doi.org/10.1080/00018730701627707
https://doi.org/10.1080/00018730701627707
https://doi.org/10.1080/00018730701627707
https://doi.org/10.1103/PhysRevB.83.104512
https://doi.org/10.1103/PhysRevB.83.104512
https://doi.org/10.1103/PhysRevB.83.104512
https://doi.org/10.1103/PhysRevB.83.104512
https://doi.org/10.1080/14786435.2014.969352
https://doi.org/10.1080/14786435.2014.969352
https://doi.org/10.1080/14786435.2014.969352
https://doi.org/10.1080/14786435.2014.969352
https://doi.org/10.1103/PhysRevB.38.5142
https://doi.org/10.1103/PhysRevB.38.5142
https://doi.org/10.1103/PhysRevB.38.5142
https://doi.org/10.1103/PhysRevB.38.5142
https://doi.org/10.1103/PhysRevB.36.857
https://doi.org/10.1103/PhysRevB.36.857
https://doi.org/10.1103/PhysRevB.36.857
https://doi.org/10.1103/PhysRevB.36.857
https://doi.org/10.1103/PhysRevB.76.195108
https://doi.org/10.1103/PhysRevB.76.195108
https://doi.org/10.1103/PhysRevB.76.195108
https://doi.org/10.1103/PhysRevB.76.195108
https://doi.org/10.1103/RevModPhys.78.17
https://doi.org/10.1103/RevModPhys.78.17
https://doi.org/10.1103/RevModPhys.78.17
https://doi.org/10.1103/RevModPhys.78.17
http://arxiv.org/abs/arXiv:1008.0021v2
https://doi.org/10.1088/1367-2630/16/7/073018
https://doi.org/10.1088/1367-2630/16/7/073018
https://doi.org/10.1088/1367-2630/16/7/073018
https://doi.org/10.1088/1367-2630/16/7/073018
https://doi.org/10.1103/PhysRevB.88.115127
https://doi.org/10.1103/PhysRevB.88.115127
https://doi.org/10.1103/PhysRevB.88.115127
https://doi.org/10.1103/PhysRevB.88.115127


UNIVERSAL PROPERTIES OF HIGH-TEMPERATURE . . . PHYSICAL REVIEW B 95, 024506 (2017)

[39] J. Bünemann, T. Schickling, and F. Gebhard, Variational study
of Fermi surface deformations in Hubbard models, Europhys.
Lett. 98, 27006 (2012).

[40] F. Gebhard, Gutzwiller correlated wave functions in finite
dimensions, Phys. Rev. B 41, 9452 (1990).

[41] M. Abram, J. Kaczmarczyk, J. Jędrak, and J. Spałek, d-wave
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[43] W. Tabiś et al., Charge transport in a pristine high-TC cuprate,
Nat. Commun. 5, 5875 (2014).

[44] R. Randeria, R. Sensarma, and N. Trivedi, Projected Wavefunc-
tions and High-Tc Superconductivity in Doped Mott Insulators,
edited by A. Avella and F. Macini, in Strongly Correlated
Systems: Theoretical Methods (Springer Verlag, Berlin, 2012),
Chap. 2, pp. 29–64.

[45] E. Edegger, V. N. Muthukumar, and C. Gross, Spontaneous
breaking of the Fermi-surface symmetry in the t-J model. A
numerical study, Phys. Rev. B 74, 165109 (2006).
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