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Superconductivity is shown to be completely destroyed in thin mesoscopic or nanoscopic rings closed by the
junction with a noticeable interfacial pair breaking and/or a Josephson coupling, if a ring’s radius r is less than the
minimum radius rmin. The quantity rmin depends on the phase difference χ across the junction, or on the magnetic
flux that controls χ in the flux-biased ring. It also depends on the Josephson and interfacial effective coupling
constants, and in particular, on whether the ring is closed by the 0 or the π junction. The current-phase relation
is substantially modified when the ring’s radius exceeds rmin for some of the phase difference values, or slightly
goes beyond its maximum. The modified critical temperature Tc and the temperature-dependent supercurrent
near Tc are identified here as functions of the ring’s radius and the magnetic flux.
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I. INTRODUCTION

The superfluid flow in thin superconducting wires is known
to result in pair-breaking effects, which reduce the order pa-
rameter and, in accordance with the Landau criterion, can fully
destroy superconductivity at the critical value of the superfluid
velocity vs . While the Cooper pair density diminishes with in-
creasing vs , the supercurrent shows a nonmonotonic behavior,
with its maximum value called the depairing current jdp [1].
When a thin wire forms a circular loop with radius r and the
absolute value of the order parameter stays spatially constant,
the order parameter–superflow relation remains as it was in
the straight wire. Specific features of the loop topology show
up, when, for example, vs is induced by the magnetic flux �

penetrating the loop. The flux-induced changes of the winding
number result in the oscillations of physical characteristics
of the ring, in particular, of vs and Tc, i.e., in the standard
Little-Parks effect [1,2]. The effect allows a remarkably simple
description within the Ginzburg-Landau (GL) approach, since
the equilibrium order-parameter absolute value and vs are
spatially constant in a cylindrically symmetric thin ring.

Constant vs is determined, along with its circulation, by a
full magnetic flux through the loop: 2πrvs ∝ (�̃ − n). Here
�̃ = �

�0
is the magnetic flux in units of the superconductor

flux quantum �0, and n is the winding number. The critical
temperature Tc, modified by the magnetic flux in the Little-
Parks effect, can be found taking vs in the last relation to
be equal to the critical superfluid velocity, when the order
parameter vanishes and thermodynamic potential of the ring
coincides with that of the normal-metal ring. This results in
the equation r = ξ (T )|�̃ − n|, where ξ (T ) is the temperature-
dependent coherence length of the superconducting material.
Solving the equation with regard to the temperature establishes
the modified Tc that depends on the magnetic flux, the winding
number, and the loop radius. When the quantity (�̃ − n) is
fixed, the superfluid velocity is inversely proportional to the
radius, analogously to its dependence on the distance to the
center of the Abrikosov vortex. As a result, the minimum
radius rmin = ξ (T )|�̃ − n|, at which vs takes its critical value,
exists for mesoscopic and nanoscopic uninterrupted rings.
Superconductivity is fully destroyed in the rings with radii r �
rmin. Since the pair breaking induced by the superflow is most

pronounced at the maximum equilibrium value |�̃ − n| = 0.5,
there is no superconductor–normal metal transition, when the
magnetic flux slowly varies in the rings with r > 0.5ξ (T ).
There are only the usual Little-Parks oscillations that occur
in this case. The transition comes about under the opposite
condition, i.e., in the rings with radii r � 0.5ξ (T ). It can
be experimentally observed down to quite low temperatures,
when the quantum phase transition takes place [3–5].

This paper addresses thin superconducting loops closed by
the Josephson junction. It will be demonstrated theoretically
that the minimum radius rmin of thin superconducting rings
involving the junction, unlike the case of the unbroken rings, is
nonzero even if vs is much less than its critical value throughout
the loop. It is the pair breaking due to the inverse proximity
effect locally induced by the junction interface and by the phase
difference χ across it that leads to the superconductor–normal
metal phase transition in the rings of mesoscopic or nanoscopic
size. The Josephson and interfacial pair breaking inevitably
result in an inhomogeneous profile of the complex order
parameter, which contributes considerably to the gradient term
in thermodynamic potential and makes a superconducting state
energetically unfavorable in the rings with r < rmin.

The minimum radius is found to be a fraction of the
temperature-dependent coherence length ξ (T ), up to 0.5ξ (T ).
When the ring is closed by 0 junction, the minimum radius, as a
function of the phase difference, is shown to have its maxima at
χ = (2m + 1)π (m is an integral number). For the π junction,
the maxima are at χ = 2mπ . In both cases, i.e., at χ = mπ , vs

vanishes together with the supercurrent all along the ring. It is
in contrast to uninterrupted rings, where the kinetic energy of
the supercurrent becomes equal to the condensation energy and
vs takes its critical value at the superconductor–normal metal
transition point. When r exceeds rmin for some of χ ’s values, or
goes somewhat beyond its maximum, both the critical current
and the current-phase relation of the junction become quite
sensitive to the radius value.

The phase difference across the junction will be assumed to
be controlled by the applied magnetic flux �e in the flux-biased
ring. The magnetic field much less than the superconductor
critical fields will also be supposed. Since the inductance
effects are negligibly small near the transition point r = rmin,
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where the supercurrent vanishes, the difference between the
full magnetic flux � and the applied one �e will be disregarded
below. Therefore, the supercurrent hysteretic behavior due to
the inductance effects [6,7] will not be considered. When
the difference r − rmin is large or moderate, the hysteretic
behavior will be shown to appear also due to the absence
of the Meissner effect in thin superconducting rings. This
paper mainly concerns itself with the rings of smaller sizes.
Superconductivity continuously weakens in such rings and
is ultimately destroyed, when the difference r − rmin slowly
diminishes. Once the difference vanishes, the superconductor–
normal metal phase transition of the second order occurs.

Within the GL theory, the coherence length ξ (T ) of the
superconducting material is the only characteristic length of
the problem in question, and the equation for the minimum
radius is actually formulated for the dimensionless quantity
R = r/ξ (T ). When the fixed value of r slightly exceeds rmin,
the quantity R can reach Rmin as the temperature goes up
making ξ (T ) sufficiently large. This results in the modified
critical temperature Tc, which depends on r and χ , or �.
The current-phase and current-flux relations can become quite
sensitive to the temperature in the narrow vicinity of Tc,
similarly to the presence of the radius dependence of the
Josephson current, with r being quite close to rmin.

The existing temperature and magnetic flux dependence of
rmin near the transition make it possible to observe the phase
transition by changing the temperature or the magnetic flux that
penetrates the individual ring. Likely alternatives to make the
effect discernible are the junctions with interfaces made of nor-
mal metals, magnets, or other pair-breaking materials, and/or
the junctions involving unconventional superconductors. The
pair breaking by the phase difference becomes noticeable for
interfaces with sufficiently high transparency.

In the paper, Sec. II addresses basic equations of the
GL theory that describe properties of thin superconducting
rings closed by the Josephson junction. The minimum radius
for such rings is obtained in Sec. III. The modified critical
temperature is identified in Sec. IV. The current-phase and
current-flux relations and their dependence on the ring’s radius
and on the temperature are found in Sec. V. Section VI
concludes the paper. Appendices A and B present the analytical
solutions of the equations studied.

II. BASIC EQUATIONS

Consider a superconducting circular thin ring closed by the
Josephson junction. The ring’s lateral dimensions are supposed
to be much less than ξ (T ) and the magnetic penetration depth.
The thickness of the junction interface is on the order of or less
than the zero-temperature coherence length. Within the GL ap-
proach, the latter scale is considered to be zero. The GL free en-
ergy of the ring is represented as a sum of two terms:F = Fb +
Fint. The bulk free energy per unit area of the cross section is

Fb =
2πr∫
0

ds

[
K

∣∣∣∣( d

ds
− 2ie

�c
A

)
�(s)

∣∣∣∣2

+ a|�(s)|2 + b

2
|�(s)|4

]
, (1)

where r is the ring’s radius, s = rϕ is the coordinate along
the ring’s circumference, and ϕ is the polar angle. The
coefficient in front of the gradient term is here denoted as K .
The vector potential is taken to be cylindrically symmetric
and to have only the polar component, i.e., the s component
in our notations. Such a gauge exists, for example, for the
Aharonov-Bohm flux, which is delta-localized along the
ring’s axis, for the homogeneous magnetic field as well as for
the one produced by the current in a thin circular ring.

The term Fint is the interfacial free energy per unit area that
can be written as

Fint = gJ |�0+ − �0−|2 + g(|�0+|2 + |�0−|2). (2)

The junction interface is taken at s = 0.
Two interface invariants in (2) are determined both by the

symmetry of the system and by the microscopic consideration.
The latter allows one to unambiguously identify the two
contributions to (2), one with the Josephson coupling of
the superconducting banks, with the coupling constant gJ ,
the other with the interfacial pair breaking (g > 0) that in
particular takes place in the absence of the supercurrent. In a
symmetric junction |�0+| = |�0−| the first term in (2) takes
the form gJ |�0|2(1 − cos χ ), which is known in describing
standard symmetric tunnel junctions. In the standard case
the interfacial pair breaking is negligibly small (i.e., g = 0),
and a thin interface does not affect the superconductor at
zero phase difference χ across it. Based on (1) and (2), the
supercurrent through the Josephson junction can be described
also beyond the tunneling approximation and taking account
of the interfacial pair breaking (g �= 0) [8–10]. The interfacial
free energy (2) controls the corresponding anharmonic current-
phase relation as well as the normalized critical current j̃c =
jc/jdp, where jdp = (8|e||a|3/2K1/2)/(3

√
3�b) is the depairing

current deep inside the superconducting leads.
Taking the order parameter in the form � =

(|a|/b)1/2f (s)eiφ(s), one can transform the GL equation for
the order parameter, which follows from the bulk free energy
(1), to the equation for f ,

d2f

dx2
− i2

f 3
+ f − f 3 = 0, (3)

and to the current conservation condition. Here x = s/ξ (T )
is the dimensionless coordinate and ξ (T ) = (K/|a|)1/2. The
dimensionless current density in (3) is i = 2

3
√

3
j̃ = 2

3
√

3
(j/jdp).

The quantity f (x) is continuous at the interface of the
symmetric junction and has to satisfy the periodicity condition
f (x + 2πR) = f (x), where R = r/ξ is the dimensionless
radius. The boundary conditions at x = ±0 that follow from
(2) and (1) can be split into the discontinuity condition
for df /dx and the expression for the Josephson current
via the value f0 at the interface and the phase difference
χ = φ0− − φ0+:(

df

dx

)
±0

= ±gbf0, gb = gδ + 2g� sin2 χ

2
, (4)

i = −f 2

(
dφ

dx
+ 2πξ

�0
A

)
= g�f

2
0 sin χ. (5)
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Here �0 = π�c
|e| is the magnetic flux quantum; g� = gJ ξ (T )/K

and gδ = gξ (T )/K are the dimensionless Josephson and
interface effective coupling constants.

The effective coupling constants play an important role in
the approach developed. Within the BCS theory, the range
of variations of g� and gδ is generally quite wide [8–10].
Thus in dirty junctions with small or moderate transparency
the quantity g� > 0 can vary from extremely small values
in the tunneling limit to values that are larger than 100.
The parameter g� in junctions with high transparency can
be very large. While the depairing by the interface is very
weak gδ � 1 in standard tunnel junctions with a conventional
insulating barrier, a pronounced depairing gδ � 1 can occur in
various superconductors, including s-wave superconductors,
near interfaces with normal metals and/or magnets. In uncon-
ventional superconductors, significant depairing can also occur
near the superconductor-insulator and superconductor-vacuum
interfaces.

Once gb �= 0, the boundary conditions (4) induce an
inhomogeneous equilibrium profile of the order parameter
f (x) in the ring, with its minimal value f0 < 1 at x = 0.
Since the supercurrent in thin wires is spatially constant, the
modulus and the phase of the complex order parameter vary in
space interactively, and pronounced inhomogeneities of f (x)
and of the gradient of the phase along the ring take place
simultaneously. To find the current-phase relation based on
(5), the self-consistent interface value f0 should be determined
as a function of R and χ . The corresponding solution can be
obtained based on the first integral of the one-dimensional
GL equation (3), analogously to other problems of this
type [11].

The analytical solutions of the GL equations that de-
scribe the order-parameter profile, the magnetic flux, and
the thermodynamic potential as functions of R and χ are
obtained in Appendix A and used for further studies in
the following sections. A periodic inhomogeneous solution
for the order-parameter absolute value, with only a single
minimum and a single maximum in the ring, is considered
as being, as a rule, energetically the most favorable one.
The minimum is induced at the junction interface x = 0 by
the pair-breaking effects. Its derivative at x = 0 is nonzero
and discontinuous in accordance with the boundary con-
ditions (4). In the equilibrium, one expects the maximum
to be realized at the point x = πR diametrically opposed
to x = 0.

The location of the minimum at the junction inter-
face implies an interface’s pair-breaking effect gb = gδ +
2g� sin2 χ

2 > 0 to take place at all phase differences, which
signifies the validity of the conditions gδ > 0 and −2g� < gδ ,
irrespective of the sign of the effective Josephson coupling
constant g�. Within this framework, the solutions obtained
describe at g� < 0 the properties of thin superconducting
rings closed by the π junction with a pair-breaking interface.
Another possible solution, which corresponds to a proximity-
enhanced superconductivity near the junction interface
(gb < 0), at least for some of the phase differences, will not
be considered in the paper, as no evidence for thin interfaces
of such type in the Josephson junctions is available at this
point.

III. MINIMUM RADIUS

Superconductivity in a thin ring closed by the junction is
destroyed under the condition R < Rmin. The dimensionless
minimum radius Rmin appears as a consequence of the
junction’s destructive effects on the adjacent superconductivity
region, i.e., of the inverse proximity effects underlying the
boundary conditions (4). Solutions of (3)–(5) take into account
the effects.

Since the second-order phase transition takes place at
R = Rmin, the quantity f (x) should be very small in its
vicinity. A linearization of the GL equation is known to be
the simplest way for describing superconducting phenomena
very close to the superconductor–normal metal transition. One
could mention in this regard, for example, the problems of
Hc2 and Hc3 [1,12,13], as well as of the proximity effects in
the vicinity of the superconductor–normal metal boundaries
[14,15].

However, in the issue under consideration, the spatial
dependence of both the absolute value of the order parameter
and the gradient of its phase play an important part. At
a nonzero supercurrent density i, spatially constant in thin
rings, the gauge-invariant gradient of the phase (the superfluid
velocity) is proportional to i

f 2 . In agreement with this relation,
vs(x) is a spatially dependent quantity that does not vanish at
the transition point, if the phase difference is not a multiple of
π . This substantially complicates the linearization in f (x) of
the GL equation (3), where the supercurrent density i should
be obtained via (5) that incorporates the solution f0 taken at
the interface. The quantities vs(x), i, and f0 are, in general,
nonlocal functionals of f (x) that result in the complication
mentioned. Because of the second term i2f −3 in Eq. (3),
its linearization in f (x) is impossible without specifying
the corresponding behavior of the supercurrent. Were vs(x)
vanishingly small near the transition, the second term i2f −3 ∝
v2

s (x)f (x) would be negligible in (3) as compared to the linear
one. It is, however, not the case and the term, in general, cannot
be disregarded.

A specific case comes about when χ is a multiple of π and
the term i2f −3 strictly equals zero, together with vs and i.
Quite close to the transition point one can also put R = Rmin

and neglect the cubic term in (3). The resulting solution, for
|x| � πRmin, is f = fd cos(|x| − πRmin), and the boundary
conditions (4) take the form tan(πRmin) = gδ at χ = 2mπ and
tan(πRmin) = gδ + 2g� at χ = (2m + 1)π . One gets from here
the quantities

Rmin(0) = 1

π
arctan gδ, Rmin(π ) = 1

π
arctan(gδ + 2g�),

(6)

which satisfy the relation Rmin(π ) > Rmin(0) for zero junctions
(g� > 0), while Rmin(π ) < Rmin(0) for π junctions (g� < 0).
Under the condition gδ � 1 (and/or g� � 1 and χ ≈ π , in
case of 0 junctions) the minimum radius rmin approaches
its upper bound 0.5ξ (T ). Exactly the same bound to rmin

arises in uninterrupted mesoscopic thin rings, where rmin =
ξ (T )|�̃ − n| and the maximum equilibrium value of |�̃ − n|
is 0.5. It is also noted that the quantity rmin(0) is related to
the minimum length Lmin of a thin straight superconducting

024503-3



YU. S. BARASH PHYSICAL REVIEW B 95, 024503 (2017)

wire or a thin film symmetrically sandwiched between iden-
tical pair-breaking walls: Lmin = 2πrmin(0) = 2ξ (T ) arctan gδ

[16–18].
Moving over to a more general description, one could

proceed by taking into account the nonlinear second term,
but neglecting from the very beginning the cubic term in
(3). The corresponding simplified solution is expressed via
the inverse trigonometric functions. Alternatively, one can
find the minimum radius by introducing the corresponding
simplifications in the exact solution of the GL equations
(3)–(5) obtained in Appendix A. The former approach works
well just at the transition point and it does not apply to the
vicinity of the transition, which will be studied in Sec. V.
Since the exact solution is in any case required for this paper,
it is also used for the present purpose in Appendix B, where
the dimensionless minimum radius, obtained as a function of
the phase difference as well as of the Josephson and interface
effective coupling constants, is shown to be described by the
expression [19]

Rmin = 1

2π
arccos

(
1 − g2

� sin2 χ − g2
b√(

1 − g2
� sin2 χ − g2

b

)2 + 4g2
b

)
. (7)

As defined in (4), gb = gδ + 2g� sin2 χ

2 . The simple analytical
expression (7), describing the minimum radius Rmin as a
function of χ , g�, and gδ , is one of the prime results of the
paper.

The continuous type of the phase transition is confirmed at
sufficiently small R − Rmin by the order-parameter behavior
f 2

0 ∝ (R − Rmin). The free energy linearly vanishes with (R −
Rmin) near the transition point

F̃ ≈ −4π

3
(R − Rmin). (8)

It is the result of a strong competition between the interfacial
and bulk contributions, which takes place in mesoscopic and
nanoscopic rings in the presence of the inverse proximity
effects.

As follows from (7) for the rings closed by the 0 junction,
the phase dependence of Rmin becomes noticeable when the
interface pair breaking is not too strong gδ � 1. The larger
the strength of the Josephson coupling g� > 0, the more
pronounced the modulation of Rmin with the phase difference
that takes place in a wide (g2

� � 1) or narrow (g2
� � 1) vicinity

of χ = 2mπ . The difference between Rmin(0) and Rmin(π ) and,
therefore, the phase dependence of Rmin as a whole become
negligibly small, when gδ � 1 [see also (6)]. Since Rmin

increases with g� for 0 junctions, its minima stay at χ = 2πm

and do not depend on g�. Its maxima are at χ = (2m + 1)π
and depend on both coupling constants g� and gδ .

As g� < 0 in π junctions and gb > 0 is assumed, a finite
Josephson coupling term 2g� sin2 χ

2 reduces the strength of the
pair breaking by the junction interface characterized by the
parameter gb. Correspondingly, the quantity Rmin decreases
with increasing strength of the Josephson coupling |g�|. Its
minima occur at χ = (2m + 1)π and depend on both values g�

and gδ , while the maxima are at χ = 2mπ and depend solely on
gδ . Since the supercurrent (5) and the superfluid velocity vanish
at χ = mπ , the results regarding the extrema of Rmin agree
with (6) found for χ = 0,π within the linearized description. In

R
R

FIG. 1. Rmin(χ ) for the rings closed by 0 junction (left panel) and
π junction (right panel). Left panel: gδ = 0.1 and (1) g� = 0.1, (2)
g� = 0.7, (3) g� = 5, and g� = 0 (dashed curve). Right panel: gδ = 3
and (1) g� = −1, (2) g� = −1.3, (3) g� = −1.5, and g� = 0 (dashed
curve).

accordance with (8), free energy has its minimum at χ = 2mπ

for the 0 junction, and at χ = (2m + 1)π for the π junction.
The minimum radius Rmin as a function of the phase

difference, for the thin rings closed by 0 junctions and π

junctions, is shown in the left and right panels of Fig. 1,
respectively. The minimum radius has been found above by
comparing the superconducting rings with various radii at fixed
χ . When the Josephson coupling induces a noticeable phase
dependence of Rmin, the critical value R = Rmin(χ ) is not
necessarily to be the minimum radius of the superconducting
rings with χ ′ �= χ .

In the flux-biased rings the minimum radius actually
depends on �̃, rather than on χ . The relationship between
the quantities χ and �̃ can be obtained by integrating the
first expression for the current in (5) along the ring. Since∮
C A · ξdx = � is the full magnetic flux penetrating the ring,

one gets

χ + 2π (�̃ − n) = −2i

πR∫
0

dx

f 2(x)
. (9)

Here n is the winding number and the relation f (x) = f (−x)
has been used.

The integration on the right-hand side in (9), taken with the
solution for the order parameter, results in (A10), which is valid
at an arbitrary ring’s size. The expression (A10) is substantially
simplified at R = Rmin(χ ), as shown in Appendix B [19]:

�̃ − n = − 1

2π

(
χ + sgn(g� sin χ )

× arccos
1 + g2

b − g2
� sin2 χ√(

1 + g2
b − g2

� sin2 χ
)2 + 4g2

bg
2
� sin2 χ

)
. (10)

The relationships between the magnetic flux and the phase
difference, obtained in the paper, can strongly deviate from
the linear dependence χ = −2π (�̃ − n) taking place in thick
rings closed by the Josephson junction, in the absence of
noticeable inductance effects [7]. Due to the Meissner effect,
the supercurrent vanishes along with vs in the depth of a thick
ring, while the order parameter remains finite. On the contrary,
in thin rings the supercurrent vanishes at R = Rmin together
with the order parameter, while vs , in general, stays finite.
As can be seen in (9), where the right-hand side represents
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FIG. 2. χ (�̃) in the rings of minimum radius. 0 junctions: gδ =
0.1 and (1) g� = 5, (2) g� = 0.7, (3) g� � 1. π junctions: gδ = 3 and
(3) |g�| � 1, (4) g� = −1, (5) g� = −1.5.

circulation of vs , the superfluid velocity is responsible for
the nonlinear character of the relationship (10). The integral∫

dx/f 2(x) on the right-hand side of (9) diverges at the
transition point. However, the integral multiplied by the
supercurrent i = g�f

2
0 sin χ remains finite even in the limit

f (x) → 0, in accordance with the relation f0 � f (x). Both
sides in (9) take zero values, along with vs , when χ is a
multiple of π . In this particular case the relation (10) acquires
the familiar linear character and |�̃| takes an integer or a
half-integer number. For example, for |χ | = π (and n = 0) one
gets |�̃| = 1

2 . Therefore, the free energy (8) has its minimum
at �̃ = 0 in the case of the 0 junction, and at |�̃| = 1

2 in
the case of the π junction. This agrees with the emergence
of the spontaneous magnetic flux penetrating the ring closed
by the π junction [20].

The magnetic flux dependence χ (�̃) in the minimum radius
rings is shown in Fig. 2 for |�̃| < 0.5, |χ | < π . If the Joseph-
son coupling is sufficiently weak |g�| � 1, then the phase
difference χ depends almost linearly on the magnetic flux �̃,
as follows from (10) and seen in the dashed curve in Fig. 2. At
the same time, curves 1 and 5 in Fig. 2, which correspond to 0
and π junctions with comparatively large Josephson coupling
strengths |g�|, demonstrate opposite signs of pronounced de-
viations from the linear behavior. Curves 1 and 5 show that the
phase difference varies weakly in the wide region of �̃, while
it undergoes abrupt changes in the narrow vicinities of the
half-integer (integer) values of �̃ in 0 junctions (π junctions).

A combined consideration of (7) and (10) results in the
periodic dependence of the minimum radius on the magnetic
flux Rmin(�̃), which is depicted in Fig. 3. The stronger
the Josephson coupling strength is, the more intense the
modulation of Rmin with the magnetic flux. In the case of
the 0 junction (π junction), the maxima of Rmin and of
the pair-breaking parameter gb occur at the magnetic flux
half-integer (integer) values.

IV. MODIFIED CRITICAL TEMPERATURE

Since temperature has been incorporated in the definitions
of a number of dimensionless quantities, it implicitly enters

R
R

FIG. 3. Rmin(�̃) for the rings with 0 junctions (left panel) and
π junctions (right panel) under the same set of parameters as in the
corresponding panels in Fig. 1.

all the results obtained above. Thus the temperature dependent
coherence length ξ (T ), as the characteristic length of the
inverse proximity effects, is included in the dimensionless
radius R(T ) = r/ξ (T ). When R(T ) is taken at fixed r , it
decreases with diminishing τ and, at least formally, vanishes
at τ = 0. Here τ = 1 − (T/Tc0), and Tc0 is an unperturbed
critical temperature of the superconducting material.

On the other hand, the right-hand side of (7), i.e., Rmin,
depends on τ via the temperature-dependent effective cou-
pling constants g� = [gJ ξ (T )]/K and gδ = [gξ (T )]/K . They
increase with ξ (T ), when the temperature draws near to Tc,
as a consequence of an increasing influence of the junction
interface and, therefore, the boundary conditions (4), on
the ring’s properties as a whole. When τ goes down, the
dimensionless radius decreases down to 0 at τ = 0, while the
quantity Rmin increases up to 0.5, as seen in (6) and (7).

Therefore, if the ring’s radius R initially exceeds Rmin and
temperature goes up, making ξ (T ), g�, and gδ sufficiently
large and τ small, the quantities R and Rmin will inevitably
become equal to each other. The temperature Tc, at which
the equality takes place, is the modified critical temperature
of the superconducting transition in the ring closed by the
junction. In other words, the equality R = Rmin, with Rmin

given in (7), can also be considered as the equation for the
proximity-modified critical temperature Tc < Tc0 that depends
on the ring’s radius and the phase difference. The critical
temperature shift Tc = Tc − Tc0 is discernible within the
mean-field theory, when exceeding the fluctuation region near
Tc0. This is the case for mesoscopic or nanoscopic rings, when
the ring’s radius slightly differs from the minimum one. For a
sufficiently large R the shift is negligibly small.

In order to reveal the temperature dependence in the equa-
tion R = Rmin, let us introduce an auxiliary “low-temperature”
GL coherence length ξGL

0 = ξ (T )
√

τ [21] and move on to
a rescaled dimensionless radius R̃ = r/ξGL

0 = R/
√

τ . The
effective “low-temperature” coupling constants of the GL
theory are defined as g�0 = (gJ ξGL

0 )/K , gδ0 = (gξGL
0 )/K .

With these definitions, one gets from (7) the relationship

R̃ = 1

2π
√

τ
arccos

τ − g2
�0 sin2 χ − g2

b0√(
τ − g2

�0 sin2 χ − g2
b0

)2 + 4g2
b0τ

, (11)

which can be used either as the expression for the temperature-
dependent minimum radius R̃min( T

Tc0
,χ ), or as the equation

for the critical temperature shift τc(R̃,χ ) = 1 − Tc(R̃,χ )
Tc0

=
−Tc(R̃,χ )

Tc0
in the ring with radius R̃.
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T
T

R

T
T

R

FIG. 4. R̃min( T

Tc0
) at χ = 0,π for rings with 0 junction (left panel)

and π junction (right panel). Left panel: gδ0 = 0.1, χ = π , and (1)
g�0 = 0.1, (2) g�0 = 0.4, (3) g�0 = 5; χ = 0 (dashed curve). Right
panel: gδ0 = 3, χ = π , and (1) g�0 = −1.2, (2) g�0 = −1.4, (3) g�0 =
−1.48; χ = 0 (dashed curve).

At a given temperature, the extrema of R̃min( T
Tc0

,χ ) take the
form

R̃min

(
T

Tc0
,π

)
= 1

2π
√

τ
arccos

τ − (gδ0 + 2g�0)2

τ + (gδ0 + 2g�0)2
, (12)

R̃min

(
T

Tc0
,0

)
= 1

2π
√

τ
arccos

τ − g2
δ0

τ + g2
δ0

. (13)

The temperature dependence of the extrema of R̃min(χ ) near
Tc is depicted in Fig. 4 for 0 junctions (the left panel) and π

junctions (the right panel). For 0 junctions, the temperature-
dependent minimal value R̃min( T

Tc0
,0) is independent of g�0,

being the same for gδ0 = 0.1 and various values of g�0 con-
sidered in the left panel in Fig. 4 (the dashed curve). The solid
curves in the Fig. 4 left panel demonstrate the temperature-
dependent maximum R̃min( T

Tc0
,π ) at various values of g�0

for gδ0 = 0.1. For π junctions, the temperature-dependent
maximum R̃min( T

Tc0
,0) is independent of g�0, being the same

for gδ0 = 3 and various values of g�0 considered in the right
panel of Fig. 4 (the dashed curve). The solid curves in the
right panel of Fig. 4 demonstrate the temperature-dependent
minimum R̃min( T

Tc0
,π ), taken at various negative values of g�0

for gδ0 = 3.
As seen in (11), the upper bound on the shift of the critical

temperature is τc � 1/(4R̃2). While ξ (T ) diverges at T = Tc0,
it stays finite at T = Tc < Tc0. Taking jointly the upper bound
obtained and the simplest condition τc � 1 for the GL theory
to be applied, one gets 4R̃2 � 1, which also agrees with the
applicability domain of the GL theory.

One notes, for example, that under the particular conditions
τc � min(1,g2

b0 + g2
�0 sin2 χ ), the solution of Eq. (11) takes

the form

τc(R̃,χ ) = −Tc

Tc0
≈ π2

4
(
πR̃ + gb0(χ)

g2
b0+g2

�0 sin2 χ

)2 . (14)

The critical temperature shift τc(R̃,χ ) as a function of the phase
difference is shown in Fig. 5 for the rings with R̃ = 5, closed
by the 0 junction (left panel) and π junction (right panel).
For the 0 junction (π junction) the shift takes its maxima at

T T

FIG. 5. −Tc

Tc0
as a function of χ in rings with 0 junction (left

panel) and π junction (right panel); R̃ = 5. Left panel: gδ0 = 0.1
and (1) g�0 = 0.1, (2) g�0 = 0.4, (3) g�0 = 5; g�0 = 0 (dashed line).
Right panel: gδ0 = 0.3 and (1) g�0 = −0.1, (2) g�0 = −0.13, (3) g�0 =
−0.148; g�0 = 0 (dashed line).

χ = (2m + 1)π (χ = 2mπ ) and minima at χ = 2mπ [χ =
(2m + 1)π ].

The dependence of the magnetic flux �c(R̃,χ ), taken at the
modified critical temperature, can be obtained by extracting
the temperature dependence in Eq. (10) and substituting for τ

the solution of (11) τc(R̃,χ ). This allows one to get the relative
shift of the critical temperature −Tc

Tc0
as a periodic function of

the magnetic flux �̃, shown in Fig. 6 for the 0 junction (the left
panel) and the π junction (the right panel). As expected, the
shift of Tc obtained is comparatively small but can lie beyond
the fluctuation region near Tc, in a wide range of gδ0 and g�0

variations.

V. RADIUS-DEPENDENT JOSEPHSON CURRENT

A noticeable dependence of the Josephson current on the
ring’s radius appears when r becomes close to the minimum
radius. Since rmin depends on the phase difference, not only
the critical current, but also the current-phase relation of the
junction can be strongly modified, when r either exceeds
the minimum radius for some of phase differences, or goes
slightly over its maximum. With increasing r at r � ξ (T ), the
current-phase relation quickly approaches the one describing
the junctions included in asymptotically large rings, or in
straight long superconducting leads.

The normalized circulating supercurrent j̃ = j/jdp is de-
picted as a function of the phase difference in the main panel
of Fig. 7 for various ring’s radii and for the 0 junction with
g� = gδ = 0.1. The numerical results have been obtained by
carrying out the evaluation of the supercurrent (5) with the
exact self-consistent formulas of Appendix A. For the set of

T
T

FIG. 6. −Tc

Tc0
as a periodic function of �̃ in a ring with radius

R̃ = 5, closed by 0 junction (left panel) and π junction (right panel).
Left panel: gδ0 = 0.1 and (1) g�0 = 0.01, (2) g�0 = 0.1, (3) g�0 = 0.4,
(4) g�0 = 5. Right panel: gδ0 = 3 and (1) g�0 = 0, (2) g�0 = −1.3, (3)
g�0 = −1.43, (4) g�0 = −1.48.
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FIG. 7. j̃ (χ ) for 0 junction: (g� = gδ = 0.1) included in the rings
with various R: (1) R = 0.05, (2) R = 0.07, (3) R = 0.1, (4) R =
0.16, (5) R � 1. Inset: The critical current j̃c as a function of R.

parameters chosen, one gets from (7) rmin(0) ≈ 0.0317ξ (T )
and rmin(π ) ≈ 0.093ξ (T ). Curves 1–3 in Fig. 7 correspond to
the condition rmin(0) < r � rmin(π ), while curve 5 describes
the current-phase relation of the same junction included in a
large ring. The dependence of the critical current on the ring’s
radius is shown for the same set of parameters in the inset in
Fig. 7. The critical current vanishes at r = rmin(0), while at
r � ξ (T ) its value is quite close to the asymptotic one.

The current-phase relations of the π junction with g� =
−0.1 and gδ = 0.3, which closes the rings with the same set of
radii, are shown in the main panel of Fig. 8. For curves 1–3 in
Fig. 8, the π junction destroys superconductivity in the rings in
a vicinity of χ = 2mπ , while the supercurrent still survives at
phase differences closer to χ = (2m + 1)π . The dependence
of the critical current on the ring’s radius is similar to the case
of the 0 junction. For g� = −0.1 and gδ = 3, the critical current
vanishes at r = rmin(π ) ≈ 0.0317ξ (T ), while at r � ξ (T ) its
value is quite close to the asymptotic one.

FIG. 8. j̃ (χ ) for π junction (g� = −0.1 and gδ = 0.3) included
in the rings with various R: (1) R = 0.05, (2) R = 0.07, (3) R = 0.1,
(4) R = 0.16, (5) R � 1. Inset: The critical current j̃c as a function
of R.

FIG. 9. j̃ (�̃) in thin mesoscopic rings closed by 0 junction with
g� = gδ = 0.1, at various values of rings’s radii: (1) R = 0.07, (2)
R = 0.16, (3) R = 1.03, (4) R = 4.00, (5) R = 6.50. Inset: The
supercurrent j̃ , taken at �̃ = −0.1, as a function of the ring’s radius.

The magnetic flux dependence of the Josephson current
can be found, in the case of the 0 junction, combining the
phase dependence of the supercurrent shown in Fig. 7 with
such a dependence of the magnetic flux given by (A10).
Unlike the current-phase relation, the current-magnetic flux
relation in thin superconducting rings substantially depends
on the radius even at large R. In the absence of the Meissner
screening, the circulation of vs described on the right-hand
side of (9) enters and can considerably change the relation
between � and χ . As was shown in Sec. III, the circulation of
vs noticeably modifies the �-χ relation even at small r , i.e.,
quite close to the transition point r = rmin, where the superfluid
velocity does not vanish. At sufficiently large r , which enters
the upper limit of the integration in (9), the “vs term” in (9)
increases ∝ r and has a profound influence on the �-χ relation.
While at small r the dependence �(χ ) is a monotonic one
within the period 2π , resulting in the single-valued inverse
function χ (�), in the rings with comparatively large radii a
nonmonotonic dependence �(χ ) can appear and lead to a
multivalued dependence of χ [and, therefore, of j (χ )] on the
full magnetic flux �.

The resulting supercurrent–magnetic flux relation for the 0
junction is shown in Fig. 9. The relation between the magnetic
flux and the phase difference for curves 1 and 2 is almost
linear, as could be expected from discussing it in Sec. III
in the case of g� = gδ = 0.1 � 1 and at a sufficiently small
R. However, the ring’s radii that correspond to curves 4 and
5 are already large enough for the vs term to substantially
shift the magnetic flux, when the supercurrent is comparatively
large. When χ is a multiple of π , the effect of the vs term
vanishes together with vs and j . This ultimately results in the
multivalued supercurrent–magnetic flux relation, as seen in
curves 4 and 5. Such a behavior implies also a nonmonotonic
radius dependence of the supercurrent at a fixed magnetic flux,
as seen in the inset in Fig. 9.

The magnetic flux dependence of the supercurrent flowing
along the rings closed by the π junction is demonstrated
in Fig. 10. Curve 1 represents the supercurrent–magnetic
flux relation for the ring’s radius satisfying the conditions
Rmin(0.5) < R < Rmin(0). Superconductivity is destroyed in
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FIG. 10. j̃ (�̃) in thin mesoscopic rings closed by π junction
with g� = −0.1 and gδ = 0.3, at various values of rings’s radii: (1)
R = 0.06, (2) R = 0.10, (3) R = 0.40, (4) R = 4.00, (5) R = 6.50.

such a ring at small values of the full magnetic flux �̃, while it
exists, and a finite supercurrent flows, in a vicinity of �̃ = 0.5.

As known, the spontaneous supercurrent and self-magnetic-
flux arise in the superconducting rings closed by the π junction
[20,22–24]. The spontaneous flux is a nontrivial solution
of the equation � = 1

c
LI , where the total supercurrent is

considered as a function of the magnetic flux. Since the
inductance contribution is of importance for the effect, the
magnetic-field term 1

2c2 LI 2 should be added to the free
energy of the flux-biased ring, identified in Appendix A. A
nontrivial solution is, as a rule, energetically more favorable
than at � = 0. As the supercurrent vanishes at � = 0.5�0,
for sufficiently large L the solution with a comparatively
small supercurrent and a flux close to half a flux quantum
exists. On the contrary, there is no nontrivial solution of
the equation � = 1

c
LI (�) for sufficiently small L. When

the difference R − Rmin diminishes, the minimum inductance
for the nontrivial solution to appear increases since the
superconductivity region in a vicinity of half a flux quantum,
as well as the supercurrent within the region, is reduced by the
inverse proximity effects (see Fig. 10). Therefore, when the
effects are noticeable and the temperature draws near to Tc,
the spontaneous supercurrent can disappear at a sufficiently
small nonzero value of R − Rmin, i.e., below Tc.

Consider now the evolution of the current–magnetic flux
relation with temperature. The temperature dependence of the
supercurrent j = j̃ jdp originates not only from the dimen-
sionless radius R = R̃τ 1/2 and from the effective coupling
constants g�(δ) = g�0(δ0)/

√
τ , but also from the temperature

dependence of the depairing current jdp ∝ τ 3/2. For extracting
the temperature dependence of j , it is convenient to switch
over to a new dimensionless quantity J = j/jGL

dp (0), where
jGL

dp (0) is the so-called zero-temperature depairing current
of the GL theory jGL

dp (0) = τ−3/2jdp. The quantity jGL
dp (0) is

known to exceed 2–3 times the real zero-temperature depairing
current jdp(0). For example, the equality jdp(0) ≈ 0.385jGL

dp (0)
follows from microscopic results for the junctions, involving
conventional diffusive superconductors [25].

FIG. 11. J (�̃) at R̃ = 5, g�0 = gδ0 = 0.1, taken at various
temperatures: (1) τ = 0.005, (2) τ = 0.006, (3) τ = 0.007, (4)
τ = 0.008. Inset: The multivalued current-magnetic flux relation at
g�0 = gδ0 = 0.1, R̃ = 15, and τ = 0.1.

The magnetic flux dependence of J , taken near Tc at various
values of τ , is shown in Fig. 11 for the ring with R̃ = 5 and
g�(δ),0 = 0.1. The supercurrent takes quite small values, as it
is taken in units of jGL

dp (0) and not of jdp. At substantially

larger values of R̃ and J , the multivalued current-magnetic
flux relation can arise with varying temperature, and hence τ ,
as shown in the inset for the case τ = 0.1 � 1 and R̃ = 15.

This paper has focused on the mean-field results within
the GL theory. The current-phase relation of the junction in
the superconducting ring can also be affected both by classical
fluctuations of the order parameter in or close to the fluctuation
region near Tc, and by quantum fluctuations, which are of
importance at very low temperatures. The former case is still
an open field for further study, while a number of results have
already been obtained regarding the latter one [26].

VI. CONCLUSIONS

The problem of the destructive effects of the Josephson
junction on superconductivity of mesoscopic or nanoscopic
rings has been solved in this paper within the GL theory.
The superconducting state is shown to take place when the
ring’s radius exceeds a minimum radius rmin that depends
on the phase difference or the magnetic flux, as well as on
the temperature and the effective Josephson and interface
coupling constants. Depending on the junction transparency
and/or the strength of the pair breaking by the junction in-
terface, the minimum radius can become a noticeable fraction
of the temperature-dependent coherence length, up to 0.5ξ (T ).
The superconductor–normal metal phase transition that takes
place at r = rmin is shown to be of the second order. The
magnetic flux and temperature dependence of rmin allow an
observation of the transition under slowly varying magnetic
field or temperature. The minimum radius increases when
the temperature draws near to Tc, resulting in the equality
r = rmin(Tc) at the modified critical temperature.

When the ring’s radius slightly exceeds rmin, not only
the critical temperature of the superconducting state, but
also the current-phase and current–magnetic flux relations
can be noticeably modified by the inverse proximity effects
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in the ring. The specific features of these characteristics
have been determined both for 0 and π junctions, and their
dependence on the ring’s radius as well as on the temperature
have been obtained. A substantial evolution of the magnetic
flux dependence of the Josephson current with increasing
radius of thin rings has been demonstrated to persist even
at large ring’s radii and result in a multivalued behavior,
while the current-phase dependence stays almost unchanged
at r � ξ (T ), approaching the one that describes the junctions
in asymptotically large rings. The identified multivaluedness
of the supercurrent’s magnetic flux dependence is related to
the presence of the corresponding equilibrium and metastable
states and to possible transitions between them, which result
in the hysteretic behavior of the supercurrent. The hysteretic
properties, however, lie outside the scope of this paper. They
appear in the rings with comparatively large radii and take
place irrespective of the proximity effects’ strength, while
the paper mainly concerns itself with the proximity-induced
effects in the rings of smaller sizes.

Currents flowing in individual nanoscopic and mesoscopic
superconducting rings can be experimentally determined using
a number of methods. In addition to methods based on
electrical transport measurement technique employing direct
electrical contacts with the system [4], there also are the
noninvasive ones that use micromechanical torsional magne-
tometers [27,28] or measure the ring’s susceptibility [29,30].
The present sensitivity and accuracy of the experimental
techniques as well as modern technological developments
for fabrication of superconducting nanorings, nanocylinders,
and nano-SQUIDs [4,31] represent the basis for possible
observations of the theoretical predictions of this paper.
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APPENDIX A: SOLUTIONS OF THE GL EQUATIONS

The parameter E , related to the first integral of the GL
equation (3) and defined as

E =
(

df (x)

dx

)2

+ i2

f 2(x)
+ f 2(x) − 1

2
f 4(x), (A1)

is spatially constant, when taken for the solutions f (x).
Taking x = 0 in (A1) and making use of (4) and (5), one can

express E via f0 and the parameters of the superconducting
ring closed by the junction:

E = (
1 + g2

b + g2
� sin2 χ

)
f 2

0 − 1

2
f 4

0 . (A2)

Equation (A1) can be also rewritten in the form(
df

dx

)2

= 1

2f 2
(f 2 − f 2

+)
(
f 2 − f 2

d

)
(f 2 − f 2

−). (A3)

The quantities t− = f 2
−, td = f 2

d , and t+ = f 2
+ satisfy the

following set of equations:

t− + td + t+ = 2, t−td t+ = 2i2,

td t− + td t+ + t−t+ = 2E . (A4)

Apart from the boundary and periodic conditions, the
solution of Eq. (A3) is characterized by three formal extrema
f−,fd,f+ with vanishing first derivatives df

dx
. When the ring

closed by the junction is in the equilibrium, only one of
the extrema represents an actual (maximum) value of f (x)
in the ring, while the other two are just auxiliary quantities.
Indeed, a periodic inhomogeneous solution t(x) = f 2(x) with
only a single minimum and a single maximum in the ring
should energetically be the most favorable one. The minimum
t0 = f 2

0 is induced at the junction interface x = 0 by the
pair-breaking effects. In contrast to the extrema described
by (A3) and (A4), the derivative at x = 0 is nonzero and
discontinuous in accordance with the boundary conditions
(4). In the equilibrium, one expects the maximum of t(x)
to coincide with one of the roots of the right-hand side of
(A3) (let it be td ), and to be realized at the point x = πR

diametrically opposed to x = 0. In general, either all three
roots t−,td , and t+ take real values, or only one is real and
the other two are the complex conjugate of each other. As the
left-hand side of (A3) takes nonnegative values, one concludes
that the minimum that does not actually show up in the ring
(let it be t−) has to be real in both cases. Since one of the other
two extrema is the real quantity td , both of them also have to
be real.

Let t(x) have a minimum t0 at x = 0 and a maximum td
at x = πR. A nonnegative value of the left-hand side of (A3)
entails the existence of one more maximum t+. Assuming
that t− � t0 � t(x) � td � t+, the solution of (A3) can be
represented in the region |x| � πR as

|x| =
√

2

t+ − t−

[
F

(
arcsin

√
t − t−
td − t−

∣∣∣∣ td − t−
t+ − t−

)

−F

(
arcsin

√
t0 − t−
td − t−

∣∣∣∣ td − t−
t+ − t−

)]
. (A5)

Here F (ϕ|m) is the elliptic integral of the first kind. The
notations of arguments of elliptic integrals vary in literature
and here the definitions of the Mathematica book are used
[32]. Making use of the addition theorem for F (ϕ|m) [33], the
solution (A5) can be rewritten in the form

|x| =
√

2

t+ − t−
F

(
ψ

∣∣∣∣ td − t−
t+ − t−

)
, (A6)

where

sin ψ =
√

(t − t−)(td − t0)(t+ − t0) − √
(t0 − t−)(td − t)(t+ − t)

(td − t−)(t+ − t−) − (t − t−)(t0 − t−)

√
t+ − t−. (A7)
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The solution (A6), (A7) contains four parameters t−, td , t+, and t0. They are linked to each other by the system of three
equations (A4), where expressions (5) and (A2) should be substituted for E and i. The fourth equation is obtained taking x = πR

and t(πR) = td in (A6):

πR =
√

2

t+ − t−
F

(
arcsin

√
(t+ − t−)(td − t0)

(td − t−)(t+ − t0)

∣∣∣∣ td − t−
t+ − t−

)
.

(A8)

When the relation (A8) is taken into account, the solution (A6) and (A7) is simplified and can be reduced to the form

|x| = πR −
√

2

t+ − t−
F

(
arcsin

√
(t+ − t−)(td − t)

(td − t−)(t+ − t)

∣∣∣∣ td − t−
t+ − t−

)
, |x| � πR. (A9)

A joint solution of (A4) and (A8) represents t−,t0,td , and t+, as well as the whole of the inhomogeneous profile of the order
parameter (A9), as functions of the phase difference χ and of the dimensionless radius of the ring R = r/ξ (T ).

In the case of a flux-biased ring the relationship (9) between the phase difference and the magnetic flux should be used. The
integration on the right-hand side of (9) can be carried out after inserting the order parameter profile (A9). The result contains
the elliptic integral of the third kind and takes the form

�̃ − n = −
{

χ

2π
+ i

[
1

t+
R +

√
2(t+ − td )

πt+td
√

t+ − t−
�

(
t+(td − t−)

td (t+ − t−)
; arcsin

√
(t+ − t−)(td − t0)

(td − t−)(t+ − t0)

∣∣∣∣ td − t−
t+ − t−

)]}
. (A10)

When the solutions of (A4), (A8) for t−, td , t+, and t0, along with the second expression in (5) for the supercurrent, are
inserted on the right-hand side of (A10), the latter represents the quantity �̃ − n as a function of χ and R. As follows from
(A10), the magnetic flux equals an integral (a half-integral) number, when the phase difference is an even (odd) multiple of π ,
since the supercurrent vanishes at χ = mπ . Since the change of the winding number by one is, by definition, the change of the
order-parameter phase φ(x) by 2π after it has gone around the loop, the changes of χ by a multiple of 2π and of the winding
number by an integer are unambiguously interrelated in (A10). The 2π -periodic dependence of t−, td , t+, and t0 on χ that follows
from (A4), (A8) and (5), (A2) should be noted here.

If the critical current is small as compared to the depairing current and the ring’s radius satisfies the condition R � 1, the
quantity �̃ − n in (A10), as a function of χ and R, can be inversed resulting in a single-valued function χ (�̃ − n,R). This allows
one to obtain all the quantities as functions of �̃ − n and R. Similarly to the unbroken rings, the dependence of the winding
number on the magnetic flux should be determined from the minimization of thermodynamic potential at a fixed �̃. In this case
one gets the physical quantities in the equilibrium state as periodic functions of �̃ with unit period: χ (�̃ + 1) = χ (�̃) + 2π .

While the superconducting state in the ring closed by the junction is inevitably inhomogeneous unless the effective coupling
constants g� and gδ vanish, the equilibrium state of the unbroken cylindrically symmetric thin ring is characterized by the
spatially constant absolute value of the order parameter. However, an inhomogeneous profile of the order parameter can arise
as an unstable (metastable) state of the uninterrupted rings [34–36]. Such a nonuniform solution follows from (A8)–(A10) in
the limit t0 → t− and χ → 0 [37]. For the unbroken rings, the three extrema t−, td , and t+ can be calculated, as functions of �̃

and R, based on the first equation in (A4), as well as on (A8) and (A10). The inhomogeneous solution does not always exist in
the unbroken axially symmetric rings, for example, at sufficiently small magnetic fluxes, since the condition χ ≡ 0 makes the
equation (A10) to be substantially more restrictive than in the case of rings with a junction. The junction breaks the ring’s axial
symmetry, which modifies the nonuniform solution and stabilizes it. Some other examples of its stabilization in rings with the
broken symmetry have been discussed earlier [38–40].

The spatial integration can also be taken analytically in the expression for the bulk thermodynamic potential, with the solution
(A9) of the GL equation inserted in (1). As a result, one gets the free energy in the form

F̃ = gbt0 −
√

2

3

√
(t+ − t0)(td − t0)(t0 − t−) − πR

3

[
2t+ − (

1 + g2
b + g2

� sin2 χ
)
t0 + 1

2
t2
0

]

+ 2
√

2

3

[√
t+ − t−E

(
arcsin

√
(t+ − t−)(td − t0)

(td − t−)(t+ − t0)

∣∣∣∣ td − t−
t+ − t−

)
−

√
(td − t0)(t0 − t−)

(t+ − t0)

]
, (A11)

where F̃ = (bF)/(2K1/2|a|3/2), F = Fb + Fint, and E(ϕ|m)
is the elliptic integral of the second kind. Similarly to Eq. (A10)
for the magnetic flux, the free energy (A11) is given as a
function of χ and R, as the quantities t−, td , t+, and t0 are the
solutions of (A4) and (A8).

Thermodynamic potential (A11) takes into account both the
bulk and the proximity-modified interface contributions. Near
the transition point R = Rmin the two contributions strongly
compete with each other and the result is described by formula
(8) of the paper.
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Since a joint solution of Eqs. (A4), (A8), and (A10) allows
one to get the supercurrent (5) as a function of R and of the
full magnetic flux �, the relation

�e = � − 1

c
LI (A12)

gives in this case the applied magnetic flux �e(�,R). Here I =
Aj is the total supercurrent,A is the cross section’s area, and L

is the inductance. As discussed in Sec. I, the inductance effects
can be safely ignored whenever R − Rmin is sufficiently small.
The main focus of the paper is on a relatively small R − Rmin,
when the self-field effects can be mostly disregarded.

APPENDIX B: DERIVATION OF MINIMUM RADIUS

An effect of the ring’s size R on the inhomogeneous solution
of the GL equation is described by Eq. (A8). Were the first
argument of the elliptic integral on the right-hand side of (A8)
arbitrarily small at a finite t(x), the equation (A8) would allow
superconductivity in the rings with very small radii, on the
scale of the GL theory. On account of the conditions 0 �
t− � t0 � t(x) � td � t+, the first argument vanishes only at
td = t0, i.e., for the uniform order parameter. However, such a
profile is incompatible with the proximity-induced boundary
conditions (4) unless the effective coupling constants g�, gδ

vanish. Indeed, substituting the equality td = t0, as well as (5)
and (A2), in (A4), one gets the homogeneous normal-metal
state, where td = t0 = t− = 0 and t+ = 2.

In order to obtain the minimum radius Rmin, one should find
not only the limits of the individual extrema td ,t−, and t+ at
the transition (t0 → 0), but also of the combinations of these
quantities, which form the arguments of the elliptic integral in
(A8). Small deviations from the individual limits have to be
considered for this purpose. As seen in (A2) and (5), both E and

i are the small parameters, when the minimum of t(x) is small,
t0 � 1. It is the case, when the radius of a superconducting ring
only slightly exceeds the minimum radius. Up to the first-order
terms in E and i, the solutions of Eq. (A4) are

td(−) = E
2

±
√
E2

4
− i2, t+ = 2 − E . (B1)

It follows from (B1), as well as from the conditions t0 �
t(x) � td , that superconductivity is destroyed throughout the
ring simultaneously, when the minimal value of the order
parameter f0 vanishes. The absence of an isolated phase slip
center f0 = 0 at x = 0 is a direct consequence of the boundary
conditions (4).

Substituting expressions (A2) and (5) for E and i in (B1),
one finds in the limit t0 → 0 that the second argument of
the elliptic integral in (A8) vanishes while the first argument
remains finite. The elliptic integral of the first kind coincides
with its first argument under such conditions, so that (A8)
transforms into Eq. (7) for the minimum radius.

If the phase difference χ across the junction is controlled
by the magnetic flux penetrating the superconducting ring,
the minimum radius actually depends on �̃, rather than
on χ . The relation (A10) between the quantities χ and �̃

substantially simplifies at R = Rmin(χ ). Taking the limit t0 →
0 in (A10), one can make the substitution t0 = t− = td = 0
and t+ = 2 everywhere except for the extrema combinations,
the calculation of which requires taking account of small
deviations from the presented individual limits. On top of
that, the expression (5) for the supercurrent and the relation
�(n; ϕ|0) = 1√

1−n
arctan(

√
1 − n tan ϕ) should be used. The

remaining combinations of quantities td , t0, and t− can be
found in the limit t0 → 0 using (B1), (A2), and (5). As a
result, one obtains Eq. (10) of the paper.
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