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Self-consistent Bogoliubov–de Gennes theory of the vortex lattice state in a two-dimensional
strongly type-II superconductor at high magnetic fields
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A self-consistent Bogoliubov–de Gennes theory of the vortex lattice state in a 2D strong type-II superconductor
at high magnetic fields reveals a novel quantum mixed state around the semiclassical Hc2, characterized by
a well-defined Landau-Bloch band structure in the quasiparticle spectrum and suppressed order-parameter
amplitude, which sharply crossover into the well-known semiclassical (Helfand-Werthamer) results upon
decreasing magnetic field. Application to the 2D superconducting state observed recently on the surface of the
topological insulator Sb2Te3 accounts well for the experimental data, revealing a strong type-II superconductor,
with unusually low carrier density and very small cyclotron mass, which can be realized only in the strong
coupling superconductor limit.
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I. INTRODUCTION

The recent discoveries of surface and interface super-
conductivity with exceptionally high superconducting (SC)
transition temperatures in several material structures [1–3]
promise to stimulate fundamental studies of the phenomenon
of strong type-II superconductivity in two-dimensional (2D)
and quasi 2D electron systems, particularly under high
magnetic fields [4]. In a pure strong type-II superconductor
under a uniform magnetic field the quasiparticle spectrum is
gapless in a broad field range below the upper critical field
Hc2 [4–6], where scattering of quasiparticles by the vortex
lattice interferes with the Landau quantization of the electron
motion perpendicular to the magnetic field to form magnetic
(Landau) Bloch’s bands. In pure 2D, or quasi 2D, strong type-II
SC systems, such as that realized in the multilayer system of the
organic charge transfer salt κ − (ET )2Cu(SCN)2 [7], under
a magnetic field perpendicular to the easy conducting plane,
the underlying normal electron spectrum is fully quantized
and the effect of the vortex lattice is very pronounced. 2D
vortex lattices can realize in such strongly layered electronic
systems due to the presence of weak crystalline disorder [8,9],
where pinning of a few flux lines provide support for the
entire vortex lattice against melting under an increasing
magnetic field up to the irreversibility line [10]. Of special
interest in the present paper is the unique situation of the
2D superconductivity realized in surface states of topological
insulators, e.g., Sb2Te3 [11], where the chemical potential μ

is close to a Dirac point [12] (with Fermi velocity v) and
the cyclotron effective mass, m∗ = μ/v2 [13], is a small
fraction (e.g., 0.065 in Sb2Te3) of the free electron mass
me, resulting in a dramatic enhancement of the cyclotron
frequency, ωc = eH/m∗c, and the corresponding Landau level
(LL) energy spacing.

*maniv@tx.technion.ac.il

Due to the suppressed energy dispersion along the magnetic
field direction, characterizing the 2D electron system, and
the particle-hole symmetry inherent to the SC state, the
quasiparticle spectrum exhibits peculiar features that are
missing in the 3D case. For example, at discrete magnetic field
values where the chemical potential is located in the middle of
a Landau band, so that the underlying normal state spectrum
satisfies particle-hole symmetry, the calculated quasiparticle
density of states shows a linear, Dirac-like energy dependence,
which reflects topological singularities at the vortex lattice
cores [4,14]. Both the enhanced Landau quantization effect
and the lucid reflection of the topological singularity at
the vortex-lattice cores in the quasiparticle spectrum [15,16]
point to the great importance of self consistency in the
theoretical description of 2D superconductors at high magnetic
fields. The presence of well defined Landau bands in the
quasiparticle spectrum, which is reflected as magnetoquantum
(MQ) oscillations in the SC order parameter [17], via the
self consistency equation, is expected to significantly alter
the semiclassical picture of the SC phase transition at high
magnetic fields [18]. In this paper we present results of
systematic self-consistent solutions of the Bogoliubov–de
Gennes (BdG) equations, which addresses these aspects of
2D superconductivity at high magnetic fields. It is, indeed,
found that, due to self-consistency, the SC pair potential can
be strongly distorted near the vortex-lattice cores and that the
traditional semiclassical picture of a single critical point can
be dramatically smeared into an intermediate state of quantum
multicritical transition. The self-consistency formalism used
here was first developed in Ref. [19]; however, its few past
applications [19,20] have not addressed the novel aspects
mentioned above.

II. THE MODEL

For the present analysis we consider a model of a 2D
electron system under a perpendicular uniform magnetic field
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H = (0,0,H ), neglecting, for the sake of simplicity, any
(Zeeman or spin-orbit induced) spin splitting and assuming
a singlet, s-wave electron pairing. The large enhancement
of the cyclotron energy in the physical model systems under
consideration here [11] justifies this approximation (see below
for more details).

The corresponding equations for the quasiparticle states
in the mean-field approximation are the BdG equations in
the Landau-orbitals representation, using the magnetic Bloch
basis-set wave functions [5,19]:

∑
n′

�n,n′ (q)vN
n′ (q) = (εN (q) − ξn)uN

n (q), (1)

∑
n′

�∗
n′,n(q)uN

n′ (q) = (εN (q) + ξn)vN
n (q), (2)

where the single-electron (LL) energy measured relative to
the chemical potential μ is given by ξn = �ωc(n − nF ),n =
0,1,2,..., nF = μ/�ωc − 1/2. The matrix elements, �nn′ (q),
of the self-consistent pair potential [4]:

�(r) = |V |
∑
N

∑
q

uN
q (r)vN∗

q (r) tanh(εN (q)/2kBT ) (3)

are calculated by exploiting an expansion [5,21]:

�(r) =
∑

j=0,1,2,...

�jηj (r) (4)

in terms of Landau orbitals wave functions of a Cooper pair
(charge 2e):

ηj (r) =
∑

k=0,±1,±2,...

eiπ( bx
ax

)k2

ei 2πk
ax

xϕj

[√
2

(
y + πk

ax

)]
, (5)

where ϕj (y) ≡ (
√

π
2 2j j !)

−1/2
e− 1

2 y2
Hj (y), and Hj (y) is Her-

mite polynomial of order j . Here a = (ax,0),b = (bx,by) are
two primitive vectors in a general rhombic vortex lattice,
forming a primitive unit cell of area axby = π , corresponding
to one Cooper-pair flux quantum (note that all spatial lengths

are measured in units of the magnetic length: aH ≡
√

c�

eH
).

Self-consistency is therefore established by requiring the
coefficients �j to satisfy the equations:

�j = �ωc(
√

2π/ax)(j !2j )λ
nF +n0∑

n,m=nF −n0

�j
n,m × N−1

φ

×
∑

q

nmj (q)�n,m(q) (6)

where:

�j
n,m ≡ 2−n−m(n!m!)−1/2(−1)m

j∑
k=0

(−1)kCm
k Cn

j−k, (7)

�n,m(q) ≡
∑
N

uN
n (q)vN∗

m (q) tanh(εN (q)/2kBT ), (8)

nmj (q) =
(√

π

2
2j j !

)−1/2

×
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[√
2

(
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× eiπ( bx
ax

)l2−i( 2πl
ax

)qy−(qx+ πl
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)2

, (9)

n0 ≡ [ωD/ωc], Nφ is the number of flux lines threading the SC
sample, and ωD the (Debye) cutoff frequency, and the matrix
elements: �nm(q) = ∑∞

j=0 �j,nm(q), obeying the equations:

�j,nm(q) = �j (2π )−1/4(j !2j )1/2�j
n,m

×
∑

l

e− iπ
4 ( bx

ax
)l2+i 2πl

ax
qy−(qx+ πl

ax
)2

×Hn+m−j

[√
2

(
qx + πl

ax

)]
. (10)

Note the dimensionless coupling constant λ in Eq. (6),
which is related to the effective electron-electron interaction
parameter |V |, through: λ ≡ |V |(m∗/2π�

2) = |V |/2πa2
H �ωc.

Note also that the range of summation over the wave vectors
q in Eq. (6) is restricted to the first magnetic Brillouin zone,
which can be further reduced to a quarter, or one-sixth part
of the zone, depending on whether the point symmetry of the
vortex lattice is fourfold or sixfold, respectively.

III. SELF-CONSISTENT CALCULATIONS

A. Vortex core distortion

For the sake of simplicity, all numerical calculations have
been performed here with the square-lattice geometry. The
small changes associated with a different lattice geometry,
e.g., the more common triangular geometry, are irrelevant to
the purposes of the present paper.

The self-consistent solution code starts with initial values of
the coefficients �j in the expression for the matrix elements in
Eq. (10), for which the calculated 4 × (2n0 + 1) × (2n0 + 1)
BdG matrix in the 2 × (2n0 + 1)-dimensional vector space
(uN

n (q),vN
m (q)) is numerically diagonalized at each point q

in the magnetic Brillouin zone. The resulting eigenvectors
and eigenvalues are then used to construct the pair potential
for the next iteration with the new �j and �nm(q) through
Eqs. (6) and (10), respectively. The iteration process continues
until the values of �j converge. Note that, due to the
rotational symmetry of the vortex lattice, only �j with j

integer multiple of 4 (6) for the square (triangular) lattice are
different from zero. The resulting values of �j for j > 0,
in the high magnetic fields region of well-defined Landau
bands, are usually much smaller than �j=0, which corresponds
to Abrikosov-lattice form of �(r), but become increasingly
important upon decreasing the field below the crossover to a
continuous spectrum, where the pair potential shows a reduced
vortex core region and an oscillating behavior away from
the core, which reflect the appearance of bound states [19].
Note, however, that at special small values of the LL filling
factor nF + 1/2 (∝ 1/H ), �j=2nF

is strongly enhanced with
respect to the other coefficients with j > 0, leading to a
significant distortion of �(r) in the vortex core region, with
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FIG. 1. (a) Self-consistent |�SC(r)| (i.e., measured in units of
�ωc), as a function of coordinate along the diagonal of the unit cell
in the (square) vortex lattice (blue solid line), for nF = 9. The other
parameters used in the calculation are: λ = 0.75,�ωD/μ = 0.2, and
kBT /μ = 10−4. For comparison, the resulting |�SC(r)| calculated
only with �j=0, which corresponds to the Abrikosov solution, is
also shown (dotted line). The inset shows all the nonzero |�j |, j =
0,4,8,12,16 � 2nF . (b) Similar to (a) but for nF = 10. The inset
shows the nonzero coefficients |�j | at j = 0,4,8,12,16,20 � 2nF .
Note the parabolic distortion of |�SC(r)| in the vortex core region and
the enhanced value of |�j | at j = 2nF . For comparison, the resulting
|�SC(r)|, calculated without �j=2nF

, is also included (red dashed
line), showing no distortion of the vortex core region.

respect to the linearly vanishing Abrikosov form (see Fig. 1).
The excess kinetic energy associated with this distortion is
compensated by the extra condensation energy involved in the
orbital extension over the reciprocal vortex lattice.

B. Magnetoquantum mixed superconducting state

Self-consistent determination of the pair-potential ampli-
tude, �SC, is also of a crucial importance in the range of
relatively small nF (high field) values, where MQ oscillations
significantly influence the transition to the SC state. Figure 2

FIG. 2. Self-consistent order-parameter amplitude, �SC(nF ) (i.e.,
measured in units of �ωc), calculated at integer values of nF , for λ =
0.75 and different values of �ωD (0.2 μ—circles, 0.3 μ—diamonds,
0.4 μ—squares, and 0.5 μ—triangles). The corresponding best fitting
curves to �SC(nF ), based on the GL-like expression are also shown
(dashed lines).

shows �SC(nF ) ≡ �SC(nF )/�ωc [calculated at integer values
of nF , where �SC(nF ) has maxima] for the coupling constant
λ = 0.75 and various values of the cutoff frequency parameter
�ωD/μ. The corresponding best fits of �SC(nF ) to a phe-
nomenological Ginzburg-Landau (GL)-like formula:

�GL(nF ) ≡ �GL(nF )

�ωc

= (γ /nc2)nF

(
1 − nc2

nF

)1/2

(11)

with two adjustable parameters, γ and nc2, are also plotted in
Fig. 2. The best fitting values of γ and nc2 are found to be
close to 2γHW and 2nHW

c2 , respectively, where:

γHW ≈ 0.56(μ/�ωD) sinh (1/λ) (12)

and:

nHW
c2 = μ/

(
�eH HW

c2 /m∗c
) = 0.563(μ/�ωD)2 sinh2 (1/λ)

(13)
are the respective expressions derived within the semiclassical
Helfand-Werthamer (HW) theory [18] for the order-parameter
amplitude:

�HW(nF ) = (
γHW/nHW

c2

)
nF

[
1 − (

nHW
c2 /nF

)]1/2
. (14)

Furthermore, the asymptotic(nF → ∞) slope of �GL(nF )
in Eq. (11) for the best fitting parameters is found to be very
close to the corresponding HW slope, that is:

γ /nc2 
 γHW/nHW
c2 = (�ωD/μ)/ sinh (1/λ) (15)

(see Fig. 3). Thus, both �GL(nF ) and �HW(nF ) tend in the
zero field limit to the well known result for the SC energy gap,
� = �ωD/ sinh (1/λ). On the other hand, for nF values below
nc2 (i.e., for H > Hc2 = μm∗c/�enc2), where �GL(nF ) = 0,
�SC(nF ) deviates dramatically from the semiclassical theory,
showing nonvanishing values, of magnitude comparable, or
smaller than �ωc. The novel quantum mixed SC state created
in this field range is characterized by a cascade of normal to SC
phase transitions, which crossovers to the usual SC state with

FIG. 3. Self-consistent order-parameter amplitude, �SC(nF ),
(i.e., measured in units of �ωc), calculated at integer values of
nF , for λ = 1.0, �ωD = 0.25 μ, and kBT = 2.5 × 10−3 μ (blue
triangles), and the best fitting curve, based on the GL-like expression
(blue dashed line). Also shown is the corresponding semiclassical
(HW) result (magenta dashed line) and the self-consistent Landau
bandwidth �nF (red diamonds). The scale for �nF on the right
hand vertical axis. The horizontal red dotted segment indicates the
saturation value (0.5) of �nF (for which the bands start to overlap).
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a monotonically, steeply increasing order parameter amplitude
for increasing nF (decreasing H ) values around nc2 (Hc2). This
crossover closely follows the crossover of the quasiparticle
spectrum from a well-defined Landau bands structure to a
continuum, as can be seen in Fig. 3, where the width �nF of
the Landau band at the chemical potential, defined by the in-
terval of nF values corresponding to nontrivial self-consistent
solutions, is plotted as a function of integer nF , together with
�SC(nF ). It is remarkable that, in the entire fields range investi-
gated, our calculations show that �nF 
 0.2�SC(nF ), indicat-
ing that MQ oscillations, observed in the normal state, do not
suffer appreciable additional damping upon entering the quan-
tum mixed SC state. Significant effect of the SC order parame-
ter on the MQ oscillations can be therefore observed only in the
crossover region, as found experimentally in the organic super-
conductor κ − (ET )2Cu(SCN)2 [4,22,23]. The filling factors
range of this novel, quantum mixed SC state, estimated by:

nc2 − nHW
c2 ≈ nHW

c2 = 0.563(μ/�ωD)2 sinh2 (1/λ),

increases significantly (i.e., quadratically) with decreasing
values of �ωD/μ (see also Fig. 2), and much more sharply
with decreasing values of λ.

IV. COMPARISON WITH EXPERIMENT AND
CONCLUSION

Experimental evidence for the existence of the quantum
mixed SC state discussed above can be found in results
reported for the high field surface superconductivity observed
recently in the topological insulator Sb2Te3 [11]. Using
a simple s-wave BCS model of a 2D (circular) Fermi
surface with the experimentally observed dHvA frequency,
F = 36.5 T, and cyclotron mass m∗ = 0.065me, and
employing the basic dimensionless constants λ and �ωD/μ

of the model as adjustable parameters, we fit the zero
field limit of the calculated self-consistent order parameter:
�SC(nF → ∞) → �ωD/ sinh (1/λ) to the average SC energy
gap derived from the STS measurements (i.e., 
13 meV) [11],
and the semiclassical critical field (nHW

c2 ≈ 14, see Fig. 3) to
the experimentally determined field of the resistivity onset
downshift HR (∼2.5 T, nF ∼ 14) [11]. The resulting values
of the adjustable parameters, λ = 1 and �ωD/μ = 0.25 imply
strong coupling superconductivity with relatively small cutoff
energy for the surface state of Sb2Te3.

Now, using the set of parameters selected above, we’ve
calculated the self-consistent order parameter amplitude,
�SC(nF ), at the temperature of the experiment, T =
1.9 K(kBT /μ = 2.5 × 10−3), with the best fitting GL param-
eters; γ = 5.8, and nc2 = 27, showing an extended quantum
mixed state region above the crossover field (nc2 = 27, see
Fig. 3), characterized by small Landau bandwidth, �nF � 0.1,
which seems to account for the puzzled, virtually normal state
damping of the dHvA oscillation measured in this system
below HR [11].

It should be noted that the ideal model system considered
here (by ignoring effects of disorder) is aimed at emphasizing
the fundamental nature of our predictions, which could be
clearly observed only in sufficiently pure materials. Never-
theless, the experimental results reported in Ref. [11] indicate
that for the 2D superconductivity, realized in electronic surface
states with Fermi energy near a Dirac point, the stringent purity
conditions are dramatically relaxed due to the drastic suppres-
sion of the cyclotron mass. Thus, with m∗ = 0.065me, the LL
spacing of 5 meV at H = 3 T, exceeds the disorder scattering
relaxation rate (∼3 meV), observed in Sb2Te3.The large scale
of the cyclotron energy can also justify, for the perpendicular
field orientation employed in our model, the neglect of the Pauli
paramagnetic limiting effect [24,25], originating in the rela-
tively large spin-orbit splitting, estimated to be about 1 meV in
Sb 2Te3. The latter remains smaller than �nF 
 0.2�SC(nF )
shown in Fig. 3, even in the broad quantum multicritical region.

In conclusion, we have shown here that in 2D electron
systems with small cyclotron mass at the Fermi energy, where
the effect of the magnetic field, through Landau quantization,
is most pronounced, self consistency of the SC order parameter
is crucial for understanding the transition to strong type-
II superconductivity. In particular, the single critical-point
picture of the SC phase transition, predicted by the mean-field
semiclassical theory, is smeared into a finite range multicritical
transition state, characterized by a well defined Landau-
bands structure in the quasiparticle spectrum and suppressed
SC order parameter amplitude. Upon decreasing magnetic
field below the semiclassical Hc2 the quasiparticle spectrum
crossovers sharply into a continuum and the order-parameter
amplitude steeply approaches the well-known result predicted
by the semiclassical (Helfand-Werthamer) theory. The fields
range of this quantum mixed SC phase dramatically increases
upon decreasing the pairing coupling constant λ, or cutoff
energy �ωD . It is therefore expected that observable MQ oscil-
lations can be significantly affected by the SC order parameter
only in the crossover region. This seems to be the reason for the
rather sporadic appearance of this effect in the diverse literature
reporting on dHvA oscillations in the SC state [4,26]. Our
theory accounts reasonably well for the 2D SC state observed
recently on the surface of the topological insulator Sb2Te3 [11],
revealing a strong type-II superconductivity at unusually low
carrier density and small cyclotron effective mass, which can
be realized only in the strong coupling (λ ∼ 1) superconductor
limit. This unique situation is due to the proximity of the Fermi
energy to a Dirac point, which implies that other materials in
the emerging field of surface superconductivity, with metallic
surface states and Dirac dispersion law around the Fermi
energy, can show similar features.
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