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Long-range Heisenberg models in quasiperiodically driven crystals of trapped ions
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We introduce a theoretical scheme for the analog quantum simulation of long-range XYZ models using
current trapped-ion technology. In order to achieve fully tunable Heisenberg-type interactions, our proposal
requires a state-dependent dipole force along a single vibrational axis, together with a combination of standard
resonant and detuned carrier drivings. We discuss how this quantum simulator could explore the effect of
long-range interactions on the phase diagram by combining an adiabatic protocol with the quasiperiodic
drivings, and test the validity of our scheme numerically. At the isotropic Heisenberg point, we show that
the long-range Hamiltonian can be mapped onto a nonlinear sigma model with a topological term that is
responsible for its low-energy properties, and we benchmark our predictions with matrix-product-state numerical

simulations.
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I. INTRODUCTION

The dream of designing the Hamiltonian of an atomic sys-
tem H(t) to reproduce a relevant model of condensed-matter
or high-energy physics Hiyge [1] is already an experimental
reality. Quantum-optical setups of neutral atoms [3] and
trapped ions [4] have become highly controllable platforms
to address the quantum many-body problem from a different
perspective, opening interesting prospects for the short term
[2]. Often, the theoretical goal is to describe the dynamics of
these systems by a combination of unitaries (A = 1)

U@) := rr{e—"fo' dTHOY 5 Uegr(t) = Up()e ™M, (1)

where Uy(f) depends on the scheme used to target the
desired model Hefy = Hiager- This can be accomplished by
Trotterizing the time evolution [5], or by using an always-on
Hamiltonian, which leads to the notions of digital/analog
quantum simulators (QS). For periodic Hamiltonians H (t) =
H(t 4+ T), an exact identity can be found U(t) = Ug(t) by
Floquet theory [6]. This has led to the concept of Floquet
engineering and has important applications in ultracold atoms
[7]1. To gain further tunability over H.y, one may use a
collection of drivings with different periodicities that need
not be commensurate. However, a rigorous generalization of
Floquet theory to these quasiperiodic drivings is still an open
problem [8]. One thus searches for schemes where Eq. (1)
is achieved approximately U(t) & U.g(t), but with sufficient
accuracy, and where the additional effects brought up by Uy(¢)
are not in conflict with the target model of the analog quantum
simulator.

In trapped ions [9], an analog QS (1) for the quantum
Ising model, a paradigm of phase transitions [13,14], has
already been achieved [10—12]. Unfortunately, implementing
what is arguably the most important model of low-dimensional
magnetism [15-17], the so-called XYZ model [20]

Hxyy = Z (J?‘-Ui"o]’f + J-y:a:"aj'-v + J?Aa?af), )

ij iji iji
i>j
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where Ji‘j. and o/ are coupling strengths and Pauli matrices for
a € {x,y,z}, has remained elusive for several years. Although
the digital QS of this model has already been achieved [18],
and a combination of digital and analog protocols proposed
[19], it would be desirable to find a purely analog QS that can
be scaled to larger ion crystals without the need of quantum
error correction to mitigate Trotterization errors.

In this work, we present such a scheme using quasiperiodic
drivings. To implement a rotated XXZ model Hey = Hxxz
obtained from (2) after setting J;; = J; [21], our scheme
only requires modifying the driving fields that produce an
effective Ising model [11]. Moreover, we show that the XYZ
model can be achieved H.;s = Hxyz by introducing additional
drivings. We test the validity of our proposal against numerical
simulations, and present a detailed study of the effect of the
long-range interactions that arise naturally in ion traps, and
break the integrability of the model [17,20,21].

This article is organized as follows. In Sec. II, we describe
the scheme based on quasiperiodic drivings that leads to an
effective XYZ model for a trapped-ion crystal. We analyze
the suitability of this scheme with respect to experimentally
available tools in Sec. III, and test its validity by comparing
the analytical predictions to numerical simulations in Sec. IV.
In Sec. V, we derive an effective quantum field theory to
describe the low-energy properties of the effective long-range
XYZ model in the SU(2) symmetric regime, and tests some
of its predictions using numerical algorithms based on matrix
product states. Finally, we present our conclusions in Sec. VI.
Details of the different derivations in these sections are given
in the appendixes.

II. QUASIPERIODICALLY DRIVEN IONS

We consider a trapped-ion chain subjected to different
drivings between two electronic states |1), ]| ) [9]. The bare dy-

namics is described by Hy =Y, %o + 3, , wn,aajt.aan,aa

where wy is the transition frequency, and al,u, ,an o the phonon
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creation-annihilation operators in a normal mode of frequency
Wn.e [22]. A useful quasiperiodic driving is a dipole force
transversal to the chain, e.g., the Mglmer-Sgrensen (MS) [23]
force

+ ipc—iwt ip—iwpt
Hys = E FinXo0; (a, e Priod 4 a):’xe $o—ionty L Hoe.,
in

3

where we have introduced the light forces .%;,, the zero-point
motion xg along the x axis, Ui+ = |1,){{;], and the frequencies
Wy = Wy — Wy x + Smwb =w + Wy x — Sn’ and phases ¢r’¢b;
of two laser beams (see below). Another useful periodic driving
follows from a laser/microwave coupled to the transition

Hci = Zhoai+ei¢d_i‘“d’ +H.c., “)

where hy is half the Rabi frequency, and we have introduced
the driving frequency wq and phase @g.

As shown in theory and experiments [10,11], the
quasiperiodic Hamiltonian H(t) = Hy + Hwms + Hc,1, in the
regime

ho K Finxo L 8y L Wy.xy W4 = o, (5)

leads to a time evolution of the form (1) with U(t) ~ Ueg(t)
targeting a long-range quantum Ising model Her = Homv

Hom = Z Jijo’;psO';bs + ho Z(Tid)d. (6)

i>j

Here, we have introduced the spin-spin couplings J;; =
=Y FinT X5 /80 + ., of =07 e” + Hec., and the spin
phase ¢s = (¢ + ¢p)/2 + /2 of the MS lasers. Provided that
the phases fulfill ¢ = ¢q + /2, the engineered Hamiltonian
(6) corresponds to a transverse-field Ising model [13,14]. We
note that the additional unitary in (1) is simply Upy(t) = e~/*o,
which does not compromise the measurement in the QS, e.g.,
magnetization and spin correlations.

As outlined in [10], by combining three dipole forces along
each vibrational axis, one may exploit all phonon branches
to mediate a Heisenberg-type interaction (2). However, in
addition to the technical overhead of combining all the required
laser beams, there are some fundamental limitations. Since
the axial trap frequency must decrease with the number of
ions, the spin-spin interactions mediated by axial phonons
become weaker as the crystal grows. This becomes especially
troublesome as the Jjo7o; interactions require a differ-
ential ac-Stark shift, and thus exclude using clock states
[24], making the experiment less resilient to magnetic-field
fluctuations. Moreover, the distance dependence of axial-
and transverse-mediated interactions differs markedly [10],
such that the important SU(2)-symmetric point J;; = Jli. =
J{} cannot be achieved. Although some of these problems
may be circumvented with surface traps [25], it would be
desirable to implement Heisenberg-type models with current
Paul/Penning designs [11,26], which requires using a single
branch of transverse phonons to mediate the interactions. Our
main result is to present such scheme by combining the MS
force (3), such that clock states can be used to encode the
spin, with a carrier term (4) supplemented by two additional
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TABLE 1. Parameters of the three-tone driving in Eq. (7).

Tone t=1 t=2 t=3
Frequency w41 = W way = wy+ A wa3 = wy — A
Strength hy = hy hy = $ho§ hy = Lhot
Phase ¢4 =0 a2 =0 $a3 =0
tones
HC’3 = Z Z hlo—i+ei¢d.l_iwd_([ + H.C., (7)
i t=1,2,3

symmetrically detuned with respect to the carrier transition
(see Table I). We show that the quasiperiodically driven Hamil-
tonian H(t) = Hy + Hyms + Hc 3 leads to U(t) =~ U.g(t) de-
scribed by the XYZ model Hes = Hxyz (2), where the
spin-spin interactions

Ji = Jyjcost g, YT =L0ysin? g1 F (6] (8)

are expressed in terms of the J;; couplings introduced below
Eq. (6), and the first-order Bessel function % (x). Varying the
spin phase ¢ allows for independent control over Ji’j. and
7,
the asymmetry between Jii. and J;;. Moreover, the additional
unitary in (1) is Uy(r) = e~ o= i holt+& sin(An/ Aoyt

We now address the crucial task of finding the parameter
regime that substitutes Eq. (5), and gives rise to a XYZ model
(2) instead of the usual Ising model (6). Previous results found
that by modifying the strength of the driving (4), one either
obtains a new Ising model with the phase of the driving for
FinXo K 8, K hg [27], or an isotropic XY model for milder
drivings max{.Zinxo,ho} < 8, and J;; < ho [28]. If instead
of the resonant driving (4), a periodically modulated one is
considered, it is possible to engineer an anisotropic XY model
[29]. We also note that more generic periodic drivings with a
site-dependent phase allow us to control also the directionality
of the XY interactions, and achieve effective spin Hamiltonians
corresponding to quantum compass models [30].

These results thus suggest that we should combine resonant
and off-resonant drivings, as in Eq. (7), and explore the regime
of large, but not too strong, driving strengths.

By using the Magnus expansion [31], together with
techniques for periodically modulated systems [7,32] (see
Appendix A), we find that the regime to obtain a XYZ model
2)is

while varying the drive strengths s, and A3 controls

max{.Finxo.ho, A} K 8, K wnx.§ < 3, )
together with
max{Jij} < 2ho,A = 4hy. (10)

Condition (9) is important to (i) avoid that the drivings perturb
the laser-ion interaction leading to the MS force (3), and (ii)
minimize residual spin-phonon terms impeding a description
of the spin dynamics by a periodically modulated Ising model

Her(1) = Y Jyol 0o (t).07 (1) = U)oU), (11)

i>j
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FIG. 1. Numerical validation of the XYZ Heisenberg model: (a) Magnetization dynamics (o] (1)) for a two-ion chain evolving under
B € {exact,XYZ(2),QIM(6)}. The trapped-ion parameters for the MS (3) are § /2w = 500 kHz, Q2 /27 = 0.9 MHz, and ¢ = /3, whereas for
the modulated carrier (7) in Table I, ho/2mw = 2.5 kHz, £ = 0.09, and A /27 = 10 kHz. We consider initial mean phonon numbers 7i,, = 0.05
and 7icom = 0.047, and truncate the vibrational Hilbert space to 7 phonons per mode. To ease the visualization, we perform a spin-echo

y
%

refocusing pulse at the middle U, = e/ =

for different evolution times given by multiples of 7/ hy = 47/ A. (b), (c) Quantum channel error

as a function of (b) the MS phase ¢, and (c) the mean number of phonons in the lowest mode, considering for the same parameters, but setting
Q/2r = 0.5 MHz, and varying ho/27 € {1.2,1.8,2.4,3,3.6,4.2,4.8,5.3,5.9} kHz, and the associated detunings A = 4h,. The different lines
correspond to the above values of A increasing in the direction of the arrow. (d) Adiabatic evolution of |/¢) = |-, +, —, +, —,+,) for N =6
ions, subjected to (i) an Ising linear ramp ¢ € [0f;/2] of the staggered field ho(z) = ho(0) — 8ht, with ho(0) = 12J},, and 6h = —2h((0)/1;,
followed by (ii) a Heisenberg linear ramp ¢ € [#;/2,#;] of the phase ¢s(t) = d¢¢, where 6¢p = 2¢/1t;, as described in the text. The adiabatic
fidelity .%,4 is represented as a function of the total ramp time #;, which is set to be an integer multiple of 27t/ hg, and the final phase ¢x.

where U(t) = e~ L holt+Esin(An/Alo” Eipally, condition (10)
guarantees that (iii) this periodically modulated Ising model
leads to the desired XYZ Hamiltonian (2).

III. EXPERIMENTAL CONSIDERATIONS
FOR THE SCHEME

While our results are applicable to most ion species, and to
Penning traps, we focus on a chain of !7'Yb* ions in a linear
Paul trap biased to yield transverse and axial trap frequencies
of 5 MHz and 1 MHz, respectively, and 2-3 pm ion spacing
[28]. Within each Yb ion, the %S/, |F = 0,mp = 0) and
251/2 |F = 1,mp = 0) hyperfine “clock” states, denoted |1)
and || ), respectively, encode the effective spin-1/2 system
[33].

The spin-spin interaction and external magnetic field in
Eq. (6) are routinely generated by globally driving stimulated
Raman transitions between the spin states [11]. Two Raman
beams are aligned with their wave vector difference along
the transverse vibrational axis e, (see Appendix A). One is
held at fixed frequency wr,, while the other contains multiple
frequencies wp, + dw, imprinted by an acousto-optic modu-
lator (AOM). The AOM is driven by an arbitrary wave form
generator (AWG), allowing for full frequency, amplitude, and
phase control over the components of the second Raman beam.
For instance, simultaneous application of dw; € {w;,w,} With
respective phases {¢;, ¢} will lead to a MS force (3) that yields
the first term of (6) if the parameters fulfill (5). Additionally,
applying dw; = wy with phase ¢4 leads to (4) and yields the
second term of Eq. (6). Typical parameters are a carrier Rabi
frequency Q2p/2m ~ 0.1-1 MHz, a Lamb-Dicke parameter
n = 0.07, and a MS detuning §,, /2w ~ 100-500 kHz, giving
a maximum spin-spin coupling Jmax /27w ~ 0.1-1 kHz. In the
current scheme, choosing h/2m ~ 1-10 kHz simultaneously
satisfies the conditions in Egs. (9) and (10), and is easily
achievable given the large carrier Rabi frequency. We also note

that the typical mean number of phonons after laser cooling in
the resolved-sideband regime is i, ~ 0.05-0.1.

Realizing a XYZ interaction according to our scheme
involves two additional tones (7), requiring a simple re-
programming of the AWG to provide the simultaneous
frequencies dw; € {w,wy,wp,wp + A,wo — A} along with the
respective phases {¢;,®y,0,0,0}. Alternatively, the AWG can
be programmed to modulate the amplitude of the wy tone as
ho[1 4 & cos(At)]; such modulations have already been a key
technique in trapped-ion many-body spectroscopy [43]. While
possible experimental limitations could include the sampling
rate of the AWG (> 1 GHz) and the response rate of the AOM
(>20 MHz), these are both sufficiently fast to allow for the
desired modulations (A /27w = 20 kHz).

IV. NUMERICAL VALIDATION OF THE SCHEME

We start by visualizing (07" (7)) for a two-ion setup with the
parameters in Fig. 1. The spin-phonon system is initialized
in p(0) = [Yo) (Yol ® pm, where [Yo) = |+y)[—y) is the
spin state, |1,) are the eigenstates of o”, and py, is the
vibrational thermal state after laser cooling. In Fig. 1(a),
we compare the prediction of the full Hamiltonian H(f)
with the XYZ (2) and the ko = 0 Ising model (6), which
clearly shows that the magnetization exchange is no longer
described by the Ising model, but instead by the XYZ
model. To quantify the accuracy, we determine how close the
exact and effective evolutions are, regardless of the possible
initial states and observables, via the quantum channel

fidelity §() = [ dY (UL OE () (W DUetr (0 195).
where &'(|¥s) (s]) := trpn{U(D[) (Y] ® pinU' (1)), and one
integrates over the Haar measure dy;. This quantity can be
evaluated efficiently [34], although the numerics become
considerably more demanding. Hence, we focus on the XXZ
model (8) for & = 0 [35], and believe that the results should
be similar for the XYZ case. In Fig. 1, we represent the
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time-averaged error & = Or, dt[1 — §()], where t; = 7/ Ji2,
as a function of (b) the spm phase ¢ that controls the XXZ

parameters (8), and (c) the mean phonon number. These results
show that the accuracy of the XXZ model in representing the
full spin-phonon dynamics is above 99% if hy/2mw < 2 kHz,
for all phases ¢s, and for warm phonons up to 77, < 0.5. In
particular, they show that phonon-induced errors are negligible
in the parameter regime (9), which will allow us to study
adiabatic protocols to prepare the XXZ model ground state
by looking directly at the periodically modulated spin model
(11).

The nearest-neighbor limit of the XXZ model hosts two
different phases: a gapped antiferromagnetic phase for ¢s <
@ == cos™'(1/ V/3), and a gapless Luttinger liquid for ¢, > (N
[36]. The addition of frustration via next-to-nearest-neighbor
interactions leads to a richer phase diagram with additional
spontaneously dimerized [37] and gapless chiral [38] phases.
The fate of these phases in the presence of long-range
interactions (2) is an open question, which could be addressed
with our setup if (i) preparation and (ii) detection of the
ground state are shown to be possible. We start by discussing
initialization via adiabatic evolution and the role of the
Hamiltonian symmetries for finite chains. For N /2 even, we
choose |Y) = |-y —, — -+ +), which can be prepared using
global one-qubit gates, and approximates the paramagnetic
ground state of the Ising model (6) for ¢ = 0, pq = 7 /2, and
ho > J;j. For N/2 odd, we choose [fg) = |—y 4y —y -+ +),
which approximates the ground state of a staggered Ising
model [39]. One then ramps down hy(¢) — 0 slowly, such
that the state adiabatically follows the ground state of the
Hamiltonian and ends in one of the Ising ground states
[Vp) = [(1 +p ® ~ 0|4y —x +x -+ +), where the parity
p = +1for N/2 even, and p = —1 for N /2 odd, is related to
the Z, symmetry of the Hamiltonian. This even-odd distinction
is crucial for the rest of the protocol, where the additional
tones (7) in Table I are switched on, making sure that the
constraints (9) and (10) are fulfilled, and the spin phase is
slowly ramped up to the desired value ¢s(t) — ¢¢. We expect
to have prepared the ground state of the long-range XXZ
model (2) corresponding to that particular ¢¢, which has parity
p ==£1 for N/2 even/odd as a consequence of the open
boundary conditions of the finite chain [40]. In Fig. 1(d), we
represent the fidelity Foq(ts,¢¢) = |(e XXZ((bf)W(tf)) |2, where

[ (te)) = T {e~ ' aTH®}|yy is the state evolving under the
succession of the Ising (6) and the periodically modulated
(11) spin Hamiltonians, according to the previous sequence
of adiabatic ramps, and [e)“(¢)) is the exact ground state
of (2). We observe that the fidelity is very close to unity
when the ramps are slow enough. For fast ramps, the fidelities
are compromised in the region ¢¢ > ¢ ~ 0.37, which is a
consequence of a decrease in the energy gap, and would
become accentuated as N grows [42].

Once the desired ground states are adiabatically prepared,
we can address the issue of detection. Trapped-ion experiments
allow in situ measurements of spin-spin correlations through
fluorescence [11], or spectroscopic probes of low-lying excita-
tions [43]. The former would allow us to distinguish between
Ising, Luttinger, dimerized, and spin-chiral orders discussed
above, whereas the later would probe their gap.
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V. LONG-RANGE HEISENBERG MODEL

To get a flavor of the effect of long-range interactions in our
quantum simulator (2), we focus on the archetypical SU(2)-
symmetric point ¢s = ¢¢, & = 0.Inanalogy to Haldane’s result
for the nearest-neighbor model [44], we map the low-energy
properties of our long-range Heisenberg Hamiltonian onto a
nonlinear sigma model (NLSM) described by the Lagrangian

Lo = 20 ) - (79) + " (3,8 x 0u9). (12)

2g 8w

Here, ¢(x*) is a three-component vector field associated
with the staggered magnetization, constrained to |¢|*> = 1,
and defined on a 1+1 space-time x* = (vt,x). We have
introduced the velocity v = ao(}_, Jo,—1x)"/?, where aq is
the lattice spacing for bulk ions, J, =4J;,,,, and x =
Zr(—l)”lrzfr. Additionally, we get a coupling constant
g =20, J,_1x~")?/S, and a topological angle ® = 7
(see Appendix B).

The topological ® term has drastic consequences on the
NLSM. Under a renormalization-group transformation, it
either flows to the gapless fixed point of the SU(2); Wess-
Zumino-Witten (WZW) conformal field theory when g < g,
or to a gapped fixed point for g > g. [45]. Truncating the long-

range model to two neighbors, one finds g = 4/v/1 — 41/,
such that g — oo as J, — J;/4. This coincides roughly

with the critical point towards the spontaneously dimerized
phase of the J;-J, Heisenberg model [37], which is a
truncation of the lattice version of the SU(2); WZW theory:
the Haldane-Shastry model [46,47]. Therefore, the NLSM
mapping identifies the WZW critical point with the instability
gc —> 00.

For the full long-range model (2), the distance decay of the
spin-spin interactions in the trapped-ion crystal is

|Jo |

Irla
AR e W O(r—2), (13)

J & + 81Jol[sgn()]'*"

where Jy quantifies the spin couplings, A determines how
close the MS forces lie to the vibrational sidebands, and &) ~
—ap/ In(JA]) for far-detuned forces |A| < 1 (see Appendix C).
We find that g ~ /7¢(3)/2 + 21/+/In2 — 2, where ¢ (n) is
the Riemann zeta function. For |A| < 1, the NLSM coupling
is thus finite, and no instability takes place. Therefore, the
NLSM predicts that our long-range Heisenberg model flows
to the WZW fixed point (i.e., gapless, power-law correlations,
and logarithmic scaling of the entanglement entropy), instead
of the spontaneously dimerized gapped phase.

We test this prediction numerically by a matrix-product-
state calculation of the ground-state entanglement entropy
S¢ = —Tr{p¢ In pg}, where p; = Try_¢{le,)(&|} is the reduced
density matrix for a block of ¢ sites inside a chain of length N.
In Fig. 2, S, is depicted for different block sizes as a function
of y, = ln[27N sin(”ﬁe)], and considering different interaction
ranges (13). For a chain with open boundary conditions,
conformal field theory predicts S, = ¢y, +a, where ¢ is
the central charge, and a is a nonuniversal constant [54].
Our numerical results display the predicted linear scaling
of a gapless phase but, interestingly, long-range interactions
change quantitatively the value of the central charge, which
gets promoted from the short-range prediction ¢ = 1 to an
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FIG. 2. Central charge in the long-range Heisenberg model:
Entanglement entropies S, of blocks of length £ in a chainof N = 128
spins computed with a matrix-product-state ansatz for the ground
state of the long-range Heisenberg model with couplings (13) using
bond dimensions up to 200 to guarantee the convergence of the
ground-state energy up to 12 digits. The ground state is obtained
using the time-dependant variational algorithm originally presented
in [51] and later reformulated for finite chains with long-range
interactions in [52,53]. The entanglement entropies, for large enough
£, scale linearly with the variable y, = ln[%’v sin(”ﬁi)], as expected
for a conformally invariant spin chain, for all the values considered
A € {0.1,0.075,0.05}. Quantitatively, the prefactor of the scaling
exceeds the central charge ¢ = 1 of the nearest-neighbor model (red
line). The coefficients c.i are obtained by a linear fit of the larger £

entropies to S, = “I y, 4- a, and shown in the inset.

effective larger value cer > 1 [55] (see inset in Fig. 2). A
similar behavior had already been observed in the long-range
quantum Ising model at criticality [52], and we provide a
possible qualitative explanation of both below.

This effect can be understood qualitatively from the scaling
of S, in closed spin chains with a defect [54,56], namely a
weaker spin-spin coupling 0 < Jy4 < J in a particular bond.
Depending on the particular model, one can find Sy = <&y, +
a’ with cer varying continuously with Jy between the open-
and closed-chain limits ¢ < cef < 2¢. Our numerics show
a similar behavior, which can be understood intuitively by
noticing that long-range interactions induce direct couplings
between the otherwise noninteracting boundaries of the chain,
yielding a hybrid between the closed- and open-chain limits.
Accordingly, one would expect cer > ¢, which is the result
found in the inset of Fig. 2.

VI. CONCLUSIONS AND OUTLOOK

We have proposed a realistic QS of long-range Heisenberg-
type models based on quasiperiodically driven trapped ions.
Making use of a single branch of phonons, this scheme is
readily applicable to existing experiments that simulate the
Ising model in either Paul [11] or Penning [26] traps. Since the
Heisenberg model describes the magnetic properties of Mott-
insulating materials, our work opens the possibility of using
trapped-ion quantum simulators to assess real-world problems.
We have presented analytic and numerical evidence that the
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1D long-range model shares similar topological properties
with the paradigmatic nearest-neighbor limit [44]. It would
be very interesting to generalize these methods to ladders with
triangular motifs, as these arise naturally in the experiment,
and may provide an alternative to observe nontrivial effects
[48] that appear in integer-spin Heisenberg models [44,49,50].
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APPENDIX A: DERIVATION OF THE EFFECTIVE
LONG-RANGE XYZ MODEL

In this Appendix, we present a detailed derivation of
the effective Heisenberg-type XYZ model (2) directly from
the Hamiltonian of the periodically driven trapped-ion chain
H(t) = Hy + Hwys + Hc 3 in Egs. (3) and (7). For the shake
of completeness, however, we note the following: (i) The
undriven trapped-ion crystal is described by H in the harmonic
approximation, which is valid for low-enough temperatures
and small vibrations around the equilibrium positions [22].
(i1) The Mg@lmer-Sgrensen force Hys (3) is obtained from the
light-matter interaction of a pair of laser beams [23] coupled
to the internal transition in the regime of resolved sidebands
[9], such that the frequency of one laser is tuned to the first red
sideband w; = wy — w, » + §,, whereas the other laser excites
the first blue sideband w, = wp + @, » — 8,. These excitations
are in practice generated by passing a laser beam through an
acousto-optic modulator driven by an arbitrary wave form gen-
erator [see Fig. 3(a)]. When the opposite detunings fulfill §,, <«
wn,x, the light-matter interaction yields Eq. (3), where the light
forces and zero-point displacement can be expressed as

. 1 2,2
7 iQLAk e [, M3 s Gurs
2 W, x

(AD)

in terms of the common Rabi frequency (Lamb-Dicke
parameter) Q K w,x L wo (7, = Ak -e,/\2mw, , L 1)
of both MS laser beams, the trap w, and normal-mode
wy,» frequencies, and the corresponding normal-mode
displacements .#; ,. In Eq. (3), we have written explicitly
the phases of the red- and blue-sideband beams ¢,,¢p [see
Fig. 3(a)]. (iii) The carrier driving Hc 3 (7) can be obtained
from the light-matter interaction with an additional laser beam
that passes through the acousto-optic modulator producing
three tones with frequencies wq | = wy, wq2 = wo + A,
wg3 = wo — A, such that A < w,,, which can be also
included in the wave form generator. In this latter case, the
strengths of the carrier drivings are limited to Ay = 4,/2 <
Wy.x/Mn [9]. By virtue of the arbitrary wave generator, it is
possible to control not only the driving strengths, but also the
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(a) (b)
S Ak =k; —ksle, Lz' o0
ko
= — o
wr,+ 0wy Wy — Wy

w\\/\ AWG OT
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Sy € {0, Wy, 04,1, Va2, P43}

FIG. 3. Scheme of the quasiperiodically modulated Mglmer-Sgrensen force: (a) lons (green circles) forming a chain within the electrodes
of a linear Paul trap. Two internal electronic levels of each ion form a pseudospin (thin arrows) that is coupled to the incident laser beams
(wide arrows), the beat note of which is controlled by an acousto-optical modulator (AOM) through an arbitrary wave generator (AWG).
By using the different modulation frequencies in the AWG listed in Table I, we obtain a quasiperiodically modulated Mglmer-Sgrensen
force that couples the spins to the motion along the axis e,||Ak. (b) Scheme for the blue and red sidebands (wy & w, ) of the whole
vibrational branch for the Mglmer-Sgrensen beams, and their symmetric detuning 6,. We also represent with small arrows the comb of
frequencies mA, with m € Z, due to the additional drivings introduced in the scheme (A6), which could hit an undesired resonance (e.g.,
carrier transition). (c) Ratio of the coupling strength %, between the possible spurious resonance with the carrier due to the additional comb
of frequencies mA, and the desired MS sideband, as a function of m € {1, ...,6}. We see that the high resonances (i.e., high m) required
by the constraint (A7) lead to a vanishingly small ratio, such that these terms can be safely neglected for the time scales of interest of the

experiment.

phases of the drivings ¢4 with respect to ¢, and ¢, which
allows us to consider the values listed in Table I.

Let us now start with the derivation of the effective XYZ
model. The first step is to move to the interaction picture with
respect to Hy, |/) = e/ |y), such that i3, |v/) = [Hys(t) +
I:Ic,3(t)]|1/~/), with the following drivings:

Hys(t) = Z Finxo0"(a, /P70 4 gl emintitr)

n,x
nn
(A2)
where in addition to the average spin phase ¢ and the spin
operator oi‘/’s introduced below Eq. (6) in the main text, also
the relative motional phase ¢y, := (¢ — ¢p)/2 appears. In this
interaction picture, the carrier driving becomes

Hea(t) =) holl + & cos(AD)]o7, (A3)

where we have used the parameters listed in Table I, such that
& depends on the ratio of the Rabi frequencies of the £A
detuned tones with respect to the resonant one. Let us now
perform the following unitary transformation |4) = U (2)|¥),
with

U(I) = ei > ho[t+% sin(An]o* ’ Ad)

such that the transformed state evolves only under the
transformed MS force i9;|V) = Hys()|), namely

Ays(t) =Y Finxoo(t)(a, P +af e7ontitr),
in
(AS5)
Here, we have introduced the transformed spin opera-
tor o (1) := U)o U (1) = cos ¢s07* — sin g U (1) U (1)1,
which can be expressed in terms of the mth-order Bessel

functions J,,(x) of the first class as follows:

o (1)

h ,
= c08 ¢s0;" — sin gy Z Im (é X()) cos[(2hy + mA)t]af

meZ

+sings Y I (g %) sin[(2hg +mA)]o?.  (A6)

meZ

Let us remark that the effect of the carrier driving (A3)
on the full light-matter interaction of the MS scheme is to
introduce a comb of new frequencies vy ,, 1= £(2ho + mA),
where m € Z [see Fig. 3(b)]. Hence, the validity of the
description of such a light-matter coupling in terms of the
periodically modulated MS force (AS5) rests on the condition
that none of these frequencies hits a resonance with the
carrier or any higher-order sideband in the original light-
matter interaction, or that in the event of such a resonance,
the coupling strength gets suppressed in comparison with
the aforementioned MS force. This imposes the following
constraints on the carrier driving parameters:

ho~ A K @y ~ 00k < 4. (A7)

The first inequality guarantees that the resonance will only
occur for a very large number of “photons” m > 1 absorbed
from the drive [see Fig. 3(b)], whereas the second inequality
guarantees that the strength of such a resonance gets exponen-
tially suppressed with respect to the strength of the MS force
as m increases [see Fig. 3(c)].

Provided that these conditions are met, we now start from
Eq. (AS) to prove that the time-evolution operator in this

transformed basis U(t) = T {e~ o djﬁMS(”} gives raise to the
desired effective XYZ Hamiltonian U (¢) &~ e~'fxv2! in Eq. (2).
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We use the so-called Magnus expansion [31] to second order
A ! A
U(0) = &M OFR0 (1) = —i f dt Hys(v),
0

1 t T R R
(=5 /) dr, /) ds Ays(x), As (@), (A8)
( (

Integrating by parts, we find the following expression for the
first-order contribution:

FinX
Q=3 5—°a

in

t T s
Finxo do; )
— / dtLO—’ane’(‘b‘“—‘s"r) —He,
0 Sn dt

W (0P (0)e @0 _ 9 (0)eitn)

(A9)

where the integral on the right-hand side involves the derivative
of the driven Pauli operator (A6). This first-order contribution
to the unitary evolution can be understood as a spin-dependent
displacement acting on the phonons, and leading to spin-
phonon correlations that compromise the validity of an
effective spin model. As such, these terms must be minimized,
which requires avoiding the possible new resonances brought
up by the frequency comb of the driven Pauli operator
(A6). This can be guaranteed by imposing a more restrictive
constraint than Eq. (A7) on the carrier parameters,

ho~A K8, Koy, £ <3 (A10)
Then, the integral on the right-hand side is suppressed with
respect to the left-hand side, and

Qi) ~ FinX0 (b in—dit)
O~ Y = —an(o (e

n

— o/ (0)e'*) —H.c.,

i,n

(A11)

where we have neglected terms of the order 0(‘%")“’ h) In
order to make 2;(¢) =~ 0, we must thus work in the far-detuned
regime of the MS force

Fnxov 1 + i1, L 8y,

where 71, stands for the mean number of phonons of the ion
chain after laser cooling has been performed. Hence, provided
that the constraints in Egs. (A10) and (A12) are fulfilled, the
dynamics of the spins will be governed by the second-order
contribution in Eq. (A8). This contribution can introduce terms
that do not oscillate periodically in time and would thus not
be negligible under the constraint (A12), but instead lead to an
effective Hamiltonian. Once again, the integration by parts is
of practical importance to identify the leading-order terms in
the regime of Eq. (A10), and we find

(A12)

Q(1) ~ —z/ dt Z]l,ol‘bs(t)od’s(r)

[>j

+D ko7 2a) i + 1)) : (A13)

i,n

PHYSICAL REVIEW B 95, 024431 (2017)

where we have neglected O(J;; 5 1y terms, and introduced the
spin-spin couplings J;; defined below Eq. (6) of the main text,

F. F* x2

J,‘j = _Zma—jno + c.c.,

n

(A14)

and some residual spin-phonon coupling strength

. 2 2 ~2 [ ho
Ain = sin ¢s(<§z.inx0) Z‘jm (Xg

meZ

82 — (mA +2h)?

(A15)

Since we have constrained the driving parameters to the
regime in Eq. (A10), and we have in particular that ko ~
A and £ < %, the m-photon resonances on the previous
equation are exponentially suppressed as m increases, and
we can approx1mate Ain = sin ¢S(/mx0)2‘jo(h°§)2ho/55 ~
0(J;;(1 + 27i,) sin® ¢ - ho/8,). According to this discussion,
and provided that iy < 8, (A10), this residual spin-phonon
coupling becomes negligible, and we obtain an effective
spin model described by a periodically modulated Ising
Hamiltonian

O(t) ~ Tl Jodtha @y Hop(r) =

> hiol (el ().
i>j

(A16)

In the numerical simulations presented in the main text, we
explore what particular values of h¢,A, and &, fulfilling the
above constraints, lead to a negligible spin-phonon coupling
while simultaneously allowing for a wide tunability of the spin
model.

The remaining task is to demonstrate that such a periodi-
cally modulated Hamiltonian leads to the desired XYZ model.
So far, the derivation has only imposed that the strength
and frequency of the carrier driving (A3) must have the
same order of magnitude iy ~ A. We will now show that by
imposing a particular ratio o/ A, it is possible to engineer the
aforementioned XYZ model. Instead of using Eq. (A6), it will
prove simpler to introduce the states |£;) = (|4;) &+ |¢,-))/\/§,
such that

O,[‘Z’s(t) —cos ¢s Sln¢ ( 12h0[1+ Sln(At)]|+ ><_[| + HC)

(A17)

We now substitute in the periodically modulated spin model,

and obtain Heer(1) = Y, ,(h} + h{} + h{}), where

h(l) = Jjj cos qbso"a ,

h? = Jij cos gy sin [ o}" (iei2h°[’+% SADI|4 ) (=] + Hec.)
+ (i€ E O] ) () 4 Hee)o ],

B = gy sin® g (i€ A1) (— 4 Hee)
x (i@l 5 SnA0T Ly | 4 Hee). (A18)

In the contribution of h,(f-), we obtain again the frequency
comb in terms of multiples of the driving frequency, which
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contribute with terms that oscillate in time as follows:
> oez JijIm(2E 8 )ei GhotmA If we impose

A
max(Jy;} < 2y = = (A19)

all these terms can be neglected using a rotating wave
approximation, such that h;jg) ~ 0. The situation for hs) is
different, as this term can be rewritten as follows:

hf;) = Jj; sin’ ¢s|:|+i><_i| =i+l = 23”1

meZ
ho\ ;
x <4sx°)e’<‘”’0+m”|+i><—,-| =i+ Hc}

(A20)

One thus finds that, under the constraints (A19), several
terms can be neglected under a rotating-wave approximation,
except for certain of resonances that may be considered as
a spin analog of the photon-assisted tunneling resonances
in periodically modulated quantum systems [32]. We thus
obtain

Y & Jyjsin? gy(14i) (=il - 1= ) (+]
= J1 @l (=il - 1)~ + Hee).

Remarkably enough, we get an effective time-independent
Hamiltonian that can be rewritten as follows:

He(t) ~ Hxyz = Z (J.’“aixaj)-‘ + ]:"ﬁa.ya]iv + J.z.o?a_f),

ij iji iji

(A21)

i>j
(A22)

where the different coupling constants have been written in
Eq. (8) of the main text. If we consider the additional unitaries
that were used to transform to the actual basis, we have shown
that the full time evolution of the driven trapped-ion crystal can
be expressed as U (f) & e~ itHop=i X holt+5 sin(Anlo* =it Hyxyz —;
Up(t)e ""Her as used in the main text of this
article.

APPENDIX B: NONLINEAR SIGMA MODEL FOR A
LONG-RANGE HEISENBERG HAMILTONIAN

In this Appendix, we present a detailed derivation of the
mapping between the long-range antiferromagnetic Heisen-
berg model (LRHM) and the O(3) nonlinear sigma model
(NLSM). The LRHM is a lattice model of interacting spins
obtained from Eqs. (2) and (8) after setting ¢ = ¢S =
cos~'(1/+/3) and &€ = 0, and described by the SU(2)-invariant
spin Hamiltonian

- 1 -

Hiriv = Zj TySi-Sj,  Si=5(0 0.0, (B
where we have introduced J;; = 4J;; > 0. The NLSM is a
relativistic quantum field theory in a 1+1 space-time x* =
(vt,x) for a vector field ¢(x*) on a 2-sphere, described by the
Lagrangian density

1 ®
Lsm = g(aﬂfl)) (0"9) + gE’”(b (0.9 x 9,¢), (B2)

PHYSICAL REVIEW B 95, 024431 (2017)

where |¢(x*)|> = 1. Here, g > 0 is the coupling constant,
e" is the Levi-Civita symbol, ® is the so-called topological
angle, and repeated indices are summed. By performing a
Wick rotation vt — —it, the action associated with this
Lagrangian is finite if limy| oo ¢(x) = ¢o. Hence, all values
of the fields at infinity are the same ¢, and the Euclidean
space-time becomes isomorphic to a 2-sphere [57]. In this
case, ¢p(x) can be considered as a mapping of the 2-sphere
of the compactified space-time onto the 2-sphere of the
vector fields, and the Euclidean action can be written as
S = [d*xLuasm = — fd2x[ﬁ(au¢)2 +iOW], where W =
% fdzxe“”(p (0,9 x 9,¢) € Z is the winding number of
the mapping. Since the action will be exponentiated in a
path-integral approach, and W € Z, one directly sees that
® is defined modulo 27, and can be thus interpreted as
an angle: a topological angle that controls the appearance
of such a topological term in the action, and leads to
important nonperturbative effects. For models invariant under
parity x! — —x!, the invariance of the action imposes that
® € {0,7}, which is responsible for the massive/massless
character of the low-energy excitations of the NLSM,
respectively.

In the nearest-neighbor limit of the LRHM (B1), Haldane
showed that a mapping between both models exists and
becomes exact in the large-S limit, where the spin-1/2
operators (B1) are substituted by spin-S operators that also
fulfill the su(2) algebra [Sf,Si.’ ] = ie%S¢5; ;, but have mag-
nitude S? = S(S + 1) [44]. The mapping leads to g = 2/,
v=2JSa, and ® =27 Smod(27), where a is the lattice
spacing. Accordingly, the topological angle vanishes ® = 0
for integer spin, and one recovers the standard NLSM without
a topological term, which displays massive excitations, as
shown by perturbative renormalization-group arguments for
weak couplings g <« 1 [57,58], and series expansions for
strong couplings g > 1 [59]. This behavior translates into
exponentially decaying spin-spin correlations and an energy
gap in the spectrum, regardless of the value of the g, and thus
valid for all different integer-S spin chains [44]. Conversely,
one finds a NLSM with a topological term for half-integer
spin, since ® = m, which modifies drastically the above
properties. Building on the renormalization-group flow to
strong couplings, and thus small effective spins (as follows
from S =2/g), Haldane conjectured that all half-integer-
spin Heisenberg models should be qualitatively identical
to the S = 1/2 case, and should thus display algebraically
decaying correlations and a vanishing energy gap [36]. There
is compelling evidence based on different numerical methods
supporting such conjecture [60].

We now explore the effects of the long-range interactions
on the mapping of the LRHM onto the NLSM. Let us
start by reviewing the Hamiltonian approach to the NLSM
described in [45,61], which starts by imposing directly the
constraint over the vector field by introducing two scalar fields
a(x*),B(x*), such that ¢ = (sinx cos B, sin sin 8, cos «).
After obtaining their canonically conjugate momenta
through Tl, = 952 and Tlg = 942, one finds Rrsm =
i ZM[(E)MOO2 + sin® (3, 8)*] by using standard trigonom-
etry. It is customary to introduce the angular momentum
€= ¢ x (3,91, + sin">adp¢Ilp), and apply again basic
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trigonometric rules to obtain the final form of the NLSM
Hamiltonian:

2
Hism = / dx%[g(e - 498x¢) + 1<ax¢>2}, (B3)
n g

where ¢> =1 and £-¢ = 0. Moreover, the following al-
gebra between the vector and angular momentum fields is
obtained:

[¢°(x),0"(3)] =0,
[64(x), 8" ()] = i ¢ (x)3(x — y), (B4)
[£4(x). 7 ()] = ie™" L (x)(x — y),
which follows from the canonical commutation relations of
the scalar fields and their conjugate momenta.
The goal now is to find a particular NLSM Hamiltonian (B3)

starting from the microscopic LRHM (B 1), and introducing the
following spin operators:

1 1
4= —(Sy $2), @i = 5 (Saip1 — S2), BS
5y S2i+1 + 82). g B2t = S2i), - (BS)

which represent small and rapid fluctuations of the local spin
density, and slow fluctuations of the staggered spin density,
respectively. Using the su(2) spin algebra algebra, one finds

J

PHYSICAL REVIEW B 95, 024431 (2017)

that these operators satisfy the constraints
2

1 &

4-¢; =0, ¢;=1+—-—_=

¢ ¢ + s s

which coincide with those of Eq. (B3) in the large-S and
continuum a — 0 limits. Moreover, the correct algebra is also

recovered in these limits, since

(B6)

ave i dij
(07,971 = ie™ G 5
8.
[¢¢.0"] = is“bcdafz—’aj, (B7)
a 7 oabc C(Siv'
¢ 6] = ie™ 6 5

lead to Eqgs. (B4) in the above limits, where 82—0’ — 8(x — y).
It is then clear that the local and staggered magnetization (B5)
shall play a key role in the mapping of the LRHM onto the
NLSM.

Let us rewrite the LRHM (B1) as Hiram = Y, >, 4, S -
Si+r, which assumes that the spin-spin couplings are trans-
lationally invariant, and will thus describe the physics of the
bulk of a large trapped-ion chain where such an approximation
becomes valid (see the section below). Using the spin operators
(BS), and partitioning the sum into even- and odd-spaced spin
pairs, we find

Hirum = Z Prsil@® - iy + Sa(li - Gisr — Gi - Ligy) — S°@; - bisr]

ir

+ Z Jor1lae;

+ Z Jorpalad;

ir

+ Z Joriola*e

ir

i1 — Sa¥;

i1 — Sa¥;

Ay + Sal¥;

Pirit — b i) — PP - Birii]
Piirit + @i i) + S7Pi - Pisrii]

“Pisre1 + i ligr) + 70 - Giria] (B3)

The next step is to take the continuum limit, and make a gradient expansion keeping terms that are O(a?). Then, it suffices to
consider the following approximations for different pairs of integers {n,m}, namely,

Ly Ly = £x) - £(x + Qaym) = £3(x),

1
Gn - Guim — () - d(x + 2Qa)ym) ~ ¢*(x) + Qa)me(x) - dp(x) + 5(2a>2m2¢(x> -7 (x)

S

2
A (1 + 1 %) —2a*m*(3, )%,

G Lngm = O - £x + 2a)m) = $(x) - £(x) + 2a)m$(x) - 9.:4(x) = —(2a)me(x) - dxP(x),

£ Pnim = (x) - @(x + 2aym) = £(x) - (x) + (2a)ml(x) - 0:p(x) = (2a)yml(x) - 3xP(x).

(B9)

To arrive at these expressions, we have performed the corresponding Taylor expansions for a — 0, used the lattice constraints
(B6), and considered integration by parts under ) ;(2a) — [ dx assuming that the fields vanish at the boundaries of the sample.
Under these approximations, the Hamiltonian of the LRHM becomes

. - Sa?
Hi iy ~ / dx [2a D D) = Sa )y Dorsi[€(x) - 9:(x) + dep(x) - £(x)] — % Z(—l)’err[w(x)]Z}. (B10)
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By direct comparison with the Hamiltonian (B3) of the NLSM,
we find a system of three algebraic equations that leads to the
following NLSM parameters:

v=2aS | Y J(Z P2 = rzf,-),

rodd rodd reven

—1
> J(Z r2h= r2i,> . (Bl1)

rodd rodd reven

® =2xS.

As a consistency check, we note that in the nearest-neighbor
limit J, = J§,; with J > 0, we recover the same parameters
for the mapping of the Heisenberg model onto the NLSM,
namely v =2JaS,g =2/S, and ® =27 S, which lead to
Haldane’s conjecture.

In the main text, we evaluate the above coupling constant g
for the particular spin-spin couplings that arise in the trapped-
ion scenario. It is also very interesting to consider long-range
interactions that decay with a power law of the distance

(B12)

with an exponent s > 0. In the thermodynamic limit, the series
appearing in Eq. (B11) can be expressed in terms of Dirichlet
n and XA functions, that in turn are related in a simple way to
the Riemann zeta function ¢,

Ji ~ 7 —s
Z] _Zm Jid(s) = Ji (1 =27)5(s),

rodd
Res > 1, (B13)
~ _ 2 Ji(=1)lHn ~
r%;jrzjr - ; r2J, = ;‘ s =Jn-2
=Ji(1=2>%¢(s —2), Res>2.
(B14)

The convergence of these two series requires that s > 2. In
the limit s — 2, the series Eq. (B14) is Abel convergent,
which means that it can be regularized by adding a term
e ™", with x > 0, and then taking the limit x — 0. This gives
the well-known result 1 — 1414 .--=1/2. In this case
one obtains the Haldane-Shastry model where the exchange
couplings decrease as in inverse square distance [46]. The
values of v and g are given by

s =2=—v=4nal,, g=2m. (B15)

APPENDIX C: DISTANCE DECAY OF THE EFFECTIVE
SPIN-SPIN INTERACTIONS

In this Appendix, we derive explicit formulas for the
distance dependence of the phonon-mediated spin-spin inter-
actions in the trapped-ion crystal (A14). If we consider the
small Lamb-Dicke parameter, which is particularly the case
for heavy ions such as 17lybt, and also take into account
additional off-resonant terms in the MS scheme [12], the

PHYSICAL REVIEW B 95, 024431 (2017)

spin-spin interactions can be written as

IQLI2 Min M},
= Ly

where we have introduced the recoil energy wr = (Ak-
e,)?/2m and the symmetric beat note of the MS beams w, =
wo + (,wr = wy — p, which corresponds to (= w, x — 6,
according to our previous notation. It is straightforward to
see that in the resolved-sideband limit considered throughout
this work |§,,| < w,, one can approximate u? — a) =(u+
Wy ) (U — W x) X —2w, 6,. Hence, by using the expressmn
of the MS forces (Al) for small Lamb-Dicke parameters
n, < 1, we see that Eq. (C1) is equivalent to the spin-spin
couplings derived in Eq. (A14). Nonetheless, it will be useful to
use the full expression (C1) instead of (A14) in the derivation of
the distance decay of the spin-spin couplings. Let us emphasize
that although a power-law decay with a tunable exponent
s € [0,3], namely J;; = f0/|i — jI*, serves as a convenient ap-
proximation in experiments [26,28,43,62], special care must be
taken when such expressions are to be extrapolated to the ther-
modynamic limit in theoretical studies. This is particularly so
for the evaluation of the NLSM parameters (B11), which cru-
cially depend on the long-range tail of the spin-spin couplings.

In Ref. [63], it was shown that if Eq. (A14) is approximated
further by considering /1,2 — a),zl’x ~ =2y 8y X —2wy 0, it
is possible to derive an analytical estimate of the spin-spin
couplings by using a continuum limit, and substituting the
sum over the normal modes by an integral that can be
evaluated by an extension to the complex plane. Provided
that 4 < w, ,, it was shown that J;; has two contributions:
a term that displays a dipolar decay, and another one that
shows an exponential tail with a characteristic decay length
dominated by the detuning of the spin-dependent force with
respect to the lowest-energy zigzag mode. It is by varying
this characteristic length that the spin-spin couplings show
a variable range that can be seen as an effective power law
Jij = Jo/li — j|* that is slower than the dipolar decay o < 3
for sufficiently small chains. However, let us remark again
that for theoretical extrapolations to very large ion chains, one
should use directly the correct distance dependence.

We will now show that a similar result can be obtained
without making the approximation y? — . , ~ —2w,8, in
Eq. (C1), and independently of the choice of u Wy, x, as far
as the force is far from the resonance with any mode in the
vibrational band 1 # w, . We shall not resort to a continuum
limit, but partially resume the most relevant terms of Eq. (C1).
Since we are interested in the predictions of the mapping of
the spin chain onto the NLSM (B11), which are only valid
for the bulk of the trapped-ion crystal, we use a homogeneous
lattice spacing ag that corresponds to the distance between two
neighboring ions in the center of the chain. Following [63],
we describe the normal-mode displacements and frequencies
of the ion crystal by

c.c., (C1)

—e'9%J ,

%j,n =

N/2

Opx = | @2+ 2B 0?2 Z

Cd
i cos(qaod), (C2)
d=1
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where we have used periodic boundary conditions, such
that it is possible to introduce the quasimomentum within
the Brillouin zone g =2nn/Nay € BZ =1[0,27/ap), the
coefficients ¢ = (1 — 84,n/2) + 84,n/2/2, and a renormalized
trap frequency @, = w,(1 — 2B, >, cqa/d*)"/? that depends
on the stiffness parameter B, = (e*/4mweoap)/mw3ai [10].
We now substitute Eq. (C2) in the expression (C1), and use
the geometric Taylor series for || < 1, in order to express the
spin-spin couplings as follows:

J N2 "
Jo Z Z igag(i— J))\‘n (Zd_icos(qaod)) +c.c.,

qEBZ n=0
(C3)

where we have introduced two important parameters in our
calculations:

QL [*wr 2B, w3
Jo= PR = IO C4
T 2w -a)) (u? = @7) e

If u? > a) + 28w 2, the beat note of the MS laser beams
will be off resonant w1th respect to the whole vibrational
branch. Therefore, assuming that |[A| < 1 requires working
at sufficiently large MS detunings |§,| > B.wy, a fact that is
in any case required to minimize the error of the quantum
simulator for a spin chain [10].

To proceed further, we approximate [, % cos(qaod)]" ~
cos"(gap) +n Zd>1 il L cos(qaopd), which 1s1ust1ﬁed given the
fast dipolar decay of these couplings. By finally making use

of the binomial theorem, we find that J;; = J M + Jl(jz) , where

Jo Ziz< ) ( > iqani=irn-20) | ¢ o

vELL .

x [eiqaol(ifj)Jrnflekdel + eiqagl(ifj)Jrnflekfdl] +eoc

(O]
Jij

oo n—1 N/2
J(2)

DI DI

qeBZ n=0 k=0 d=2

(C5)

To evaluate these expressions, we need to make use of the sum
of angles in the complex unit circle ) | 4eBZ e'4%% = N§, o, and
anumber of combinatorial identities. By introducingr =i — j
and J;; = J;i_; =: J,, we find J, = JV + J with

Irla

IO = 2| | [sgn(] e w0 (C6)
and
N/2—r c
JD = Jox )1 rtér
; ng olIsgn()]) =S

V1= A2 4 [8r)(1 — A?) Loy

X ( a=y e B 0 —2), (C7)

where we have introduced the following decay length associ-
ated with the exponential terms,
ao

§=——"—,
ln(l"l/ﬁ)

(C8)
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and the Heaviside step function, 6(x) = 1, if x > 0 and zero
elsewhere.

Let us now comment on the different possible regimes.
In the limit of X — 0, the exponential terms decay very
rapidly since & — 0, and we find J ~ |JoAlS,1, JP ~
[JoA|/|r|?6(r — 2). Therefore, for very large detunings of
the MS force such that A — 0, we recover the well-
known antiferromagnetic dipolar limit of the phonon-
mediated spin-spin interactions J, ~ Jo/|r|>, where Jy =
|Joh| = |QL>wr Brwy /8w, 82 > 0[10]. On the other hand, for
finite but still small |A| <« 1, we find that the leading order
corrections to the dipolar tail come from an exponentially
decaying term

[JoA|

J =~
Lo

+ 2 Jollsgn()] *"e

50 —2),  (C9)

a result similar to that found in [63], but valid for red/blue
detunings without making any further approximation to
Eqg. (C1). The detuning of the MS forces can be understood as
an effective mass mg of the phonons that carry the spin-spin
interactions. This effective mass would naturally account for an
exponential decay of the interactions with length & o< 1/mg,
which would be combined with the natural dipolar decay
associated with a system for transversally oscillating charges
(i.e., effective dipoles). As |A| grows larger 0 < |A| < 1, the
complete expression in Eq. (C6) must be considered, as the
different exponentials can lead to considerable modifications
of the spin-spin couplings.

We should now test the validity of our result (C6) by
comparing with a numerically exact evaluation of the spin-spin
couplings (C1) using the equilibrium positions and normal
modes [22] for an ion crystal with the realistic parameters
introduced in the main text. We consider N = 50 "'Yb*
ions in a linear Paul trap with frequencies w, /27 = 0.1 MHz,
and w, /27 =5 MHz, which form an inhomogeneous chain
with minimal lattice spacing ap = 4.4 um corresponding
to two neighboring ions in the center of the chain [see
Fig. 4(a)]. In this figure, we see that the lattice spacing of
the finite ion chain is inhomogeneous, and varies considerably
when approaching the chain boundaries. We also display the
theoretical model of a constant lattice spacing to describe the
bulk of the ion crystal. The vibrational frequencies w, , are
displayed in Fig. 4(b), where we compare the exact numerical
values with those obtained by using a periodic ion chain
with homogeneous lattice spacing (C2). We observe that the
vibrational bands have the same width in both cases, while the
doubling of the vibrational frequencies is a consequence of the
periodic boundary conditions as opposed to the open boundary
conditions of a realistic chain. Despite the clear differences in
Figs. 4(a) and 4(b), we shall now show that the theoretical
model gives very accurate results for the spin-spin interactions
of bulk ions in the inhomogeneous ion chain. In Fig. 4(c), we
compare the exact spin-spin couplings for the inhomogeneous
ion chain (C1) with the analytical estimates (C6) based on
the theoretical model of the periodic homogeneous ion chain
(C2). The agreement between both values is quite remarkable,
given the relatively small size of the ion chain, and the clear
differences displayed in Figs. 4(a) and 4(b). Let us highlight
that the considered detunings in the MS forces correspond to

024431-11



BERMUDEZ, TAGLIACOZZO, SIERRA, AND RICHERME PHYSICAL REVIEW B 95, 024431 (2017)

(a), (b) (c)
. 1
1
7 o o
107!
,§ o e z
= g =
E o o \R §
:TN, . o 3 \;
il ° <
o o o
o o =
oOo ooc> =
o, 50° 103
45 *°%006000000000008° 0.98
4
10 7 40 50 10 n 40 50 S 10 1D, l(wm) 50

FIG. 4. Distance dependence of the spin-spin couplings: (a) Distance between neighboring ions |z? - z? 41| as a function of the lattice
index j € {1, ...,49} for a chain of N = 50 Yb ions. The blue circles are obtained from the exact equilibrium positions z‘l). = L.u; by solving
wj = iy —w)/luj —wi | =0, where £. = (e*/4mwgoma?)"/*. The red line stands for the theoretical model of a homogeneous ion chain
z? = ayj with constant lattice spacing given by ay = min{|z(} - z(} +11}. (b) Normalized vibrational frequencies w, ./w, as a function of the
normal-mode index n € {1, ...,50}. The blue circles represent the exact normal modes obtained by solving Zij MK j M = w,Zl,XS,,,m,
where K, j/} = (1 = 8 ))B:/12) — 291> + 81 ;(1 = 3, B/12) — 2] %) is obtained from the numerical solution of the equilibrium positions
in the inhomogeneous crystal. The red line stands for the theoretical model for a homogeneous periodic chain with the normal modes given
in Eq. (C2). (c) Normalized spin-spin couplings J; j/J; ;41 between the central ion i = N/2 = 25 and its bulk neighbors j = N/2 + r, with
r € {1, ...,16}, as a function of their respective distance |z? — z?l, and for different values of the MS detuning 6, = w, — p with respect to the
center-of-mass mode, 8, /2w € {62.5,125,250,500,1000} kHz, increasing in the direction of the arrow. The blue circles are obtained by solving
Eq. (C1) using the previous normal modes and frequencies. The red lines stand for our analytical result (C6) without any fitting parameter,
but rather using the microscopic values for Egs. (C4) and (C8). The green dashed lines correspond to a power-law decay J, o< 1/r* for two

different exponents s = 3 and s = 1.

A € [0.04,0.4], and thus to some instances where the parameter
A is far from being a small perturbation.

We can also identify the qualitative behavior described
below Eq. (C6): for very large MS detunings, the distance
dependence can be reliably approximated by a dipolar law.
As the detunings decrease, and thus the relevant parameter A
increases, the contribution of an exponential tail to the spin-
spin couplings starts playing a role. This becomes apparent for
the couplings J, at small distances ray < &y, where we see a
decay that is much slower than the dipolar law. However, at
large distances ray > &y, the contribution from the exponential

tail is suppressed, and one recovers the dipolar power law.
These numerical results confirm that the analytical estimates
(C6) are more accurate than a fit to a power-law decay
J. o« 1/r* with a varying exponent s € [0,3]. Let us finally
remark that, in order to obtain an analytical expression for
even larger interaction ranges, one should take into account
further terms in the approximation above Eq. (C5), which
may become relevant for sufficiently small detunings. In any
case, such small MS detunings compromise the validity of a
pure effective spin model, as errors due to a thermal phonon
population start playing a dangerous role [10].
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