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We report a study of the reorientation of the helimagnetic order in the archetypal cubic chiral magnet MnSi as
a function of magnetic field direction. The reorientation process as inferred from small-angle neutron scattering,
the magnetization, and the ac susceptibility is in excellent agreement with an effective mean-field theory taking
into account the precise symmetries of the crystallographic space group. Depending on the field and temperature
history and the direction of the field with respect to the crystalline axes, the helix reorientation may exhibit a
crossover, a first-order, or a second-order transition. The magnetization and ac susceptibility provide evidence
that the reorientation of helimagnetic domains is associated with large relaxation times exceeding seconds. At the
second-order transitions residual Ising symmetries are spontaneously broken at continuous elastic instabilities of
the helimagnetic order. In addition, on the time scales explored in our experiments these transitions are hysteretic
as a function of field suggesting, within the same theoretical framework, the formation of an abundance of plastic
deformations of the helical spin order. These deformations comprise topologically nontrivial disclinations,
reminiscent of the skyrmions discovered recently in the same class of materials.
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I. INTRODUCTION

The characteristics of the temperature versus magnetic
field phase diagram of magnetic materials, albeit frequently
very subtle, reflect directly the full details of the underlying
material-specific interactions. In recent years, compounds in
which the ordered moments stabilize spontaneously a helix
with a preferred chirality and wave vector Q, illustrated
in Fig. 1(a), have been generating great research activities.
This scientific interest experienced a major boost with the
discovery that the application of magnetic fields may lead to the
formation of soliton lattices [1,2] or topologically nontrivial
forms of magnetic order, such as skyrmion or monopole
lattices [3–11].

While these new forms of order are being explored
intensely, an important unresolved question addressed in the
following concerns the initial response of the helimagnetic
state under small applied magnetic fields. In this limit, the
precise symmetries of the magnetic anisotropies permitted by
the crystallographic space group are decisive. Consequently,
the accurate account of the magnetic phase diagram represents
an important point of reference for emergent phenomena in
condensed matter magnetism including the formation of any
novel phases.

Two different limits may be distinguished regarding the
initial response of the magnetic helix to an applied magnetic
field as exemplified by hexagonal Cr1/3NbS2 [1,2] and the
cubic chiral magnets crystallizing in the noncentrosymmet-
ric space group P 213 such as MnSi [12–16], FeGe [17],
Fe1−xCoxSi [18], or Cu2OSeO3 [19]. In Cr1/3NbS2 rela-
tively strong anisotropies fix the helix wave vector Q to
the crystallographic c axis and a magnetic field H ⊥ Q,
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starting from zero, gradually deforms the helix by partially
polarizing the magnetic moments to become a well-understood
incommensurate chiral soliton lattice [1,2]. Increasing the
field further eventually results in a single transition to a
field-polarized phase as predicted in a seminal paper by
Dzyaloshinskii [20].

In contrast, small magnetic fields are already sufficient to
overcome very weak magnetocrystalline anisotropies as for the
cubic chiral helimagnets, causing a reorientation of the entire
helix at a characteristic field Hc1 into the so-called conical
state for which Q ‖ H . Similar to the spin-flop transition
in conventional antiferromagnets, the magnetic moments in
the conical state gain Zeeman energy by canting towards the
field without compromising the periodicity of the helix. When
increasing the field further, the angle enclosed by the moments
and the helix axis Q monotonically decreases until the helix
amplitude vanishes in a second-order XY transition [21] at a
critical field Hc2 > Hc1.

In this paper we report a combined experimental and
theoretical study of the rich phenomena associated with the
reorientation process of the helix at Hc1 in MnSi. Experimen-
tally we infer the precise nature and dynamics of the reori-
entation of the helical modulation from small-angle neutron
scattering, magnetization, and ac susceptibility measurements
for different field orientations. The experimental results are
compared with the theoretical predictions deriving from an
effective potential of the helix vector Q as determined by
the symmetries of the tetrahedral point group T of MnSi, see
Fig. 1(b).

The excellent agreement between experiment and theory
establishes a transparent and tractable starting point of the
physical nature of the reorientation. In particular, our analysis
of the magnetocrystalline anisotropy potential reveals that the
reorientation for general magnetic field directions represents a
crossover phenomenon or involves continuous (second-order)
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FIG. 1. Helimagnetism in MnSi. (a) Magnetic helix with pitch
vector Q (red arrow). (b) Tetrahedral point group T symmetry of
MnSi with twofold rotation axes along 〈100〉 and threefold rotation
axes along 〈111〉. The black great circles separate octants of the sphere
centered around 〈111〉.

transitions for certain high-symmetry directions. Namely, for
field directions corresponding to the great circles connecting
two 〈100〉 directions on the unit sphere [black lines in
Fig. 1(b)], a residual Ising Z2 symmetry is broken sponta-
neously. In this context a special situation arises for fields
along the principle 〈100〉 axes where a Z2 × Z2 symmetry is
spontaneously broken at two subsequent transitions, verifying
the predictions of Walker [15]. Furthermore, after zero-field
cooling energetically unfavorable domains are depopulated
in discontinuous first-order transitions. In turn, the excellent
agreement between theory and our susceptibility and neutron
scattering data permits the quantitative determination of the
parameters specifying the magnetocrystalline potential.

Taken together, these aspects reveal that the transitions
of the helix orientation differ distinctly from conventional
magnetic transitions. Notably, for large magnetic domains
even a slight change of the helix axis involves a macroscopic
reconstruction of the magnetization, implicating at least four
main consequences as follows: (i) Whereas the transitions
in MnSi are described by an Ising order parameter, they do
not belong to the Ising universality class. Instead, they are
similar to elastic transitions in atomic crystals [22,23]. (ii)
The reorientation of large magnetic domains occurs on macro-
scopic rather than microscopic time scales, which is confirmed
by our susceptibility data showing two relaxation processes
with well-separated time scales. Single magnetic moments
relax essentially instantaneously, while the relaxation of the
orientation of Q is slow and involves time scales exceeding
seconds. (iii) We find hysteretic behavior at transitions that are
nominally continuous. Whereas sharp signatures characteristic
of critical behavior are observed when the transition is
approached from a single-domain state, these signatures are
smoothed out when the transition is instead approached
from a multidomain state. We believe that this finding is
associated with (iv) the presence of topological defects which
are, in particular, expected at domain boundaries. Frozen-in
configurations of these defects may prohibit the equilibration
of the system close to a reorientation transition giving rise to
the hysteresis observed.

Our paper is organized as follows. After a detailed account
of previous work in chiral helimagnets and the broader context
in Sec. II, an overview of the experimental methods is given

in Sec. III, as well as a detailed account of the theoretical
framework in Sec. IV. Here we derive an effective theory
for the helix vector Q emphasizing the striking simplicity
encountered in cubic chiral magnets in the limit of weak
magnetocrystalline anisotropies. A comparison with experi-
mental data in Sec. V allows us to determine the parameters
of this model quantitatively. In Sec. V A we use small-angle
neutron scattering for magnetic fields along 〈110〉 and 〈100〉
to track the evolution of the helix vector Q microscopically.
Section V B is dedicated to measurements of the susceptibility.
We address the response of the magnetic system on different
time scales and show that the behavior after zero-field cooling
may be reproduced by including finite-temperature effects. In
addition, data are presented for a large number of different field
directions. The paper concludes in Sec. VI with a discussion
of our results.

II. FURTHER MOTIVATION

The class of cubic chiral magnets has been of great
interest for many decades. Following the seminal work of
Dzyaloshinskii [24] and Moriya [25], the identification of
helimagnetism in MnSi and related compounds provided
an important milestone in studies of complex modulated
forms of order in the 1980s. Back then, it was the first
example of an incommensurate long-wavelength modulation
of an ordered state driven by the Dzyaloshinskii-Moriya spin-
orbit interaction [26–29]. Furthermore, starting in the 1980s,
studies of the spin fluctuation spectra, electronic structure,
and magnetic equation of state in MnSi, which ignored the
effects of spin-orbit coupling and weak anisotropies, provided
a major breakthrough for itinerant electron ferromagnetism
and established the starting point of studies of quantum phase
transitions [30,31]. Finally, as the most recent development,
the discovery of a skyrmion lattice in a small phase pocket
in finite magnetic fields has attracted great interest [3–5]. For
all of these different properties, a detailed understanding of
the role of weak magnetic anisotropies is of great relevance,
encompassing issues related to (i) the incommensurability of
the helical state at zero field, (ii) itinerant-electron magnetism
and the enigmatic non-Fermi liquid behavior reported at the
quantum phase transitions [32–34], and (iii) the formation of
the skyrmion lattice phase [3] as anticipated in early theoretical
work [35–37].

The first experimental observation of the reorientation
of helimagnetic order in MnSi at a small field Hc1 was
already achieved by Ishikawa et al. [26,38] with the help
of small-angle neutron scattering, including first evidence
on domain repopulations. Lebech et al. [17,39], Grigoriev
et al. [18], and Adams et al. [19] subsequently reported
similar behavior for the magnetic helix in FeGe, Fe1−xCoxSi,
and Cu2OSeO3, respectively. In the magnetization, the helix
reorientation results in a nonlinear dependence on the applied
field which was detected in early work on MnSi [12,40], see
Ref. [41] for a recent study. This previous experimental work
focused on a few crystallographic high-symmetry directions
and it also did not investigate the transitions in sufficient detail.

On the theoretical side, Plumer and Walker [13] as well as
Kataoka and Nakanishi [14] first addressed the helix reorien-
tation in MnSi on the level of the Ginzburg-Landau theory for
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the magnetization of Refs. [28,29]. These studies identified
the competition of the Zeeman energy and magnetocrystalline
anisotropies to be at its origin. In particular, Plumer and Walker
predicted a second-order transition for field orientations 〈110〉
and 〈100〉 with a ratio of critical fields H

〈100〉
c1 /H

〈110〉
c1 ≈ √

2.
Subsequently, it was pointed out by Walker [15] that for fields
along 〈100〉 the low symmetry of the space group should
actually result in a splitting of the single transition into two,
which so far had not been experimentally verified. The results
of this early work, however, did not quantitatively describe
the magnetization curve because the magnetic susceptibility
transverse to the helix axis χ⊥ was not computed exactly.
More recently, Grigoriev et al. [18,42] suggested a transverse
susceptibility χ⊥ that is correct in the limit H → 0, but they
did not exploit it for a full analysis of the helix reorientation
process.

Whereas general aspects of the helix reorientation are
known, important open questions concern the experimentally
observed properties of the helix reorientation under the
symmetry constraints of the noncentrosymmetric space group
P 213 for arbitrary field directions. Related to this issue, a key
theoretical question is whether the details of the reorientation
of the helix as a function of field direction may be captured in
a single tractable mean-field model. Furthermore, the nature
of the reorientation process and the nature of repopulation
of helimagnetic domains were unresolved prior to our study,
also alluding to the origin of the characteristic time scales as
observed by different experimental probes. In this context,
questions arise on general similarities compared to other
phase transitions, such as elastic transformations of crystal
lattices, on the relevance of the underlying symmetries, and
on the potential existence and character of defects of the order
parameter. Last but not least, in view of the soliton lattice
observed in Cr1/3NbS2, an obvious concern is the possible
formation of solitonic modulations in cubic chiral magnets
and to what extend the harmonicity of the helical modulation
may get lost under applied magnetic field.

III. EXPERIMENTAL METHODS

For our study, single crystals of MnSi were grown by means
of optical float zoning under ultrahigh vacuum compatible
conditions [43–45]. The residual resistivity ratio of samples
from these crystals is around 80, i.e., a typical value reported
in the literature. From the single-crystal ingots we prepared
three samples. Sample 1 is a sphere with a diameter of
5.75 mm. Samples 2 and 3 are cubes with an edge length
of 2 mm and surfaces perpendicular to [110], [11̄0], [001] and
[110], [11̄1], [1̄12], respectively. The samples were oriented
using x-ray Laue diffraction. Spheres as well as cubes for
field along their edges [46] exhibit a demagnetization factor
N = 1/3 allowing us to readily compare data for the samples
geometries used in this study. All given field values are
values of the applied magnetic field. The spherical geometry
of sample 1 further minimizes potential complexities arising
from inhomogeneities of the internal magnetic fields due to
inhomogeneous demagnetizing effects.

Small-angle neutron scattering was carried out on sample
1 using the diffractometer MIRA2 at the Heinz Maier-
Leibnitz Zentrum (MLZ) at an incident neutron wavelength of

(4.5 ± 0.5) Å [47]. The sample resided in a closed-cycle
cryostat and a bespoke pair of Helmholtz coils allowed us to
apply a magnetic field perpendicular to the incoming neutron
beam. A rotatable sample stick permitted us to rotate the
sample by 360◦ around the field axis. For further details of
the neutron scattering setup, the analysis of the data, and the
construction of the spheres shown in Sec. V A, we refer to the
Supplemental Material [48].

On samples 2 and 3 we measured the magnetization and the
ac susceptibility at an excitation frequency of 911 Hz and with
an excitation amplitude of 1 mT in a Quantum Design physical
property measurement system. On the spherical sample 1
magnetization was measured using an Oxford Instruments
vibrating sample magnetometer and a bespoke sample holder
that permitted us to rotate the sample around a crystalline
〈110〉 axis. The angle between a 〈100〉 axis perpendicular to
the latter and the magnetic field direction was determined
with an optical microscope, where the total uncertainty of
the sample orientation is estimated to be ±1◦. The field
values were changed in 1 mT steps and subsequently the
magnetization was detected by integrating the oscillations
at 62.35 Hz over 3 s while keeping the field constant. The
susceptibility was calculated by numerically differentiating the
measured magnetization and smoothed using a fourth-order
Savitzky-Golay filter over 40 data points.

IV. THEORETICAL FRAMEWORK

For the description of the reorientation of the helix in cubic
chiral magnets with weak anisotropy we consider an effective
theory in the limit of small spin-orbit coupling λSOC for which
Hc1/Hc2 ∼ λ2

SOC � 1. In this limit, the helix orientation can
be conveniently described in terms of a Landau potential V for
the helix vector Q only.

The properties of the magnetization, which are determined
by the full Ginzburg-Landau functional [28,29], mainly enter
via the magnetic susceptibility tensor χij that influences the
stiffness of the helix orientation Q at a finite field H . Impor-
tantly, this susceptibility is dominated by the magnetization
of the pristine helix, while slight deformations of the helix
magnetization due to crystalline anisotropies only lead to
small corrections that are suppressed by powers of λSOC. These
corrections have been observed experimentally for particular
field configurations in terms of higher harmonics e±i2 Qr , with
very small amplitude [16,17,49]. As a consequence, for small
λSOC, the helix magnetization basically remains undeformed
during the reorientation process.

In the following we present the general form of the
effective Landau potential for the helix vector in the limit of
small magnetocrystalline anisotropies in Sec. IV A. The latter
are constrained by the symmetries of the crystal structure.
We describe how to infer the parameters of the potential
from experiment, notably the transverse and longitudinal
susceptibilities, giving specific values for the case of MnSi.
We then derive the expected trajectories of the helix pitch
vector as a function of the magnetic field strength for
different field directions in Sec. IV B. These considerations
allow the identification of the residual Ising symmetries
for specific field directions. In doing so we distinguish in
particular those situations when starting from a single-domain
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and a multidomain state, corresponding to experiments after
(high-)field cooling and zero-field cooling, respectively.

A. Effective Landau potential for the helix axis

The magnetization of a helix M(r) = Ms[ê1 cos( Qr) +
ê2 sin( Qr)] with amplitude Ms is determined by the or-
thonormal basis êi êj = δij , that is, for instance, right-handed
ê1 × ê2 = ê3 ≡ Q/| Q| for a right-handed helix. The helix is
defined up to a U (1) phase corresponding to rotations of ê1 and
ê2 around the ê3 axis. Moreover, the helix is invariant under the
transformation Q → − Q and ê2 → −ê2, and, in this sense,
Q can be effectively considered as a director. The size of Q
is determined by the Dzyaloshinskii-Moriya interaction that is
proportional to spin-orbit coupling λSOC and weak in MnSi.
For small λSOC, we can expand the Landau potential V in a
Taylor series in Q ∝ λSOC and confine ourselves to the lowest
order terms only. Moreover, as the amplitude of Q is basically
fixed we concentrate on the orientation Q̂ = Q/| Q| that we
treat as a director so that the potential V(Q̂) should be an even
function of Q̂.

The potential at zero field is attributed to the magnetocrys-
talline anisotropies. The latter are often referred to as cubic
anisotropies in MnSi, but they are governed in fact by the
tetrahedral point group T of its cubic space group P 213. The
tetrahedral symmetries contain a twofold rotation symmetry
C2 around a cubic axis 〈100〉 and a threefold rotation symmetry
C3 around 〈111〉 [50]. The corresponding potential for Q̂

consistent with these symmetries reads

VT (Q̂) = ε
(1)
T

(
Q̂4

x + Q̂4
y + Q̂4

z

)
+ ε

(2)
T

(
Q̂2

xQ̂
4
y + Q̂2

yQ̂
4
z + Q̂2

zQ̂
4
x

) + · · · . (1)

The leading first term with energy density ε
(1)
T ∼ λ4

SOC is
fourth order in spin-orbit coupling. Note that the other quartic
invariant (Q̂2

xQ̂
2
y + cycl.) is redundant since it is up to a

constant equivalent to the first term. Importantly, the term
ε

(1)
T is still invariant under a fourfold rotation C4 around one

of the cubic axes and this symmetry is not contained in T . The
emergent symmetry of the potential present in leading order
in λSOC is broken in the next-to-leading order by the second
term with ε

(2)
T ∼ λ6

SOC. The other terms of order O(λ6
SOC), i.e.,

Q̂2
xQ̂

2
yQ̂

2
z and (Q̂6

x + cycl.), preserve the C4 symmetry and are
less important. These invariants as well as terms of higher order
are represented by the dots in Eq. (1) and will be neglected in
the following.

In small fields, the Zeeman energyVH (Q̂) = −μ0

2 χij H i Hj

is determined by the susceptibility tensor χij of the helix
magnetization for a fixed pitch vector Q. It reads explicitly

VH (Q̂) = −μ0

2
[χ⊥ H2 + (χ‖ − χ⊥)(HQ̂)2 + · · · ]. (2)

In leading order in λSOC, the Zeeman energy is governed by
the susceptibility tensor of the pristine helix χij = χ‖Q̂iQ̂j +
χ⊥(δij − Q̂iQ̂j ), which is characterized by the susceptibilities
longitudinal and transversal to the pitch vector χ‖ and χ⊥,
respectively. For a spherical sample with demagnetization
factor N = 1/3, they are given by χν = χ int

ν /(1 + χ int
ν /3) with

ν = ‖ , ⊥, where the internal susceptibilities were evaluated
in Ref. [51]. Deep inside the helimagnetically ordered phase

at H = 0, they obey χ int
‖ = 2χ int

⊥ [52] with χ int
‖ ≈ 0.34 for

MnSi [53] resulting in the numerical values

χ‖ ≈ 0.31, χ⊥ ≈ 0.16. (3)

The first term on the right-hand side of Eq. (2) is independent
of Q̂ but is kept here as it allows us to compute quantitatively
the field dependence of the homogeneous magnetization across
the transition.

The Zeeman potential in Eq. (2) at this order is still invariant
with respect to an arbitrary simultaneous rotation of both H
and Q̂. This symmetry will be broken by shape anisotropies
due to demagnetization fields in nonspherical samples; a situ-
ation we do not consider here. More interestingly, crystalline
anisotropies also reduce this rotation symmetry and modify
the susceptibility giving rise, for example, to an additional
term (H 2

x Q̂2
y + cycl.) in the Zeeman potential. An analysis

of the Ginzburg-Landau theory [28,29] for the reorientation
transition at Hc1 shows that this term is of order O(λ6

SOC).
It is thus similarly important for the description of the
helix reorientation as ε

(2)
T of Eq. (1). However, within the

accuracy of our experiments, we were not able to distinguish
unambiguously between the various terms of order O(λ6

SOC) so
that we will neglect such corrections to Eq. (2) for simplicity.

The total mean-field potential for the pitch orientation V =
VT + VH depends on the parameters ε

(1)
T and ε

(2)
T . From an

analysis of our SANS data in MnSi at T = 5 K we find that
the values

ε
(1)
T ≈ 0.0034 μeV/Å

3
, ε

(2)
T ≈ 0.35 ε

(1)
T (4)

provide an excellent description of the data. These values will
be used in the following discussion.

We note that Plumer and Walker [13] as well as Kataoka
and Nakanishi [14] already developed an account for the
helix orientation in MnSi on the level of the magnetization.
These authors, however, neglected contributions to the free
energy density akin to ε

(2)
T in Eq. (1) breaking the C4

rotation symmetry and incorrectly computed the transverse
susceptibility χ⊥ entering Eq. (2). Walker [15] subsequently
predicted the two phase transition for a field along 〈100〉 but
only within a stability analysis around this field orientation.
Taken together with the additional aspects covered in the
present study, our description of the helix orientation in terms
of Q̂ goes well beyond the work reported in Refs. [13–15].

B. Helix trajectories and elastic Ising transitions

The pitch orientation for an applied magnetic field H
may be determined by minimizing the total Landau potential
V = VT + VH with respect to Q̂. In zero magnetic field,
the pitch orientation is determined by the magnetocrystalline
anisotropies VT of Eq. (1). For MnSi, the prefactor of the
first term is positive, ε

(1)
T > 0, such that it is minimized for

Q̂ ‖ 〈111〉. Thus, four domains are formed under zero-field
cooling, each of which is defined up to an U (1) phase as
mentioned above. For large fields, on the other hand, the pitch
orientation will be aligned along H to minimize the Zeeman
energy VH . When decreasing the magnitude of the field, the
pitch vector Q̂ will reorient towards one of the 〈111〉 directions.
For generic field orientations, where Ĥ belongs to one of the
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FIG. 2. Trajectories of the pitch vector Q̂ on the unit sphere
for ε

(2)
T /ε

(1)
T = 0.35 and four different field directions H (colored

dots). (a) Trajectories for decreasing fields starting from high fields
with Q̂ ‖ H . Bifurcations indicate elastic Ising transitions with the
accompanying phase separation. (b) Trajectories for increasing fields
starting from the zero-field cooled state with all 〈111〉 domains (black
dots) being equally populated. Trajectories starting from helimagnetic
domains, whose Q̂ enclose larger angles with Ĥ , are discontinuous
characteristic of first-order transitions.

octants of the unit sphere centered around 〈111〉 and separated
by the black great circles in Fig. 1(b), the pitch vector smoothly
reorients towards the corresponding 〈111〉 direction, which is
illustrated in Fig. 2(a) for H ‖ [315].

An exception of this generic behavior is observed for field
directions along the great circles connecting the 〈100〉 axes
shown in black. In these cases, the four 〈111〉 domains may
be grouped into two energetically degenerate pairs whose Q
encloses the same angle with the field direction. Consequently,
a continuous (second-order) phase transition is expected as
a function of field strength at a well-defined critical field
Hc1. In order to determine the detailed characteristics of this
transition, we perform a stability analysis of Q̂ around the field
direction, e.g., Ĥ = (0, sin α, cos α) parametrized by the polar
angle α. We set Q̂ = Ĥ

√
1 − x2

1 − x2
2 + x1v̂1 + x2v̂2 with

the orthonormal vectors v̂1 = (1,0,0) and v̂2 = (0, cos α, −
sin α). Thus, the coordinates x1 and x2 describe the deviation
away and along the great circle, respectively. Expanding the
potential V in x1 and x2 allows us to readily identify an Ising
instability.

The direction of the Ising instability is along the direction
of x1 and away from the great circle (0, sin α, cos α), provided
that H does not point along a cubic 〈100〉 axis. For decreasing
field magnitude, at Hc1 the pitch vector Q̂ has to decide along
which of the two directions away from the great circle it moves,
i.e., whether x1 > 0 or x1 < 0, stabilizing a helimagnetic
domain either along [111] or [1̄11]. This finding identifies the
coordinate x1 as an Ising order parameter of the transition. As
typical examples we show trajectories of Q̂ for H ‖ [011] and
[014] in Fig. 2(a). Both trajectories bifurcate at the critical field
Hc1 indicating possible phase separation into two domains.

A special situation arises for H ‖ 〈100〉, where the field
direction coincides with the crossing point of the two great
circles shown in black in Fig. 1(b). To lowest order in spin-
orbit coupling λSOC, i.e., for ε

(2)
T = 0, the potential for Q̂ still

possesses the C4 symmetry that is reflected in a Z4 symmetry
of the effective theory for the vector (x1,x2). At this order,
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FIG. 3. Helix trajectories and critical fields. (a) Trajectories of the
pitch vector Q̂ starting from the [111] domain in zero field (central
black dot) for increasing fields along different directions H (colored
dots). Trajectories of the same color are related by the 2π/3 rotations
around [111] in accordance with the point group T . (b) Critical field
Hc1 as a function of the angle α for Ĥ = (0, sin α, cos α) and Ĥ =
(sin α,0, cos α). The limiting values for α → 0 indicate the critical
fields of the two elastic Ising transitions H

[001]
c1,> and H

[001]
c1,< . The dashed

line corresponds to the situation for ε
(2)
T = 0.

one would expect the transition to be described by a four-
state clock model. However, the presence of ε

(2)
T lowers the

symmetry down to Z2 × Z2 and favors either the x1 or x2

direction depending on the sign of ε
(2)
T . As a consequence, the

single Z4 transition for ε
(2)
T = 0 splits into two subsequent Z2

Ising transitions, in agreement with Ref. [15]. This finding
is illustrated by the trajectory shown in red in Fig. 2(a). For
decreasing field, a first instability is reached at H

[001]
c1,> . Here

the pitch vector tilts along one of the x1 directions for ε
(2)
T > 0.

When the field is reduced further, Q̂ tilts along one of the x2

directions at a second instability at H
[001]
c1,< .

Whereas the trajectories are always continuous when
decreasing the field, a different situation arises after zero-field
cooling when all 〈111〉 domains are equally populated. In
this case, the helix reorientation as a function of increasing
field is partially discontinuous. As illustrated in Fig. 2(b),
only the domains closest to the applied field direction Ĥ

reorient smoothly, while the trajectories starting from the other
domains are discontinuous. The latter trajectories are shown
up to their spinodal point where they terminate, signaling a
jump into the stable domain configuration.

The low symmetry of the tetrahedral point group T is further
illustrated when considering the evolution of the [111] domain
again for increasing field H pointing along [hkl], [lhk], and
[klh] (k,l,h > 0), see Fig. 3(a). The resulting trajectories of
Q̂ are related by a 2π/3 rotation symmetry around [111].
Correspondingly, fields along cyclically permuted directions
[hk0], [0hk], and [k0h] yield identical transition fields Hc1,
while being different from the values for Ĥ along [kh0], [0kh],
and [h0k].

This difference is illustrated in Fig. 3(b) where we compare
the evolution of Hc1 for fields H applied along (0, sin α, cos α)
and (sin α,0, cos α) as a function of the angle α. For general
values of α, the critical field values differ, with exception of
H ‖ 〈110〉. For H ‖ 〈100〉, a special situation arises as the
limiting values of Hc1(α) for α → 0 identify the upper and
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lower critical field of theZ2 × Z2 transition, H [001]
c1,> and H

[001]
c1,< ,

respectively. For comparison, the dashed line in Fig. 3(b)
shows the critical field obtained for ε

(2)
T = 0, which reads

Hc1(α)|
ε

(2)
T =0 =

√
ε

(1)
T [3 + cos(4α)]

μ0(χ‖ − χ⊥)
. (5)

In this approximation, the critical fields along 〈100〉 and 〈110〉
satisfy the ratio H

〈100〉
c1 ≈ √

2H
〈110〉
c1 , as previously pointed out

in Ref. [13].
Note that the transitions are described by an Ising order

parameter but do not belong to the three-dimensional Ising
universality class. The reorientation transition of the helix is
an elastic transition that is quite distinct from conventional
phase transitions in magnets. Already a slight reorientation of
the helix involves a macroscopic reconstruction of the magne-
tization. The rotation of the pitch vector Q by a small angle δ

within a macroscopic domain of linear size L requires large,
nonperturbative changes of the magnetization over distances
of order Lδ � 1 at the domain boundary. A similar situation
arises at continuous symmetry-breaking elastic transitions of
atomic crystals [22,23]. In the latter systems, the phonons
soften at the transition but only along a particular direction
in momentum space. A preliminary analysis indicates that the
low-energy excitations of the helix, the helimagnons [54,55],
soften similarly only within a reduced subspace at the helix
reorientation transitions.

V. EXPERIMENTAL RESULTS

Experimentally, we have addressed the helix reorientation
in MnSi by means of small-angle neutron scattering as well as
magnetization and ac susceptibility measurements, where we
focused on temperatures well below to onset of helimagnetic
order. We begin our presentation with neutron scattering for
magnetic fields applied along the high-symmetry directions
〈110〉 and 〈100〉. Rotating the sample with respect to the
neutron beam, allows us to map the relevant part of reciprocal
space in three dimensions and to track the trajectories of the
pitch vector as a function of field. We find bifurcations as well
as distinct differences between zero-field cooling and high-
field cooling. Comparing our data with the model described
in the previous subsection, we are able to quantitatively
determine the strength of the anisotropy factors ε

(1)
T and ε

(2)
T .

In addition, discrepancies between the behavior for decreasing
and increasing field magnitudes suggest an important influence
of disclinations, as will be discussed in detail in Sec. VI.

In the second part of this section, we present the suscepti-
bility as calculated from the measured magnetization as well
as measured directly, notably the ac susceptibility. We find
that these data to be perfectly consistent with both our model
and the neutron scattering results. By means of our theoretical
description, we are able to explain quantitatively the different
signatures observed in the susceptibility calculated from the
measured magnetization and the measured ac susceptibility in
terms of the slow response of the helix vector Q to changes in
the applied magnetic field. Data shown for a large number of
field directions underscore the remarkable agreement between
experiment and theory.

FIG. 4. Small-angle neutron scattering for H ‖ [110] at low
temperature. (a) and (b) Position of intensity maxima for increas-
ing field values (black arrows) shown on the unit sphere Q̂ =
(sin θ cos φ, sin θ sin φ, cos θ ) parametrized by the angles φ and θ .
Starting from a single-domain conical state after high-field cooling
(HFC), the trajectories bifurcate with a sharp critical signature at
μ0|H [110]

c1 | ≈ 95 mT (vertical dashed line), and multiple domains
form due to phase separation. These signatures are smoothed when
multiple domains merge, e.g., after zero-field cooling (ZFC). Solid
gray lines are a fit to theory. (c) Typical intensity distributions after
HFC in large negative fields. (d) Typical intensity distributions after
ZFC. The colored points mark the high-symmetry directions 〈111〉
(green), 〈110〉 (blue), and 〈100〉 (red).

A. Small-angle neutron scattering

By means of small-angle neutron scattering, we tracked the
positions of the intensity maxima associated with the helimag-

netic order (| Q| ≈ 0.035 Å
−1

) across the helix reorientation as
a function of field. We show data measured at low temperatures
(T = 5 K), i.e., well below the onset of helimagnetic order
at Tc. At a given temperature and magnetic field value, a
series of two-dimensional scattering patterns was recorded
while the sample was rotated by 180◦ in 1◦ steps. From
these patterns we constructed the three-dimensional intensity
distributions depicted in Figs. 4 and 5. As intensity at Q̂ and
−Q̂ arises from the same helical domain, we averaged over
both maxima and analyzed the behavior on one hemisphere.
For further information on our analysis and the consequences
of experimental misalignment, we refer to the Supplemental
Material [48].

In our SANS measurements we focused on two field con-
figurations, namely H ‖ [110] and H ‖ [001], both of which
are expected to show elastic Ising transitions. Measurements
were performed starting either from a high-field cooled (HFC)
single-domain conical state with Q̂ ‖ H at high negative
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FIG. 5. Small-angle neutron scattering for H ‖ [001] at low
temperature, in analogy to Fig. 4. (a) and (b) Position of intensity
maxima for increasing field values. Starting from a single-domain
conical state after high-field cooling (HFC), two bifurcations are
observed at the critical fields μ0|H [001]

c1,> | ≈ 135 mT and μ0|H [001]
c1,< | ≈

118 mT (vertical dashed lines). No sharp signatures are observed
when multiple domains merge, e.g., after zero-field cooling (ZFC).
Solid gray lines are a fit to theory. (c) Typical intensity distributions
after HFC in large negative fields. The colored points mark the high-
symmetry directions 〈111〉 (green), 〈110〉 (blue), and 〈100〉 (red).

fields or from a zero-field cooled (ZFC) state with equally
populated helical domains with Q̂ pointing along one of the
〈111〉 axes. In both cases, data were recorded for increasing
field values. In the following, we use the parametrization
Q̂ = (sin θ cos φ, sin θ sin φ, cos θ ) in order to describe the
position of the intensity maxima as observed on a unit sphere.

We begin with the properties for magnetic field parallel to
[110] shown in Fig. 4. In a large negative field, the conical
state is observed with Q̂ ‖ H translating to θ = 90◦ and φ =
45◦. Upon lowering the field, nothing happens until the Ising
transition may be identified by a sharp bifurcation in θ at
negative μ0H

[110]
c1 ≈ 95 mT. The bifurcation indicates a phase

separation into two helical domains approaching [111] (θ =
54.7◦) or [111̄] (θ = 125.3◦), respectively. The gray solid line
represents a fit considering Eqs. (1) and (2). It is in excellent
agreement with the data. Note that the theoretical curve for φ

slightly deviates from 45◦, less than 0.5◦ close to Hc1, due to
the finite ε

(2)
T .

In contrast, increasing the field to positive values starting
from the multidomain state at H = 0, the sharp critical sig-
natures are smeared and the trajectories substantially deviate
from the theoretical prediction. After zero-field cooling, at
H = 0 the domains at [1̄11̄] (θ = 125.3◦, φ = 135◦) and [1̄11]
(θ = 54.7◦, φ = 135◦) are also populated. For H > 0 these

domains become metastable with the corresponding intensity
vanishing around ∼50 mT indicating first-order transitions.
The value of this depopulation field is about half the value
of the spinodal point predicted theoretically as marked by the
cross in Fig. 4(a).

We turn now to the situation for a magnetic field along [001]
shown in Fig. 5. In a large negative field, again the conical state
is observed with Q̂ ‖ H translating to θ = 0◦ and an arbitrary
value of φ. Upon lowering the field, the first Ising transition
is observed at negative μ0H

[001]
c1,> ≈ 135 mT, where θ becomes

finite and two values of φ may be defined, namely φ = 0◦
and φ = 180◦. A further bifurcation of φ marks the second
Ising transition at μ0H

[001]
c1,< ≈ 118 mT, accompanied by a small

kink in θ . As a result, at low fields all four helical domains
are populated; [111] (φ = 45◦), [1̄11] (φ = 135◦), [1̄1̄1]
(φ=225◦), and [11̄1] (φ=315◦ =̂ −45◦), all at θ =54.7◦.

When increasing the field to positive values starting from
a multidomain state at H = 0 results in qualitatively different
behavior. Instead of two subsequent Ising transitions, all four
domains smoothly reorient towards the field direction in a
direct trajectory as indicated by a constant φ and a smooth
decrease of θ . After zero-field cooling, the same behavior
is observed. Critical signatures are absent when the multiple
domains merge to a single-domain conical state at high fields,
similar to the situation for increasing field values along [110]
in Fig. 4.

Closer inspection of the neutron scattering data reveals
that the magnetic field in the experiment was misaligned by
a few degrees, see the Supplemental Material for a detailed
discussion [48]. Due to the spherical coordinate system used,
overall small misalignment angles around θ = 0, however,
may translate to putatively large deviations in φ. This instance
explains, in particular, the comparably large discrepancy
between the first couple of experimental data points at large
negative fields in Fig. 5(a) and the calculated values of φ = 0◦
and φ = 180◦, respectively. In addition, it is noteworthy
that we still observe phase separation at the transitions
despite certain domains being slightly favored due to the
misalignment. The latter also smooths out the signatures of
the reorientation and, in fact, theoretical calculations indicate
quite substantial smearing for the misalignment angles of our
experiment. The observation of relatively sharp features in
our neutron scattering data is therefore quite unexpected. We
return to this issue in further detail below.

B. Magnetic susceptibility

In the following we present measurements and calculations
of the susceptibility around the helix reorientation comple-
menting our neutron scattering results. We distinguish the
susceptibility calculated from the measured magnetization
dM/dH and the real part of the ac susceptibility Re χac. Note
that for MnSi the susceptibility of the single-domain conical
state at higher fields is characterized by a plateau of constant
absolute value χ‖ ≈ 0.31, see Eq. (3), while the multidomain
helical state at zero field is governed by the average response
of all domains when populated equally yielding the reduced
value χ⊥ + 1

3 (χ‖ − χ⊥) ≈ 0.21 [51].
We begin our description with the behavior for fields along

〈100〉 after zero-field cooling, shown in Fig. 6(a). A broad
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FIG. 6. Susceptibility as a function of increasing field. (a) and (b)
Data for H ‖ 〈100〉 after zero-field cooling (ZFC) and high-field
cooling (HFC). We show the susceptibility calculated from the
measured magnetization dM/dH (open symbols) and the real part
of the ac susceptibility measured at 911 Hz, Re χac (solid symbols).
Dashed and solid lines are the results of our calculations, see text for
details. (c)–(f) Corresponding data for H ‖ 〈110〉 and H ‖ 〈111〉.

maximum in dM/dH (open symbols) may be attributed to
the smooth reorientation of the four helical 〈111〉 domains
towards the field direction. The maximum is not tracked by
Re χac measured at finite frequency (solid symbols) indicating
the importance of slow dynamics, cf. Refs. [56–58]. When
increasing the field starting from the conical state at large
negative values, cf. Fig. 6(b), a distinct double peak is observed
in dM/dH as the characteristic of the two subsequent Ising
transitions. Again, Re χac does not track dM/dH but still
exhibits two distinct kinks at H

[001]
c1,> and H

[001]
c1,< . For increasing

positive field values, a smeared maximum without sharp
critical signatures in dM/dH resembles the situation after
zero-field cooling. Similar to the neutron scattering data, we
thus observe hysteretic behavior close to the critical fields also
in the magnetic susceptibility.

For fields along 〈110〉 after zero-field cooling shown in
Fig. 6(c) a small and slightly broadened peak preempts the
maximum in dM/dH . This hump indicates the depopulation
of the two helical domains which are energetically unfavored at
a similar field value ∼50 mT, as previously observed in neutron
scattering, cf. Fig. 4(a). In Re χac, only a kink is observed at
the corresponding field value. When starting in the conical
state at negative fields, see Fig. 6(d), the sharp maximum in

dM/dH may be associated with the single Ising transition
expected for this field configuration. It is helpful to note the
comparatively small discrepancy between the signature of the
phase transition at positive and negative fields.

For fields along 〈111〉, see Fig. 6(e), a relatively sharp
maximum observed after zero-field cooling may be attributed
to the simultaneous depopulation of three helimagnetic do-
mains in favor of the fourth, where the latter domain is
characterized by Q ‖ H . As illustrated in Fig. 6(f), once
this configuration, i.e., the conical state, is stabilized, the
susceptibility remains constant. In other words, due to the
magnetocrystalline anisotropies and Zeeman energy being
simultaneously minimized, Q̂ remains unchanged with the
susceptibility χ‖.

Next, we turn to the calculations of the susceptibility shown
by the dashed and solid lines in Fig. 6. For the solid lines (right
column), we consider a macroscopic single domain with pitch
vector Q̂min(H) that minimizes V for a given field H . Here
the susceptibility follows from the Landau potential χH ≡
dM/dH = −∂2

HV(Q̂min)/μ0, and may be decomposed into
two contributions

χH = χmic
H + χmac

H ,

χmic
H = Ĥiχij Ĥj |min = χ⊥ + (χ‖ − χ⊥)(Ĥ Q̂min)2, (6)

χmac
H = − 1

μ0

∂2V(Q̂min)

∂Q̂i
min∂Q̂

j
min

∂Q̂i
min

∂H

∂Q̂
j
min

∂H
,

where H = |H|. The first term χmic
H derives from the response

of the microscopic magnetization of the helix for a fixed pitch
vector Q̂min. The second term χmac

H accounts for the field
dependence of the pitch vector Q̂min(H). This corresponds
to the reorientation of helimagnetic domains on macroscopic
scales.

The two contributions are associated with very different
time scales. While the (local) magnetization responds to
changes of the magnetic field much faster than the typical
time scales accessible by susceptibility measurements of about
0.1 ms, the macroscopic reorientation process is very slow
implying a large characteristic time scale τQ̂. For variations
at frequencies fac � 1/τQ̂, the pitch vector Q̂ remains
unchanged as it is not able to follow the oscillating field and
the corresponding contribution χmac

H is suppressed. Thus, the
ac susceptibility measured with an excitation frequency fac

is given by Re χac = χmic
H (gray lines in Fig. 6). In contrast,

the susceptibility calculated from the measured magnetization
represents the static limit (fac = 0) probing both contributions
dM/dH = χH = χmic

H + χmac
H (colored lines in Fig. 6).

Using the values given in Eqs. (3) and (4) obtained from
a fit to the neutron scattering data, our calculations are in
excellent agreement with the experimental data in Fig. 6, where
we find fac = 911 Hz � 1/τQ̂. In fact, in Ref. [56] it was
demonstrated that Re χac and dM/dH remain distinct down
to low frequencies even at rather high temperatures of 27.5 K
where (Tc − T )/Tc ≈ 5%, providing an estimate for the lower
bound of τQ̂ � 1 s.

Furthermore, as the Zeeman potential VH is quadratic in
H , the derivative ∂H Q̂i

min is linear in H for H → 0 and, as
a consequence, the zero-field limit of the susceptibility obeys
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χH |H=0 = χmic
H . For a single domain Q̂min ‖ [111], the value

of χH |H=0 expected theoretically amounts to 0.21, 0.26, or
0.31 when the field Ĥ is applied along 〈100〉, 〈110〉, or 〈111〉,
respectively. The experimental data are consistent with these
values, where small deviations for H ‖ 〈100〉 are attributed
to the misalignment of the field direction with respect to the
crystalline 〈100〉 axes.

In contrast, after zero-field cooling all four helimagnetic
domains will be populated with equal probability. With
increasing field, in general, some of these domains become
metastable and are expected to jump into the favored directions
at first-order transitions. This process is observed at depopu-
lation fields of ∼50 mT in neutron scattering, see Fig. 4(a), as
well as in the susceptibility inferred from the magnetization
and the ac susceptibility, see left column of Fig. 6. The
description in terms of a single domain does not capture
the behavior after zero-field cooling, see the Supplemental
Material for details [48]. Instead, we consider a simplistic
model of thermally populated domains of a finite linear size
ξdom with free energy density

f = −kBT

ξ 3
dom

log Z, Z =
∫

dQ̂ e−ξ 3
domV(Q̂)/(kBT ). (7)

The resulting susceptibilities 〈χH 〉 ≡ −∂2
H f/μ0 are shown as

colored dashed lines in the left column of Fig. 6. A thermal en-
ergy density kBT/ξ 3

dom = 0.02ε
(1)
T was assumed corresponding

to a linear length ξdom = 136 Å at a temperature T = 2 K. The
calculations qualitatively reproduce the additional signatures
observed in dM/dH for H ‖ 〈110〉 and H ‖ 〈111〉 close to
the depopulation field. Note, however, that the estimate for
ξdom is on the order of the helix wavelength in MnSi and hence
unrealistically small. In fact, a more realistic model also should
for instance, take into account the distribution of domain sizes
and the influence of the domain walls.

At large excitation frequencies fac, the susceptibility
again is only sensitive to the response of the magnetization
at fixed pitch vector. Accordingly, Re χac may be
described by a thermally averaged susceptibility 〈χmic

H 〉 ≡
χ⊥ + (χ‖ − χ⊥)〈(Ĥ Q̂)2〉 (gray dashed lines), where
〈O〉 = ∫

dQ̂Oe−ξ 3
domV(Q̂)/(kBT )/Z and kBT/ξ 3

dom = 0.02ε
(1)
T .

In zero field, H = 0, both dM/dH and Re χac assume
the value 〈χmic

H 〉|H=0 ≈0.21 after zero-field cooling, since
〈(Ĥ Q̂)2〉=1/3.

In order to demonstrate the very good agreement between
experiment and theory, we show the susceptibility calculated
from the measured magnetization for a large number of
field directions in Fig. 7. The measurements were carried
out on the spherical sample 1 with applied field directions
Ĥ = ( sin β√

2
,

sin β√
2

, cos β) tracking one of the great circles on
the unit sphere shown in gray in Fig. 1(b). The spherical
sample shape ensured that demagnetization effects were
unchanged under changes of field direction. In Figs. 7(a)
and 7(b) data recorded after zero-field cooling and starting
in the conical state at large negative fields are compared with
calculations assuming a thermal population of domains and
a single domain, respectively. In general, the evolution of
the susceptibility as a function of the angle β is described

FIG. 7. Susceptibility calculated from the measured magnetiza-
tion for a large number of field directions. Magnetic fields Ĥ are
applied along ( sin β√

2
,

sin β√
2

, cos β) parametrized by the angle β. Data
are offset by 0.1 for clarity. (a) Data measured after zero-field cooling
(ZFC). The gray dashed lines are calculations of χH assuming a
thermal population of the helical domains with kBT/ξ 3

dom = 0.05ε
(1)
T .

(b) Data measured after high-field cooling (HFC) starting in large
negative fields. The gray solid lines are calculations of χH assuming
a single macroscopic domain.

very well by our calculations (gray lines) [59], where small
but distinct deviations might indicate the importance of
contributions that are beyond our mean-field approximation,
cf. Sec. VI.

In Fig. 7(b), discrepancies between theory and experiment
are only observed close to the critical fields for H ‖ [110] and
H ‖ [001]. We find that dM/dH is larger and the signatures
of the transitions are more pronounced and robust compared
to the calculations. In particular, a clear double peak structure
is resolved around [001] (β = 0◦) in the experiment, whereas
the maxima of the double Ising transitions are smeared in the
theoretical curves already for β ≈ 3◦. Moreover, the behavior
of the susceptibility differs for decreasing and increasing field
strength with much weaker critical signatures close to the
positive critical fields where multiple domains coalesce into
a single domain, consistent with the hysteresis observed in
neutron scattering. After zero-field cooling, see Fig. 7(a), the
agreement is comparable to the results shown in Fig. 6, where
deviations of the experimental zero-field value from 0.21 are
attributed to a systematic error arising from the smoothing
algorithm.
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VI. DISCUSSION

We have presented an effective mean-field theory for the
helix orientation in the limit of weak magnetocrystalline
anisotropies taking into account the symmetries of the tetra-
hedral point group T of the cubic chiral magnets. With only
few phenomenological parameters, this model allowed us to
successfully describe the response of the helix pitch vector Q
to an applied magnetic field H in MnSi, as probed by means
of neutron scattering, magnetization and ac susceptibility
measurements.

While the overall quantitative agreement is very good,
there are, nevertheless, small but systematic discrepancies
between theory and experiment close to the critical values
of magnetic fields pointing along high-symmetry directions.
Most remarkably, our experiments reveal hysteretic behavior
at the nominally continuous elastic Ising transitions. Sharp
critical signatures are observed when the transition is ap-
proached from the single-domain conical state at large fields
in both neutron scattering and susceptibility. The signatures,
in fact, are even sharper and more robust with respect to
deviations of the field direction than theoretically expected.
In contrast, comparatively broad features arise when multiple
helical domains coalesce, for instance, after zero-field cooling.

We relate these observations to the need for corrections to
our mean-field treatment that were not taken into account, such
as thermal fluctuations and topological defects of helimagnetic
order. While the former may cause the enhancement of critical
signatures, the latter may be the origin of the hysteresis.
In fact, the discrepancy between decreasing and increasing
field strength close to the Ising transitions is likely to be
a nonequilibrium phenomenon. From the analysis of the ac
susceptibility we deduced that the reorientation of the pitch
vector Q̂ in general possesses a very large relaxation time
τQ̂. We speculate that close to the Ising transitions τQ̂ might
increase further and might even exceed the time scales of our
nominally thermodynamic measurements thus giving rise to
the hysteretic behavior.

A possible origin of a large relaxation time τQ̂ are domain
walls with nontrivial topology [60] that inhibit the coalescence
of domains. In certain cases, the stress in a helix domain wall
can be relieved by plastic deformations of the helical arrange-
ment in the form of disclinations, see Figs. 8(a) and 8(b), which
are known from liquid crystals [61]. Around such defects, the
helix axis, identified up to a sign by the orientation of the vector
Q, rotates by π and −π , respectively. These disclinations
thus correspond to vortices in the pitch director field, and,
as such, they are topologically protected. As a consequence,
two domains separated by a topologically nontrivial domain
wall consisting of an arrangement of disclinations cannot be
smoothly joined. The defects must first be removed from the
sample, which results in particularly slow relaxation processes,
especially if they also get pinned by disorder.

While skyrmions have received a lot of interest recently,
see for instance Ref. [62] for a review, the properties of
topologically nontrivial disclination defects in chiral magnets
remain largely unknown and deserve further study. Generally,
we expect that the slow dynamics of disclinations should
dominate the equilibration of the magnetization at small fields.
In fact, a recent study identified the motion of disclination
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FIG. 8. Disclinations of helimagnetic order. (a) and (b) Local
magnetic moments around a central +π and −π disclination defect,
respectively. The color map encodes the out-of-plane moment. (c)
and (d) The local helix axis is represented by a director field (gray
double arrows) that rotates by either +π or −π around the defects.
The color maps from the upper panels are shown for comparison.

pairs, i.e., edge dislocations, as the origin for the slow
relaxation dynamics of helimagnetic order in FeGe [63].
Furthermore, like skyrmion textures, these disclinations are
expected to couple efficiently to spin currents so that they
should also give rise to interesting spintronic phenomena in
helimagnets.

In summary, the helix reorientation transition in the cubic
chiral magnets is an elastic transition [22,23] that is distinct
from conventional phase transitions in magnets. In MnSi the
reorientation of the helix pitch vector Q as a function of
magnetic field H for H ‖ 〈100〉 involves two elastic Ising tran-
sitions breaking subsequently a Z2 × Z2 symmetry. A single
elastic Ising transition occurs for field orientations H ‖ 〈hk0〉
with h,k �= 0, while for other field directions only a crossover
phenomena remains. Helical domains unfavorably populated
after zero-field cooling may be depopulated discontinuously
for increasing fields. Moreover, slow relaxation processes
associated with the helix pitch orientation Q̂ quantitatively
explain the discrepancy between the susceptibilities dM/dH

and Re χac. Finally, the hysteretic behavior observed close
to the continuous elastic Ising transitions is attributed to a
substantial enhancement of relaxation times, presumably due
to topologically nontrivial disclination defects.

Our theory is also applicable to other cubic chiral magnets.
Interestingly, an orientation of Q̂ along 〈100〉 is favored by
the magnetocrystalline anisotropies in Cu2OSeO3 [19] and in
FeGe close to its critical temperature [17], implying ε

(1)
T < 0

in Eq. (1) in contrast to MnSi. A special situation then arises
for H ‖ 〈111〉, where all three helimagnetic 〈100〉 domains
are energetically degenerate. In this case, we predict that the
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threefold rotation symmetry around 〈111〉 of the point group
T protects an elastic Z3 three-state clock transition for the
orientation of the helix pitch vector Q.
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