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We explore the phase diagram of the Kitaev-Heisenberg model with nearest neighbor interactions on the
honeycomb lattice using the exact diagonalization of finite systems combined with the cluster mean field
approximation, and supplemented by the insights from analytic approaches: the linear spin-wave and second-order
perturbation theories. This study confirms that by varying the balance between the Heisenberg and Kitaev term,
frustrated exchange interactions stabilize in this model either one of four phases with magnetic long range order:
Néel phase, ferromagnetic phase, and two other phases with coexisting antiferromagnetic and ferromagnetic
bonds, zigzag and stripy phase, or one of two distinct spin-liquid phases. Out of these latter disordered phases,
the one with ferromagnetic Kitaev interactions has a substantially broader range of stability as the neighboring
competing ordered phases, ferromagnetic and stripy, have very weak quantum fluctuations. Focusing on the
quantum spin-liquid phases, we study spatial spin correlations and dynamic spin structure factor of the model
by the exact diagonalization technique, and discuss the evolution of gapped low-energy spin response across the
quantum phase transitions between the disordered spin liquid and phases with long range magnetic order.
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I. INTRODUCTION

Frustration in magnetic systems occurs by competing
exchange interactions and leads frequently to disordered spin-
liquid states [1–3]. Recent progress in understanding transition
metal oxides with orbital degrees of freedom demonstrated
many unusual properties of systems with active t2g degrees of
freedom—they are characterized by anisotropic hopping [4–8]
which generates Ising-like orbital interactions [9–17], similar
to the orbital superexchange in eg systems [18,19]. Particularly
challenging are 4d and 5d transition metal oxides, where the
interplay between strong electron correlations and spin-orbit
interaction leads to several novel phases [20,21]. In iridates
the spin-orbit interaction is so strong that spins and orbital
operators combine to new S = 1/2 pseudospins at each site
[22], and interactions between these pseudospins decide about
the magnetic order in the ground state.

The A2IrO3 (A = Na, Li) family of honeycomb iridates
has attracted a lot of attention as these compounds have t2g

orbital degree of freedom and lie close to the exactly solvable
S = 1/2 Kitaev model [23]. This model has a number of
remarkable features, including the absence of any symmetry
breaking in its quantum Kitaev spin-liquid (KSL) ground
state, with gapless Majorana fermions [23] and extremely
short-ranged spin correlations confined to nearest neighbors
[24]. We emphasize that below we call a KSL also disordered
spin-liquid states which arise near the Kitaev points in presence
of perturbing Heisenberg interactions ∝ J .

By analyzing possible couplings between the Kramers
doublets it was proposed that the microscopic model
adequate to describe the honeycomb iridates includes Kitaev
interactions accompanied by Heisenberg exchange in the
form of the Kitaev-Heisenberg (KH) model [25]. Soon after

the experimental evidence was presented that several features
of the observed zigzag order are indeed captured by the
KH model [26–34]. Its parameters for A2IrO3 compounds
are still under debate at present [35,36]. One finds also
a rather unique crossover from the quasiparticle states
to a non-Fermi-liquid behavior by varying the frustrated
interactions [37]. Unfortunately, however, it was recently
realized that this model is not sufficient to explain the observed
direction of magnetic moments in Na2IrO3, and its extension
is indeed necessary to describe the magnetic order in real
materials [38,39]. For example, bond-anisotropic interactions
associated with the trigonal distortions have to play a role to
explain the differences between Na2IrO3 and Li2IrO3 [40], the
two compounds with quite different behavior reminiscent of
the unsolved problem of NaNiO2 and LiNiO2 in spin-orbital
physics [19]. On the other hand, the KH model might be
applicable in another honeycomb magnet α-RuCl3, see, e.g.,
a recent study of its spin excitation spectrum [41].

Understanding the consequences of frustrated Heisenberg
interactions on the honeycomb lattice is very challenging and
has stimulated several studies [42–45]. The KH model itself is
highly nontrivial and poses an even more interesting problem
in the theory [25,34,46,47]: The Kitaev term alone has intrinsic
frustration due to directional Ising-like interactions between
the spin components selected by the bond direction [23]. In
addition, these interactions are disturbed by nearest neighbor
Heisenberg exchange which triggers long-range order (LRO)
sufficiently far from the Kitaev points [25,34,46,47]. In
general, ferromagnetic (FM) and antiferromagnetic (AF) inter-
actions coexist and the phase diagram of the KH model is quite
rich as shown in several previous studies [25,34,46–49]. Fi-
nally, the KH model has also a very interesting phase diagram
on the triangular lattice [50–53]. These studies motivate better
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understanding of quantum effects in the KH model on the hon-
eycomb lattice in the full range of its competing interactions.

The first purpose of this paper is to revisit the phase diagram
of the KH model and to investigate it further by comparing the
exact diagonalization (ED) result [34] with the self-consistent
cluster mean field theory (CMFT), supplemented by the
insights from the linear spin-wave theory (LSWT) and the
second-order perturbation theory (SOPT). The main advantage
of CMFT is that it goes beyond a single site mean field classical
theory and gives not only the symmetry-broken states with
LRO, but partly includes quantum fluctuations as well, namely
the ones within the considered clusters [43,54,55]. In this way
the treatment is more balanced and may allow for disordered
states in cases when frustration of interactions dominates.

We present below a complete CMFT treatment of the phase
diagram which includes also the Kitaev term in MF part of the
Hamiltonian and covers the entire parameter space (in contrast
to the earlier prototype version of CMFT calculation on a single
hexagon for the KH model [56]). Note that the CMFT comple-
ments the ED which is unable to get symmetry breaking for a
finite system, but nevertheless can be employed to investigate
the phase transitions in the present KH model by evaluating
the second derivative of the ground state energy to identify
phase transitions by its characteristic maxima [25,34]. The
ED result can be also used to recognize the type of magnetic
order by transforming to reciprocal space and computing spin-
structure factor. The second purpose is to investigate further the
difference between quantum KSL regions around both Kitaev
points mentioned in Ref. [34] and LRO/KSL boundaries.

The paper is organized as follows: In Sec. II we introduce
the KH model and define its parameters. In Sec. III we
present three methods of choice: (i) the exact diagonalization
in Sec. III A, (ii) the self-consistent CMFT in Sec. III B, and
(iii) linear spin wave theory in Sec. III D. An efficient method
of solving the self-consistence problem obtained within the
CMFT is introduced in Sec. III C. The numerical results are
presented and discussed in Sec. IV: (i) the phase transitions
and the phase diagram are introduced in Sec. IV A, and
(ii) the phase boundaries, the values of the ground state ener-
gies, and the magnetic moments obtained by different methods
are presented and discussed in Secs. IV B and IV C, and
(iii) we discuss the impact of the Kitaev interaction on different
spin ordered states in Sec. IV C. Spin correlations obtained
for various phases are presented in Sec. V. The dynamical
spin susceptibility and spin structure factor are introduced and
analyzed for different phases in Sec. VI. Finally, in Sec. VII
we present the main conclusions and short summary. The
paper is supplemented with the Appendix where we explain
the advantages of the linearization procedure implemented on
the CMFT on the example of a single hexagon.

II. KITAEV-HEISENBERG MODEL

We start from the KH Hamiltonian with nearest neighbor
interactions on the honeycomb lattice in a form,

H ≡ K
∑

〈ij〉‖γ
S

γ

i S
γ

j + J
∑
〈ij〉

Si · Sj , (2.1)

where γ = x,y,z labels the bond direction. The Kitaev term
∝ K favors local bond correlations of the spin component

interacting on the particular bond. The superexchange J is
of Heisenberg form and alone would generate a LRO state,
antiferromagnetic or ferromagnetic, depending on whether
J > 0 or J < 0. We fix the overall energy scale,

J 2 + K2 = 1, (2.2)

and choose angular parametrization:

K = sin ϕ, J = cos ϕ, (2.3)

varying ϕ within the interval ϕ ∈ [0,2π ]. This parametrization
exhausts all the possibilities for nearest neighbor interactions
in the KH model.

While zigzag AF order was observed in Na2IrO3 [28–32],
its microscopic explanation has been under debate for a
long time. The ab initio studies [35,57] give motivation
to investigate a broad regime of parameters K and J , see
Eqs. (2.3). Further motivation comes from the honeycomb
magnet α-RuCl3 [41]. Note that we do not intend to identify the
parameter sets representative for each individual experimental
system, but shall concentrate instead on the phase diagram of
the model Eq. (2.1) with nearest neighbor interactions only.

III. CALCULATION METHODS

A. Exact diagonalization

We perform Lanczos diagonalization for an N = 24-site
cluster with periodic boundary conditions (PBC). This cluster
respects all the symmetries of the model, including hidden
ones. Among the accessible clusters it is expected to have the
minimal finite-size effects.

B. Cluster mean field theory

A method which combines ED with an explicit breaking
of Hamiltonian’s symmetries is the so-called self-consistent
CMFT. It has been applied to several models with frustrated
interactions, including the Kugel-Khomskii model [54,55].
The method was also extensively used by Albuquerque et al.
[43] as one of the means to establish the full phase diagram of
the Heisenberg-J2-J3 model on the honeycomb lattice.

Within CMFT the internal bonds of the cluster [connecting
the circles in Fig. 1(a)] are treated exactly. The corresponding
part HIN of the Hamiltonian is the nearest neighbor KH
Hamiltonian, Eq. (2.1). The external bonds that connect the
boundary sites (•) with the corresponding boundary sites of
periodic copies of the cluster (�) are described by the MF part
of the Hamiltonian,

HMF ≡ K
∑
[ij ]‖z

〈
Sz

i

〉
Sz

j + J
∑
[ij ]

〈
Sz

i

〉
Sz

j , (3.1)

where [ij ] marks the external bonds. Since the ordered
moments in the KH model align always along one of the cubic
axes x, y, z (see, e.g., Ref. [25]), we have put

〈�Si〉 · �Sj ≡ 〈
Sz

i

〉
Sz

j (3.2)

in HMF to simplify the calculations.
The averages 〈Sz

i 〉 generate effective magnetic fields acting
on the boundary sites of the cluster. The total Hamiltonian

H ≡ HIN + HMF (3.3)
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FIG. 1. (a) 24-site cluster and the introduction of the mean fields.
Gray (black) circles indicate internal (boundary) sites. In CMFT the
internal bonds of the cluster are treated exactly while the external
bonds crossing the cluster boundary (dashed) are treated on the MF
level. The sites marked by � generate effective magnetic fields on
the boundary sites •. Labels x, y, and z stand for three inequivalent
bond directions determining the active products S

γ

i S
γ

j in the Kitaev
part of the Hamiltonian (2.1), e.g., bonds of x direction contribute
with the Sx

i Sx
j product to the Hamiltonian, etc. The pseudospin axes

used here are parallel to the cubic axes indicated in the top view of a
single octahedron. (b) Unit cells: for honeycomb lattice (coinciding
with a single hexagon of that lattice), for triangular lattice (inner
dotted hexagon), and zigzag magnetic unit cell (dashed rectangle).
Black and white circles stand for up/down spin and indicate one of
three equivalent zigzag patterns. (c) Corresponding Brillouin zones
and special q points for the lattice constant a = 1. The q vectors
compatible with the 24-site cluster in (a) are also shown.

is diagonalized in a self-consistent manner, taking a slightly
different approach than the one presented in Ref. [43]: Instead
of starting with a random wave function our algorithm begins
with expectation values 〈Sz

i 〉in on each boundary site i of the
cluster. These can represent a certain pattern (zigzag, stripy,
Néel, FM) or be set randomly to have a “neutral” starting
point. After diagonalizing the Hamiltonian (3.3) (again by
the ED Lanczos method) the ground state of the system is
obtained and we recalculate the expectation values 〈Sz

i 〉 to be
used in the second iteration. The procedure is repeated until
self-consistency is reached.

C. Linearized cluster mean field theory

A single iteration of the self-consistent MF calculation may
be viewed as a nonlinear mapping of the set of initial averages
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FIG. 2. (a) The values of λ obtained by the linearization of CMFT
for an embedded cluster of N = 24 sites with fixed magnetic order
patterns: FM, AF, stripy, and zigzag. Leading λ > 1 indicates the
order that sets in. The disordered KSL phases near ϕ = π/2 and
3π/2 are indicated by red. (b) Second derivative of the ground state
energy, −d2E0(ϕ)/dϕ2, obtained by ED. Adopted from Ref. [34].

{〈Sz
i 〉in} to the resulting averages {〈Sz

i 〉fin}. The self-consistent
solution is then a stable stationary point of such a mapping.
To find the leading instability, we may consider the case of
small initial averages in the CMFT calculation and identify
the pattern characterized by the fastest growth during the
iterations. To this end we linearize the above mapping.

In the lowest order the mapping corresponds to the
multiplication of the vector of the averages {〈Sz

i 〉in} by the
matrix,

Fij = ∂
〈
Sz

i

〉
fin

∂
〈
Sz

j

〉
in

, (3.4)

where i and j run through the cluster boundary sites.
During iterations, the patterns corresponding to the individual
eigenvectors of the matrix F grow as λn after n iterations for
a particular eigenvalue λ. The ordering pattern obtained by
CMFT is then given by the eigenvector with largest λmax > 1.
In the quantum KSL regimes, all the eigenvalues are less than
1 and no magnetic order emerges. An example of linearized
CMFT applied to a single hexagon with PBC can be found in
the Appendix.

A modified version of this method, used to obtain Fig. 2(a),
assumes a particular ordered pattern (Néel, zigzag, FM, or
stripy phase) and uses a single spin average 〈Sz〉in distributed
along the boundary sites outside the cluster, with the signs
consistent with this pattern. The resulting values, 〈Sz

i 〉fin, are
then averaged correspondingly. In this case the matrix F is
reduced to a single value λ plotted in Fig. 2(a). We observe that
the largest eigenvalue either drops below 1 when the disordered
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KSL state takes over, or interchanges with another eigenvalue
at a quantum phase transition to a different ordered phase.

D. Linear spin-wave theory

The LSWT is a basic tool to determine spin excitations and
quantum corrections in systems with LRO [58]. For systems
with coexisting AF and FM bonds quantum corrections are
smaller than for the Néel phase on the same lattice but are
still substantial for S = 1/2 spins [59]. For the KH model the
LSWT [25,29,34] has to be implemented separately for each of
the four ordered ground states: Néel (N), zigzag (ZZ), FM, or
stripy (ST). Then for a particular ground state the Hamiltonian
is rewritten in terms of the Holstein-Primakoff bosons [29,60]
and only quadratic terms in bosonic operators are kept. The
spectrum of such a quadratic Hamiltonian is finally obtained
using the successive Fourier and Bogoliubov transformations.

While the spin wave dispersion relations are usually of
prime interest [25,29,34,60], there are also two other quantities
which can easily be calculated using LSWT and which will
be important in the discussion that follows: (i) the value of the
total ordered moment 〈M〉 per site, and (ii) the total energy
per site 〈E〉. These observables are calculated in a standard
way [58,59] and expressed in terms of the eigenvalues, i.e.,
spin-wave energies ωkα , and the eigenvector components
{vkαλ} of the bosonic Hamiltonian before the Bogoliubov
transformation:

〈M〉 = S − 1

LV

∑
α,λ=1,...,L

∫
k∈BZ

|vkα,λ|2 d2k, (3.5)

and

〈E〉 =Ecl [S2 → S(S + 1)]

+ S

2LV

∑
α=1,...,L

∫
k∈BZ

ωkα d2k, (3.6)

where the choice of the sign of the eigenvalues and the
normalization of their eigenvectors is described in Ref. [58].
Here Ecl is the classical ground state energy per site, e.g.,

Ecl = −JzS2/2, (3.7)

with z = 3 for the Néel phase at K = 0 and S = 1/2 is the
value of spin quantum number. L in Eqs. (3.5)–(3.6) is the
number of the eigenvalues of the problem (spin-wave modes)
and α enumerates these modes. For all cases except for the
zigzag order [25], the integrals go over the two-sublattice
(L= 2) rectangular Brillouin zone (BZ) [61] with its volume
V = 8π2/3

√
3 and −π/

√
3 � kx � π/

√
3, −2π/3 � ky �

2π/3 (as already mentioned we assume the lattice constant
a = 1). For the zigzag state L = 4 and the rectangular BZ can
be chosen as: −π/

√
3 � kx � π/

√
3 and −π/3 � ky � π/3

and its volume is V = 4π2/3
√

3.

IV. QUANTUM PHASE TRANSITIONS

A. Phase diagram

Here we supplement the ED-based phase diagram for the
KH model Eq. (2.1) established in Ref. [34] with the one
obtained within CMFT. Figure 3 displays the phase boundaries
obtained with ED [34], within CMFT, as well as classical

ϕ

FM

leeNgazgiz

stripy

FIG. 3. T = 0 phase diagram for KH model. The outer ring is
composed from ED data for the 24-site cluster, reproducing the
result from Ref. [34] in the new parametrization, the middle ring
shows CMFT results also for 24-site cluster and the inner black circle
represents the classical result. The convention used for the angular
parameter ϕ which determines coupling constants [see Eqs. (2.3)] is
shown in the center of the inner circle. The colors represent particular
phases, shown also as mini drawings next to suitable regions of the
phase diagram. Starting from ϕ = 0 green colored region corresponds
to Néel order, red—KSL, yellow—zigzag order, dark blue—FM,
red—KSL, light blue—stripy phase, and again green—Néel phase.

(Luttinger-Tisza) phase boundaries. The latter are included
for completeness and to highlight the fact that the quantum
fluctuations stabilize the KSL phases beyond single points,
see below. To examine them in more detail it is instructive to
analyze the data in Fig. 2(a) for the boundaries obtained from
linearized CMFT and Fig. 2(b) for the peaks in the second
derivative of energy, −d2E0(ϕ)/dϕ2, giving phase boundaries
in ED [34].

It is clearly visible that all the methods that include quantum
fluctuations give quantum versions of the four classically
established magnetic phases: Néel, zigzag, FM, and stripy.
As the most important effect we note that when quantum
fluctuations are included within a classical phase, the energy
is generally lowered and that the emerging phase is expected
to expand beyond the classical boundaries, but only in cases
when a phase which competes with it has weaker quantum
fluctuations. This implies that phases of AF nature will expand
at the expense of the FM ones as the latter phases have lower
energy gains by quantum fluctuations (which even vanish
exactly for the FM order at K = 0 and J < 0).

We summarize the phase boundaries obtained within
different methods in Table I. One finds substantial corrections
to the quantum phase transitions which follow from quantum
fluctuations. These corrections are quite substantial in both
KSLs at the Kitaev points (K = +1, ϕ = 1

2π and K = −1,
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TABLE I. Phase boundaries for the KH model, parameterized
by the angle ϕ (in units of π ), see Eqs. (2.3). Columns: classical
Luttinger-Tisza approximation, second-order perturbation theory
(SOPT), exact diagonalization (ED), and self-consistent cluster mean
field theory (CMFT).

Boundary Classical SOPT ED CMFT

Néel/KSL 0.5 0.492 0.494 0.496
KSL/zigzag 0.5 0.507 0.506 0.505
zigzag/FM 0.75 0.813 0.814 0.825
FM/KSL 1.5 1.463 1.448 1.478
KSL/stripy 1.5 1.530 1.539 1.519
stripy/Néel 1.75 1.705 1.704 1.699

ϕ = 3
2π , first column of Table I). Indeed, in the classical

approach massively degenerate ground states exist just at
isolated points, but they are replaced by disordered spin-liquid
states that extend to finite intervals of ϕ when quantum
fluctuations are included, see the second, third, and fourth
column in Table I. The expansion of Néel and zigzag phases
beyond classical boundaries is given by particularly large
corrections and is well visible.

The most prominent feature in the phase diagram described
above is however the difference in size between two KSL
regions, already addressed before using ED [34] and also
visible now in the CMFT data. Therefore, the CMFT result
supports the claim from Ref. [34] that the stability of KSL
perturbed by relatively small Heisenberg interaction depends
on the nature of the phases surrounding the spin liquid
and the amount of quantum fluctuations that they carry. In
the following we discuss the above issues more thoroughly,
examining: (i) ground state energy curves emerging from ED,
CMFT, SOPT within the linked cluster expansion and LSWT,
(ii) the ordered moment given by various methods, (iii) the
spin-spin correlation functions, and (iv) the spin structure
factor as well as the dynamical spin susceptibility in the
vicinity of the Kitaev points.

B. Quantum corrections: Energetics

We start the discussion of quantum corrections to the energy
of the ordered phases by noting that, even though it properly
captures finite order parameters, the CMFT looses quantum
energy on the external bonds and would therefore not provide
a reliable estimate of the ground-state energy. However, if
one calculates instead the energy based on the correlations on
the bonds of the central hexagon, the estimate is significantly
improved. Here we choose the energy obtained using the ED
calculations [see Fig. 4(a)] as a reference value because of
all the bonds treated in an exact manner. This observation
is also supported by the fact that the ED phase boundaries
were roughly confirmed by tensor networks (iPEPS) [49]
and density matrix renormalization group (DMRG) results
[48]: The iPEPS phase boundaries agree with ED for AF
KSL/LRO transitions and the boundaries between different
LRO phases differ only slightly from those found in ED
(iPEPS: zigzag/FM—0.808π , stripy/Néel—1.708π ). For FM
KSL/LRO transition however the iPEPS result deviates more,
i.e., KSL/stripy—1.528π . On the other hand, DMRG bound-
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LSWT

CMFT

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0 π/2 π 3π/2 2π

en
er

gy
 / 

si
te

ϕ

(a)

(b)

ED
classical
LSWT
SOPT
CMFT

FIG. 4. (a) Comparison between ground state energies per site
obtained using various methods: classical Luttinger-Tisza approxi-
mation (dashed black), SOPT (solid red), LSWT (dashed red), ED
for 24-site cluster (solid blue, see Ref. [34] for this result in a different
parametrization), and CMFT (energy given by the central hexagon,
solid green). (b) Ordered moment obtained from CMFT (solid green
line for the central hexagon, dashed green line for the value for
intermediate and boundary sites) and LSWT (dashed red line).

aries agree perfectly with ED and due to four-sublattice dual
transformation [10,25] one can reproduce the FM/zigzag as
well as FM/KSL boundaries. Only the extent of the AF
spin-liquid phase cannot be extracted from this result, but that
is already confirmed by iPEPS.

Figure 4(a) shows a quite remarkable agreement between
the energy values and critical values of ϕ obtained by the
simplest SOPT [25] and our reference ED results. This
suggests that this analytical method can be utilized to get better
insight to the quantum contributions to the ground state energy.
For a phase X with LRO, the energy per site EX, written as a
sum of the classical energy Ecl and the quantum fluctuation
contribution 	EX, is obtained as:

EN = −1

8
(K + 3J ) − 1

16
(K + 3J ), (4.1)

EZZ = −1

8
(K − J ) − 1

16
(K − J ), (4.2)

EFM = +1

8
(K + 3J ) + 1

16

K2

K + 2J
, (4.3)
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EST = +1

8
(K − J ) + 1

16

(K + 2J )2

K
. (4.4)

In addition, to get the LRO/KSL phase boundary points in
Table I, we estimate the energy of the KSL phase as

EKSL � 3
2 (K + J )〈Sγ Sγ 〉Kitaev, (4.5)

using the analytical result for the Kitaev points [24],
〈Sγ Sγ 〉Kitaev ≈ ±0.131.

The two spin-liquid phases in the phase diagram of the
KH model differ strongly in their extent, despite the formal
equivalence of the FM (K = −1) and AF (K = 1) Kitaev
points provided by an exact mapping of the Kitaev Hamiltonian
[23]. As mentioned earlier, this is due to the fact that the
two KSLs compete with LRO phases of a distinct nature.
Here we give a simple interpretation based on the strength
of the quantum corrections of the LRO phases estimated using
Eqs. (4.1)–(4.4). Later, in Secs. V and VI we illustrate the
different nature of the transitions between FM and AF KSL
and the surrounding it LRO phases in terms of spin correlations
and spin dynamics.

Let us now compare the quantum fluctuation contribution
and the classical one. For the LRO phases surrounding the AF
spin liquid—Néel and zigzag—we always have 	E/Ecl = 1

2
as deduced from Eqs. (4.1) and (4.2), i.e., only 2

3EN and 2
3EZZ

are found in the classical approach. This guarantees that the
quantum phase transition between these two types of order
occurs at the same value of ϕ = π/2 in SOPT and in the
classical approach that do not capture the spin-liquid phase
in between these ordered states, see Fig. 4(a). In contrast, the
phases neighboring to the FM spin liquid—FM and stripy—
would reach the value of 	E/Ecl = 1

2 only at the FM Kitaev
point with J = 0 and away from this point the contribution
of quantum fluctuations decreases rapidly allowing for a large
extent of the FM spin-liquid phase. Note that both these latter
phases contain a point which is exactly fluctuation free—for
the FM phase when frustration is absent (K = 0), and for the
stripy phase it is related to the FM one by the interaction
transformation [39] at K = −2J .

Moving to the CMFT energy analysis one should also keep
in mind that within the CMFT method the external bonds
between 〈Sz

i 〉 and Sz
j do not include quantum fluctuations fully.

This implies a worse estimate of the energy (of the whole
cluster) for regions of the phase space that allow quantum
fluctuations. As a consequence the region of stability of FM
spin-liquid phase is smaller than that obtained in the ED.
Significantly better energy estimate is given by the central
hexagon, for which all the bonds experience exact interactions.
As a result, this CMFT energy curve [green line in Fig. 4(a)]
lies almost as close to ED energy as the SOPT one. Finally, the
estimates obtained from LSWT, which represents a harmonic
approximation to the quantum fluctuations, are not as good as
those from central hexagon via CMFT and SOPT, see dashed
red lines in Fig. 4(a). As expected, the energy obtained from the
LSWT agrees well with ED curve for phases with less quantum
fluctuations, FM and stripy phase, and starts to diverge when
these phases are unstable beyond quantum phase transitions
within Néel and zigzag phases.

C. Quantum corrections: Ordered moment

As usual, getting the correct value of the ordered moment
turns out to be a more difficult task than estimating the
ground state energy. This is primarily due to the fact that
the ED does not capture the symmetry-broken states and the
ordered moment can only be indirectly extracted from the
m2; moreover, the SOPT may not be reliable here. Hence,
we are mostly left with the results obtained with CMFT
and LSWT. We discuss the corresponding data [shown in
Fig. 4(b)] together with the several values given already in the
literature.

Let us begin with the Heisenberg AF point ϕ = 0: Here
it is expected that the ordered moment should be strongly
reduced by quantum fluctuations. LSWT estimates the ordered
moment value at 0.248 [61]. Similar values were extracted
from m2 in quantum Monte Carlo (0.268 [62–64]) and ED
(0.270 [43]) calculations. In the last case however the authors
admit that the set of clusters for finite size scaling was chosen
so as to make the best agreement with quantum Monte Carlo.
Another method—series expansion (high order perturbation
theory) [47] sets ordered moment value at a somewhat higher
value of 0.307. While all the above results seem roughly
consistent, CMFT value obtained from the boundary sites
seems to stand out (0.374 for ϕ = 0). Nevertheless, the
central-hexagon value (0.330 for ϕ = 0) lies much closer to
the results from the methods mentioned above. Moreover, one
should note that the ordered moment estimated from m2 for
24-site cluster ED equals 0.45 [43] which is above the CMFT
value. This suggests that at this point the finite size scaling is
important.

Before moving to the frustrated regime we briefly mention
that the trivial ordered moment value at ϕ = π is here
correctly reproduced by both CMFT and LSWT. Besides,
for the regions around the fluctuation-free FM (and stripy)
point the ordered moments predicted by CMFT and LSWT
also match. Following the ground state energy analysis,
LSWT gives the correct result because quantum fluctuations
contribution is small compared to the classical state. The
further one moves towards the Kitaev points, however, the
more incorrect the LSWT approximation should be because of
the strong reduction of the ordered moment due to increasing
frustration.

In contrast, the lack of quantum fluctuations on the external
bonds generates systematic errors within CMFT except for
FM and stripy phases. The ordered moment obtained from
the boundary sites experiences the errors discussed above.
However, the ordered moment values for intermediate sites
and the central hexagon become largely reduced in the whole
Néel and zigzag regions due to the fact that for the internal
part of the cluster the fluctuations are fully included. Still,
the best estimate comes from the central hexagon where
quantum fluctuations on the bonds are included and CMFT
gives more realistic results than LSWT in frustrated parts of
the phase diagram. Here it is also important to stress that the
series expansion captures correctly the fluctuation-free point
at ϕ = π (FM) and ϕ = − arctan 2 (stripy) and predicts a
broader region of the FM KSL phase [47]. The order parameter
is also qualitatively correctly estimated and is reduced more
to m � 0.3 for both Néel and zigzag phases [47]. However,
while the ordered moment values obtained by CMFT are
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consistent with the four-sublattice dual transformation, the
ordered moment data from the high-order perturbation theory
[47] are not as the values of ordered moment differ at the points
connected by the mapping. Unfortunately the largest difference
appears near the FM LRO/KSL boundaries. This observation
uncovers certain shortcomings of the high-order perturbation
theory.

D. Quantum corrections: Naive interpretation

Let us conclude the discussion of the quantum corrections
with the following more general observation: Developing the
argumentation presented by Iregui, Corboz, and Troyer [49],
the dependence of the quantum corrections to the energy and
to the ordered moment on the angle ϕ suggests that the Kitaev
interaction is less “compatible” with the FM/stripy ground
states than with the Néel/zigzag ones. This can be understood
in the simple picture of the KH model on a four-site segment
of the honeycomb lattice consisting of three bonds attached to
a selected lattice site, as presented below.

Starting with ϕ = π (FM ground state, e.g. along the z

quantization axis), increasing ϕ leads to gradual increase of
the FM Kitaev term which favors ferromagnetically aligned
spins along the x, y, and z quantization axes for the x, y, and
z directional bonds, respectively. It can easily be seen that,
e.g., for the x bond, the eigenstate of the FM Kitaev-only
Hamiltonian on that bond (|↑x↑x〉) has a 25% overlap with the
FM ground state, |〈↑z↑z|↑x↑x〉|2 = 1

4 . While again a similar
situation happens for the y bond, the overlap between such
states for the z bond is maximal, i.e., these states are identical
(we assume the same phase factors 1).

Next, we perform a similar analysis for ϕ = 0 and firstly
assume that we deal with a classical Néel ground state, |↑z↓z〉.
In this case for the “unsatisfied” bonds from the point of view
of the increasing AF Kitaev interaction we also obtain that the
eigenstate of the AF Kitaev-only Hamiltonian (|↑x↓x〉) on that
bond has a 25% overlap with the classical Néel ground state—
e.g., |〈↑z↓z|↑x↓x〉|2 = 1

4 . However, this situation changes
once we consider that the spin quantum fluctuations dress the
classical Néel ground state. This can be best understood if we
assumed the unrealistic but insightful case of very strong quan-
tum fluctuations destroying the classical Néel ground state:
then for the x bond a singlet could be stabilized and the overlap
between such a state and the state “favored” by the Kitaev
term increases to 50%: |〈0|↑x↓x〉|2 = 1

2 . This suggests that the
Néel ground state, which contains quantum spin fluctuations,
is more “compatible” with the states “favored” by the Kitaev
terms than the FM ground state, resulting in more stable values
of ordered moment for Néel phase. It seems that the above dif-
ference is visible in CMFT data but not in LSWT ones. We shall
discuss this issue further by analyzing spin correlations below.

V. SPIN CORRELATIONS

Additional information about the ground state is given by
spin-spin correlation functions. In Fig. 5(a) one can observe
isotropic stable 〈Sγ

i S
γ

j 〉 correlations in almost the entire AF
phase (with 〈Si · Sj 〉 ≈ −0.36 for ϕ = 0), while for the FM
phase the anisotropy quickly develops when moving away
from the FM Heisenberg point ϕ = π (here 〈Si · Sj 〉 reaches
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FIG. 5. (a) Spin correlations 〈Si · Sj 〉 obtained within ED for the
bonds between nearest neighbors (black line), spin correlations of the
components active in the Kitaev interaction, 〈Sγ

i S
γ

j 〉 (blue line), and

complementary spin components, 〈Sγ̄

i S
γ̄

j 〉 (red line). Below further
neighbor spin correlations |〈Si · Sj 〉| are shown (colors correspond
here to different neighbors). ED: (b) near the AF spin-liquid phase,
and (c) for the angle ϕ interval including the FM spin-liquid phase.
CMFT—the neighborhood of the: (d) AF spin-liquid, and (e) FM
spin-liquid region.

the classical value 0.25). This again demonstrates that the AF
(and zigzag) phase is more robust and uniform than the FM
(and stripy) phase.

Moreover, spin-spin correlations allow us to confirm the
disordered regions around the Kitaev points as critical cases
of quantum spin liquid [65]. At the Kitaev points (J = 0)
we observe the expected undisturbed KSL pattern: non-
zero values of nearest neighbor correlations between spin
components active in the Kitaev interaction [blue curve in
Fig. 5(a)] and vanishing correlations between complementary
components (red curve). In contrast, the next nearest and
further neighbor correlations disappear, see Figs. 5(b) and 5(c).
While moving away from the Kitaev points the absolute values
of the correlations enter the regions of slow growth—these
are signatures of the critical spin-liquid phases and they look
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similar in AF and FM spin liquid cases. At some point however
proceeding further results in rapidly growing absolute values
which mark KSL/LRO boundaries.

Furthermore, Figs. 5(b) and 5(c) prove that there is a
qualitative difference between the two spin-liquid regimes.
This is observed in the rapid growth of spin correlations at the
onset of LRO: The steplike jump visible in Fig. 5(b) contrasts
with the smoother crossover seen in Fig. 5(c). Below we
investigate this distinct behavior by analyzing the dynamical
spin susceptibility for various available phases. After Fourier
transformation of the z-component correlations, we obtain the
spin structure factor to be discussed in the context of the spin
susceptibility also in Sec. VI.

As a supplement we present the further neighbor spin
correlations obtained via CMFT [Figs. 5(d) and 5(e)]. One
should remark that within KSL the averages 〈Sz

i 〉 are 0 and
CMFT is thus equivalent to ED for an isolated cluster (open
boundary conditions). This leads to stronger finite size effects
and larger inhomogeneity of the correlations. Nevertheless,
considering the central part of the cluster, the emergence
of the longer-range correlations away from the Kitaev point
presented in Figs. 5(d) and 5(e) is almost identical to that
calculated by ED, see Figs. 5(b) and 5(c).

VI. SPIN SUSCEPTIBILITY AND EXCITATIONS IN THE
VICINITY OF THE KITAEV POINTS

Below we study the spin dynamics within the KH model
by analyzing the dynamical spin susceptibility at T = 0,

χαα(q,ω) = i

∫ ∞

0
〈�0|

[
Sα

q (t),Sα
−q(0)

]|�0〉 eiωt dt, (5.1)

with the Fourier-transformed spin operator defined via

Sα
q = 1√

N

∑
R

e−iq·RSα
R , (5.2)

and |�0〉 denoting the cluster ground state. For ω > 0, the
imaginary part of χ (q,ω)αα reads as

χ ′′
αα(q,ω) = −Im 〈�0| Sα

q
1

ω + EGS − H + iδ
Sα

−q |�0〉,
(5.3)

which can be conveniently expressed as a sum over the excited
states {|ν〉},

χ ′′
αα(q,ω) = π

∑
|ν〉

∣∣〈ν|Sα
−q |�0〉

∣∣2
δ(ω − Eν), (5.4)

where the excitation energy Eν is measured relative to the
ground state energy EGS. We have evaluated χαα(q,ω) by ED
on a hexagonal cluster of N = 24 sites. In the ED approach,
the exact ground state of the cluster |�0〉 is found by Lanczos
diagonalization, the operator Sα

−q is applied, and the average
of the resolvent 1/(z − H) is determined by Lanczos method
using normalized Sα

−q |�0〉 as a starting vector [66].
In our case of the KH model, the calculation generally

requires a relatively large number of Lanczos steps (up to one
thousand) to achieve convergence of the dense high-energy
part of the spectrum. Having the advantage of being exact, the
method is limited by the q vectors accessible for a finite cluster
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FIG. 6. (a) Dynamical spin susceptibility χ ′′(q,ω) obtained by
ED near the AF KSL phase at the characteristic wave vector of the
AF order, q = �′. (b) The same for the zigzag wave vector q = M .
(c) Brillouin zone portraits of the spin-structure factor 〈Sz

−qS
z
q〉 at

ϕ = 87.5◦, 90◦, and 92.5◦ (interpolated from the ED data). The inner
hexagon is the Brillouin zone of the honeycomb lattice; the outer one
corresponds to the triangular lattice with the missing sites filled in.
(d), (e) The same as in panels (a), (b) but for the interval containing
the FM (q = �) and stripy (q = X) phase. (f) Brillouin zone portraits
of the spin-structure factor obtained at ϕ = 255◦, 270◦, and 285◦.

and compatible with the PBC, and by finite-size effects due
to small N . These concern mainly the low-energy part of χ ′′
and lead, e.g., to an enlarged gap of spin excitations in LRO
phases of AF nature. Nevertheless, a qualitative understanding
can still be obtained.

The evolution of numerically obtained χ ′′(q,ω)αα (5.4) with
varying ϕ is presented in Figs. 6(a) and 6(b) for the region
including AF spin-liquid phase, as well as in Figs. 6(d) and
6(e) for the region including the FM spin-liquid phase. The
transitions are well visible at the characteristic q vectors of
the individual LRO phases. The structure factor pattern, see
Figs. 6(c) and 6(f), changes accordingly between the sharply
peaked one in LRO phases and a wavelike form characteristic
for nearest neighbor correlations in the spin-liquid phases.

After entering the spin-liquid phase, further changes of the
spin response are very different for the AF and FM case. In the
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AF case, there is a sharp transition—a level crossing for our
cluster, so that the ground state changes abruptly. The original
intense pseudo-Goldstone mode as well as many other excited
states become inactive in the spin-liquid phase. The observed
low-energy gap in χ ′′(q,ω)αα varies only slightly with ϕ.

In contrast, when entering the FM spin-liquid phase the
excitation that used to be the gapless magnon mode is
characterized by a gradually increasing gap which culminates
at the Kitaev point. Starting from the Kitaev point, the gradual
reduction of the low-energy gap in χ ′′(q,ω)αα due to the
Heisenberg perturbation manifests itself by a development
of finite spin correlations beyond nearest neighbors (already
reported in Fig. 2 of Ref. [25]) and an increase of the
static susceptibility to the magnetic field Zeeman coupled
to the order parameter of the neighboring LRO phase. This
susceptibility then diverges at the transition point (see also
Fig. 3 of Ref. [25]).

VII. SUMMARY AND CONCLUSIONS

In the present paper we report a study of the phase
diagram of the Kitaev-Heisenberg model by a combination of
exact diagonalization and cluster mean field theory (CMFT),
supplemented by the insights from linear spin-wave theory and
the second-order perturbation theory. Both methods allowed
to stabilize previously known phases with long range order:
Néel, zigzag, FM, and stripy. Moreover, the ordered moment
analysis provided by cluster mean field approach demonstrates
Néel-zigzag and FM-stripy connections described before [34].
Compared to the previous CMFT studies utilizing N = 6
site cluster (see Ref. [56] or the Appendix), we have used
a sufficiently large cluster of N = 24 sites preserving the
lattice symmetries and improving the ratio between internal
and boundary bonds. This led to a balanced approach which
allowed us to treat both ordered and disordered (spin-liquid)
states on equal footing.

As the main result, the present study uncovers a fundamen-
tal difference between the onset of broken symmetry phases
in the vicinity of Kitaev points with antiferromagnetic or
ferromagnetic interactions. While the spin liquids obtained
at K = +1 and K = −1 are strictly equivalent and can be
transformed one into the other in the absence of Heisenberg
interactions (at J = 0), spin excitations and quantum phase
transitions emerging at finite J are very different in both cases.
For the antiferromagnetic Kitaev spin liquid phase (K � 1)
one finds that a gap opens abruptly in χ ′′(q,ω) at q = �

′

and q = M when the ground state changes to the critical
Kitaev quantum spin liquid. This phase transition is abrupt
and occurs by level crossing. In contrast, for ferromagnetic
spin liquid K � −1 the gaps in χ ′′(q,ω) at q = � and q = X

open gradually from the points of quantum phase transition
from ordered to disordered phase. With much weaker quantum
corrections for ordered phases in the regime of ferromagnetic
Kitaev interactions, the spin liquid is more robust near K = −1
as a phase that contains quantum fluctuations and survives in
a broader regime than near K = 1 when antiferromagnetic
Kitaev interactions are disturbed by increasing (antiferromag-
netic or ferromagnetic) Heisenberg interactions. This behavior
is reminiscent of the ferromagnetic Kitaev model in a weak
magnetic field [65].
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APPENDIX: COMPARISON BETWEEN CMFT AND
LINEARIZED CMFT FOR A SINGLE HEXAGON

Here we compare linearization results for a single hexagon
with full CMFT to see how well linearized CMFT performs as a
shortcut method. It is important to realize that this cluster is not
compatible with stripy or zigzag order because of their four-site
magnetic unit cell, see Fig. 1(b), and they are suppressed within
vast regions of ϕ compared to the 24-site case. The size of
the system allows for quick CMFT computations and enables
detailed comparison between the two approaches. Moreover,
specific problems linked to the above incompatibility make the
N = 6-site cluster a good test case to illustrate the linearized
CMFT.

Following the procedure described in Sec. III C, 6 eigen-
values λi are produced for each value of ϕ parameter. The
corresponding spin patterns are inferred by inspecting the
eigenvectors. Only the patterns associated with λi > 1 are
able to grow during iterations and eventually stabilize as a
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FIG. 7. Full linearized CMFT result for a single hexagon. Blue
lines represent all emerged positive eigenvalues λ, while maximal λ

larger than 1 is indicated in red.
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From the left: Néel, zigzag, FM, and stripy. (b) Phase diagram for a
single hexagon determined by |〈Sz

i 〉|. Red and blue sites (see inset)
are nonequivalent in the present CMFT due to the approximation
given by Eq. (3.2) which generates the terms ∝ J that add to the
Kitaev term only on the vertical bonds 〈ij〉 ‖ z in the MF part of the
Hamiltonian (2.1).

self-consistent solution of full CMFT. Comparison of both
methods presented in Figs. 7 and 8 provides the phase diagram
for a single hexagon: Néel phase for ϕ ∈ [0,0.5)π , KSL for
ϕ = π

2 , zigzag phase for ϕ ∈ (0.5,0.555)π , disordered region
I for ϕ ∈ (0.555,0.864)π , FM phase for ϕ ∈ (0.864,1.5)π ,
KSL for ϕ = 3

2π , stripy phase for ϕ ∈ (1.5,1.62)π (lin-
earization), ϕ ∈ (1.5,1.64)π (CMFT), disordered region II

for ϕ ∈ (1.62,1.684)π (linearization) and ϕ ∈ (1.64,1.684)π
(CMFT), and Néel phase for ϕ ∈ (1.684,2]π . In contrast to
N = 24 cluster the two spin-liquid regions are replaced by
single points ϕ = π

2 and ϕ = 3
2π .

Striking difference between phase diagrams for 24-site and
6-site clusters is the reduction of the zigzag and stripy phases
and the emergence of two regions of disorder indicated by
two gray-shaded regions. Here all λi < 1 and no spin pattern
is strong enough to stabilize. Zigzag pattern emerges from
CMFT with random initial values of 〈Sz

i 〉 without additional
help. Stripy pattern however is more difficult to catch. As
one can see in Fig. 7, two different λi corresponding to two
stripy patterns exchange at ϕ = 1.568π . Unfortunately, huge
parasitic oscillations make these patterns extremely difficult
to stabilize within CMFT. These stem from a large negative
λi that previously corresponded to FM pattern and decreased
rapidly for ϕ > 1.5π . If one recalls that the equivalent of
one iteration in the linearized version of CMFT is in fact
multiplication by λi , one can easily see that large negative
λi would cause oscillations with an exponentially growing
amplitude when performing the iterations of the self-consistent
loop. To overcome this issue we introduce a damping into
a self-consistent loop by taking (1 − d)〈Sz

i 〉fin + d〈Sz
i 〉in as

the new averages. Here d < 1 is a suitably chosen damping
factor. With this modification CMFT produces one finite stripy
order suggested by linearization. However since the parasitic
negative λi grows enormously in magnitude as we approach
the phase boundary an extreme damping has to be included
making the phase boundary hard to determine by using
CMFT.

In conclusion, it is evident that the ordered patterns sug-
gested by linearization were reproduced by CMFT within re-
gions dictated by the maximal λi > 1. Moreover, the linearized
procedure indicated possible difficulties with stabilizing stripy
phases that had to be cured by a strong damping introduced
into the self-consistent loop.
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[8] P. Wróbel and A. M. Oleś, Phys. Rev. Lett. 104, 206401 (2010);
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