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Nonequilibrium quantum mechanics: A “hot quantum soup” of paramagnons
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Motivated by recent measurements of the lifetime (decay width) of paramagnons in quantum antiferromagnet
TlCuCl3, we investigate paramagnon decay in a heat bath and formulate an appropriate quantum theory. Our
formulation can be split into two regimes: (i) a nonperturbative, “hot quantum soup” regime where the paramagnon
width is comparable to its energy; (ii) a usual perturbative regime where the paramagnon width is significantly
lower than its energy. Close to the Neel temperature, the paramagnon width becomes comparable to its energy
and falls into the hot quantum soup regime. To describe this regime, we develop a new finite frequency,
finite temperature technique for a nonlinear quantum field theory; the “golden rule of quantum kinetics.” The
formulation is generic and applicable to any three-dimensional quantum antiferromagnet in the vicinity of a
quantum critical point. Specifically, we apply our results to TlCuCl3 and find agreement with experimental data.
Additionally, we show that logarithmic running of the coupling constant in the upper critical dimension changes
the commonly accepted picture of the quantum disordered and quantum critical regimes.
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I. INTRODUCTION

Understanding the interplay between thermal and quantum
fluctuations in quantum systems is an exciting challenge
to theory. In particular, understanding how to appropriately
treat (quasi)particles in a hot and dense medium is of
fundamental importance to many areas of physics ranging
from condensed matter, to plasma, nuclear, and particle
physics. In this work we concentrate on the lifetimes of
quasiparticles, or, more generally, on the line shapes of
spectral functions. The lifetime and the spectral function are
essentially nonequilibrium properties in spite of the fact that
the entire many-body system that we consider is in thermal
equilibrium. A perturbative treatment of quasiparticles in a
hot dense medium becomes plagued by infrared divergences
that occur due to the medium. In this paper, we develop and
present a relatively simple technique that (i) regulates the
infrared behavior via a resummation of medium effects, i.e.,
the self-consistent inclusion of line shapes, and (ii) allows one
to handle the calculation of nonequilibrium responses at finite
temperature.

The problem we investigate was stimulated by the observa-
tion of paramagnons in the magnetically disordered phase of
the three-dimensional (3D), dimerized quantum antiferromag-
net TlCuCl3 [1]. The pressure-temperature phase diagram of
the compound is shown in Fig. 1. The quantum phase transition
at the quantum critical point (QCP) p = pc = 1.01 kbar is
driven by external hydrostatic pressure. The red line in Fig. 1
shows the Néel temperature versus pressure [2]. At p > pc and
temperatures below the Néel curve, the compound possesses
long-range antiferromagnetic order. Going above the Néel
curve at p > pc, the system becomes magnetically disordered,
while at p < pc the system is disordered even at zero
temperature. Magnetic excitations at zero temperature and at
p < pc are usually called triplons, while magnetic excitations
at p > pc and T > TN are usually called paramagnons. It is
clear from Fig. 1 that there is no qualitative difference between
triplons and paramagnons and so throughout this work we
will exclusively use the term paramagnon, i.e, a triplon is a
paramagnon.

It was observed [1,2] that at temperatures just above the
Néel temperature TN , the paramagnons are relatively broad,
�/ω � 1, here � is the width and ω is the energy of the
paramagnon. At increasing temperatures, the paramagnons
become narrow, �/ω � 1. This unexpected behavior is an
indication of a nontrivial interplay between quantum and
thermal fluctuations [3].

While TlCuCl3 is a spin dimerized compound, the phase
diagram in Fig. 1 is essentially the generic phase diagram
of a 3D isotropic quantum antiferromagnet [4], dimerized
or not. The widths of magnons in the magnetically ordered
phase of quantum magnets have received both theoretical
and experimental attention [5–9]. On the other hand, we
are not aware of any previous theoretical studies of decay
widths of paramagnons in the disordered phase of 3D quantum
antiferromagnets at finite temperatures.

In the magnetically ordered phase at low temperatures,
T < TN , there exists two types of magnetic excitations. First,
there are Goldstone excitations called magnons. Magnons
are generally long lived quasiparticles which weakly in-
teract with each other [5–8]. This holds especially true
for higher-dimensional, nonfrustrated systems, or systems
without spontaneous decay [9]. The long lifetime of magnons,
�/ω � 1, is due to Adler’s theorem, which claims that
the magnon-magnon interaction must vanish in the long-
wavelength limit. Adler’s theorem is a general dynamic
property unrelated to the magnitude of the effective coupling
constant. Also within the magnetically ordered phase, along
with the Goldstone magnons, there exist longitudinal (Higgs)
magnetic excitations. The width of Higgs excitations depends
on the magnitude of the effective coupling constant, and is not
governed by Adler’s theorem. It can be large, �/ω � 1, like in
the Heisenberg model on a simple square or cubic lattice, or it
can be small, �/ω � 1, like in TlCuCl3 [10] and some other
dimerized spin systems.

In the present work we develop, and subsequently apply,
a technique to calculate widths of paramagnons in the
magnetically disordered phase of a 3D quantum system in
the vicinity of a QCP. While specifically we discuss an O(3)
field theory (and apply to the real compound TlCuCl3), the
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developed techniques are generic and are applicable to all
systems of this kind—the symmetric phases described by
O(N)-field theories. For example, they are applicable to the
electroweak phase transition in cosmology, to the wide class of
spin dimerized magnetic models [11], and to O(2) superfluids
or superconductors in the vicinity of their QCP’s.

The paper is organized as follows. In Sec. II, we intro-
duce the necessary mathematical and physical techniques.
Section III provides an intuitive picture of the decay and
scattering processes, with particular focus on the influence
of a heat bath. Section IV addresses quantum disordered and
quantum critical regimes. We show that they are somewhat
different from the commonly accepted picture. Section V
discusses the inconsistency of the usual perturbative Fermi
golden rule, and introduces our proposed golden rule of
quantum kinetics, which simultaneously incorporates decay
and heat bath scattering processes, as well as providing a
self-consistent, nonequilibrium technique to calculate widths.
A general mathematical analysis of the golden rule of quantum
kinetics, without reference to any particular system, is given
in Sec. VI. Finally, in Sec. VII, we apply our technique to
the specific compound TlCuCl3, and compare our results with
inelastic neutron scattering experimental data.

II. GENERAL CONSIDERATIONS

In the vicinity of the quantum critical point, quantum
antiferromagnets are described by the Landau-Ginzburg-like
effective field theory [4,12]

L = 1
2∂μ �ϕ∂μ �ϕ − 1

2m2
0 �ϕ2 − 1

4α0 �ϕ4, (1)

where �ϕ = (ϕ1,ϕ2,ϕ3) is a three-component real vector field
describing the spin S = 1 magnetic excitations. The index,
μ = 0,x,y,z, enumerates time and three-space coordinates,
and the paramagnon speed is set equal to unity, c = 1. The bare
coupling constant is α0, and the bare effective mass squared
m2

0 changes sign at the QCP, m2
0 = γ 2(gc − g), where g is

some external parameter and γ is a coefficient. For example,
in TlCuCl3, the transition is driven by external pressure,
m2

0 = γ 2(pc − p). Below we use the rescaled coupling
constant,

β = α

8π
, (2)

it is a more natural combination for perturbation theory.
To apply perturbation theory and the renormalization group
(RG), we assume that β � 1. This is always true in a
sufficiently close vicinity of the QCP. Quantum and thermal
fluctuations lead to running of both the coupling constant
and the effective mass; they become energy, momentum, and
temperature dependent, β0 → βq,m

2
0 → m2

q . Equations for
these quantities, derived in Ref. [13], are valid everywhere in
the phase diagram in Fig. 1. In the present work, we calculate
the width and spectral function of paramagnons within the
magnetically disordered region of the phase diagram, Fig. 1.

As a mathematical object we use the retarded Green’s
function of the paramagnon, which is an analytic continuation
of the Matsubara Green’s function from the upper imaginary
energy half-axis to the real energy axis. To have a coherent
presentation, we remind here the basic properties of the
retarded Green’s function GR(ω,q), see, e.g., Ref. [14]. For
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FIG. 1. The pressure-temperature phase diagram of TlCuCl3. The
QCP is at p = pc = 1.01 kbar. The Néel temperature curve separates
magnetically ordered and magnetically disordered phases. The light
red band around the Néel curve indicates the region of dimensional
crossover.

the case of a noninteracting field, β = 0, the Lagrangian (1)
becomes

L = 1
2∂μ �ϕ∂μ �ϕ − 1

2m2
0 �ϕ2 , (3)

and the exact Green’s function is immediately deduced:

GR(ω,q) = 1

2ωq

(
1

ω − ωq + i0
− 1

ω + ωq + i0

)

ωq =
√

q2 + m2
0 . (4)

This is true for both zero and nonzero temperatures, as soon
as there is no interaction. From (4), we see the symmetry
properties of GR , the real part of GR is an even function of
ω while the imaginary part of GR is odd. These are general
properties valid also in the case of nonzero interaction.

The general spectral representation of GR follows, see
Ref. [14],

iGR(x,0) = 1

3

∑
nm

e−En/T

Z
e−iωmnt+ikmn·r

× (1 − e−ωmn/T )|〈m|ϕi(0)|n〉|2. (5)

Here, |n〉 and |m〉 are exact stationary quantum states of
the system, En and kn are the energy and the momentum
of the state, ωmn = Em − En, kmn = km − kn, while Z is the
partition function.

Now consider the interaction of some external source Ji ,
with the paramagnon field ϕi (for instance Ji can be the
magnetic field of a neutron scattered from the system),

Lint = Jiϕi . (6)

Assuming that this interaction is very weak, the probability W

of the system excitation per unit time, due to interaction with
the external source (6), is given by the Fermi golden rule:

W ∝ Sq(ω) = 1

3

∑
nm

e−En/T

Z
|〈m|ϕα(0)|n〉|2

×δ(ω − ωmn)(2π )3δ(q − kmn). (7)
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FIG. 2. Diagrammatic subseries: coupling constant.

Here, ω is the energy transfer and q is the momentum transfer
to the system. So a scattering experiment allows one to measure
the structure factor Sq(ω) defined by Eq. (7). Comparison
of Eqs. (5) and (7) results in the following, important, exact
relation:

− 1

π
Im GR(ω,q) = (1 − e−ω/T )Sq(ω) . (8)

Note that Eqs. (5), (7), and (8) are exact, they are valid
at arbitrary interaction and arbitrary temperature. Another
exact theorem immediately follows from these equations; the
imaginary part of GR(ω,q) is an odd function of ω as already
pointed out above.

Account of interaction α0 �ϕ4/4 in Eq. (1) leads to a
paramagnon self-energy �q(ω). Of course, the self-energy
depends on temperature, however, for ease of notation we
do not write temperature as an explicit argument. The real part
of the self-energy has been calculated earlier using the single
loop renormalization group (RG) [13]. Account of the real part
leads to the replacement m2

0 → m2
q in Eq. (4), where mq ≡ �

is the renormalized mass, such that the dispersion is given by

ωq =
√

q2 + �2 . (9)

Generally, � depends on momentum and temperature.
Below, we take ωq as given by Eq. (9). It is important to
understand the structure of diagrams included in the self-
energy. The diagrams contributing to the running coupling
constant βq are shown schematically in Fig. 2. The momentum
in the loop runs in the limits 0 > p > q, where q is the
external momentum and 0 is the ultraviolet cutoff. The
self-energy is given by diagrams shown schematically in
Fig. 3. All diagrams are quadratically, ultraviolet divergent.
Quadratic divergences have no physical meaning and are
removed during the renormalization. After removal of the
quadratic divergence, the typical momentum in the “external”
loop is k ∼ �,T while the typical momentum in the “internal”
loop is 0 > p > �,T . The internal loops of the double loop
diagrams are inside dashed boxes in Figs. 3(b) and 3(c). The
series of internal loops can be identified as the series of the
running coupling constant, as shown in Fig. 2. The point to
note is that the most important logarithmically divergent part
of the “sunset” diagram (see Fig. 6, considered in the next
section) is fully included in our RG calculation of � [13].

=Σ = + + + . . .

p
p

k k k

a b c

FIG. 3. Diagrammatic subseries: self-energy.
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FIG. 4. “Decay” diagrams for a paramagnon. The thick blue line
represents the probe paramagnon and the thin black lines represent
the heat bath paramagnons.

For example, Fig. 3(c) is a part of the “sunset” diagram. In
the diagrammatic series, Fig. 3, we consider only the real
part of the sunset diagram. A central point of this work is
the consideration the imaginary part of the sunset diagram.
However, to extract the most important physics relating to the
imaginary part, we will need to consider a different, infinite
subseries (see Fig. 9). The following sections are dedicated to
this point.

The imaginary part of the self-energy describes
broadening:

�q(ω) = − Im�q(ω)

ω
,

GR(ω,q) = 1

ω2 − ω2
q − �q(ω)

→ 1

ω2 − ω2
q + iω�q(ω)

.

(10)

There are two points to note: (i) generally, �q depends on ω

and hence the line shape can be significantly different from
that of a simple Lorentzian; (ii) �q(ω) is an even function
of ω since Im�q(ω) is an odd function. The structure factor
corresponding to (10) immediately follows from Eq. (8),

Sq(ω) = 1

π (1 − e− ω
T )

[
ω�q(

ω2 − ω2
q

)2 + ω2�2
q

]
. (11)

III. INTUITIVE ANALYSIS AND
PERTURBATION THEORY

Let � be a paramagnon for which we are determining the
decay rate: the “probe paramagnon.” The probe paramagnon
can spontaneously decay into three paramagnons as shown
in Fig. 4(a). In the presence of a heat bath, the probe
paramagnon can also scatter from a bath paramagnon—this
is the Raman process shown in Fig. 4(b). The fusion process
with two or even three heat bath paramagnons is also possible,
Figs. 4(c) and 4(d). It is worth noting that the processes
in Figs. 4(a), 4(c), and 4(d) are kinematically forbidden for
on-mass-shell paramagnons with dispersion (9) [15]. However,
one must include the processes in the analysis because close
to the Néel temperature, paramagnons are broad and the
mass-shell notion is not defined.

Along with each of the above four decay processes, there
also exists their inverse process—the “pumping” from the
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FIG. 5. Diagrams corresponding to pumping (inverse processes)
to the paramagnon state. The thick blue line represents the probe para-
magnon and the thin black lines represent the heat bath paramagnons.

paramagnon bath shown in Fig. 5. It is intuitively clear that

�q(ω) = �(d)
q (ω) − �(i)

q (ω) , (12)

where �q is the total width in Eq. (10), �(d)
q is the decay

width associated with processes in Fig. 4 and �(i)
q is the

inverse width associated with processes in Fig. 5. For a formal
derivation of (12) see Ref. [19]. Due to the detailed balance,
there is a simple relation between the decay and the inverse
widths [19,20]:

�(i)
q (ω) = e−ω/T �(d)

q (ω),

�q(ω) = (1 − e−ω/T )�(d)
q (ω). (13)

It is interesting to note that while relation (12) is valid for
bosons, for fermions � = �(d) + �(i), see Ref. [19].

Now we look at simple perturbation theory, which is
equivalent to the Fermi golden rule. Direct application of Fermi
golden rule to diagrams in Fig. 4 gives the following decay
width:

�(d)
q (ω) = 16(2π )6Sβ2

0

2ω

∫
d3k1

2ω1(2π )3

d3k2

2ω2(2π )3

d3k3

2ω3(2π )3

×[(1 + n1)(1 + n2)(1 + n3) δ(4)(q − k1 − k2 − k3)

+ 3n1(1 + n2)(1 + n3) δ(4)(q + k1 − k2 − k3)

+ 3n1n2(1 + n3) δ(4)(q + k1 + k2 − k3)

+ n1n2n3 δ(4)(q + k1 + k2 + k3)]. (14)

Here,

nk = 1

eωk/T − 1
(15)

is the paramagnon occupation number, and the four-
dimensional δ function describes energy and mo-
mentum conservation, δ(4)(q + k1 + k2 + k3) = δ(ωq + ω1 +
ω2 + ω3)δ(3)(q + k1 + k2 + k3). The combinatorial factorS is
due to summation over paramagnon polarizations. For details
of calculation of the combinatorial factors see, e.g., Ref. [21].
For a general O(N) group, the factor is

S = 2(N + 2). (16)
Application of Fermi golden rule to diagrams in Fig. 5 gives

the following inverse width:

�(i)
q (ω) = 16(2π )6Sβ2

0

2ω

∫
d3k1

2ω1(2π )3

d3k2

2ω2(2π )3

d3k3

2ω3(2π )3

×[n1n2n3 δ(4)(q − k1 − k2 − k3)

=Σ(q0, q)

FIG. 6. Matsubara self-energy operator.

+ 3(1 + n1)n2n3 δ(4)(q + k1 − k2 − k3)

+ 3((1 + n1)(1 + n2)n3 δ(4)(q + k1 + k2 − k3)

+ (1 + n1)(1 + n2)(1+n3)δ(4)(q + k1 + k2 + k3)].

(17)

Of course, Eqs. (14) and (17) satisfy the relation (13). Hence
the full width (13) reads

�q(ω) = (1 − e−ω/T )
16(2π )6Sβ2

0

2ω

×
∫

d3k1

2ω1(2π )3

d3k2

2ω2(2π )3

d3k3

2ω3(2π )3

× [(1 + n1)(1 + n2)(1 + n3) δ(4)(q − k1 − k2 − k3)

+ 3n1(1 + n2)(1 + n3) δ(4)(q + k1 − k2 − k3)

+ 3n1n2(1 + n3) δ(4)(q + k1 + k2 − k3)

+ n1n2n3 δ(4)(q + k1 + k2 + k3)]. (18)

One can also derive Eq. (18) more formally starting from
the Matsubara self-energy operator, see Fig. 6,

�(q0,q) = 16(2π )2Sβ2
0T 2

×
∞∑

n1,n2,n2=−∞

∫ ∫ ∫
d3k1

(2π )3

d3k2

(2π )3

d3k3

(2π )3

× (2π )3δ(q − k1 − k2 − k3)δn0,n1+n2+n3(
k2

01 + ω2
k1

)(
k2

02 + ω2
k2

)(
k2

03 + ω2
k3

) . (19)

Here, q0 =2πT n0, k01 =2πT n1, k02 =2πT n2, k03 =2πT n3

are Matsubara frequencies, n0,n1,n2,n3 are integer numbers.
Frequencies ωki

are given by Eq. (9), δ( p) is the δ function
while δn,m is the Kronecker symbol. Analytic continuation
of (19) from q0 to real frequency together with Eq. (10) leads
to Eq. (18). For full details of the analytic continuation see
Refs. [22,23].

IV. ANALYSIS OF QUANTUM DISORDERED
AND QUANTUM CRITICAL REGIMES

It is well established that critical two-dimensional
quantum antiferromagnets have three different regimes;
quantum disordered (QD), quantum critical (QC), and
renormalized classical [24]. It is widely assumed, see, e.g.,
Ref. [4], that analogously there are three different regimes
in the disordered part of the phase diagram of a 3D critical
antiferromagnet; quantum disordered (QD), quantum critical
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FIG. 7. Two versions of the phase diagram of a 3D quantum
antiferromagnet. The Néel temperature curve separates magnetically
ordered and magnetically disordered phases. The light red band
around the Néel curve indicates the region of dimensional crossover.
(a) Commonly accepted phase diagram. The dashed lines in the
magnetically disordered phase indicate smooth crossovers between
different regimes. (b) The phase diagram derived here to be specific
we use parameters of TlCuCl3. The black dashed separates QD and
QC regimes. The cuts 1, 2, 3, and 4 are described in the text.

(QC), and thermally disordered (TD). This is schematically
illustrated in Fig. 7(a). In this section, we show that logarithmic
corrections (running coupling constant) significantly changes
this picture.

Diagrams contributing to the running coupling constant and
to the self-energy are shown in Figs. 2 and 3. They lead to the
following gap equation in the paramagnetic phase [13]:

�2 = γ 2(pc−p)

[
β

β0

] N+2
N+8

+ 8π (N+2)β

∑
k

1

�k

1

e
�k
T − 1

,

�k =
√

k2 + �2 + �2. (20)

Here, N corresponds to the O(N) group and β is the running
coupling constant

β = β0

1 + (N+8)β0

π
ln(0/)

,

 = max{�,T }. (21)

Here, 0 is the ultraviolet normalization point. In Eq. (20),
we have replaced the general external parameter g to pressure
p having in mind further application to TlCuCl3. We will see
that in the QD and QC regimes (away from the Neel curve)
the width is always small, � � �, therefore �k in (20) can be
replaced by ωk determined by Eq. (9).

In the narrow gap limit, � � �, which constitutes most
of QD and QC regimes, the paramagnon width is determined
by the Raman process; see Figs. 4(b) and 5(b). Evaluation of
integrals in Eq. (18) gives the following explicit answer:

�q=0(ω = �) = πS
2

β2
T 3 1 − e−�/T

�2
I
(

�

T

)
,

I(y) = y
6

π2

∫ ∞

y

dx1

∫ x1

y

dx2 nx1 (1+nx2 )(1+nx3 ),

x3 = y + x1 − x2, nx = 1

ex − 1
. (22)

In this equation, we substitute the running coupling constant
β instead of β0 in (18), this substitution accounts for all RG
corrections to Eq. (18).

It is also useful to calculate the Fermi golden rule �q=0(ω)
at arbitrary ω. In this case, generally both the Raman, Figs. 4(b)
and 5(b), and the spontaneous, Figs. 4(a) and 5(a), processes
contribute. Evaluation of integrals in Eq. (18) gives the
following explicit answer:

�q=0(ω) = πS
2

β2
T 3 1 − e−ω/T

ω2

[
Ib

(
ω

T

)
+ Ia

(
ω

T

)]
,

Ib(y) = y
6

π2

∫ ∞

max{y0,2y0−y}
dx1

∫ y−y0+x1

y0

dx2

×nx1 (1 + nx2 )(1 + nx3 )F (x1,x2,x3),

x3 = y + x1 − x2 , y0 = �/T,

Ia(y) = θ (y − 3y0)y
2

π2

∫ ∞

y0

dx1

∫ y−y0−x1

y0

dx2

×(1 + nx1 )(1 + nx2 )(1 + nx3 )F (x1,x2,x3),

x3 = y − x1 − x2 , y0 = �/T,

F (x1,x2,x3) =
{

1 if x− � x3 � x+
0 otherwise ,

x− =
√(√

x2
1 − y2

0 −
√

x2
2 − y2

0

)2 + y2
0 ,

x+ =
√(√

x2
1 − y2

0 −
√

x2
2 − y2

0

)2 + y2
0 . (23)

Of course, at ω = �, Eq. (23) coincides with Eq. (22). It
is worth noting that the coupling β runs with energy scale
 = max{

√
ω2 − q2,T }.

A. Quantum disordered regime

Consider cut1 in the QD regime of the phase diagram,
Fig. 7(b). At low temperatures, deep in the QD regime where
e−�/T � 1, the gap determined by Eq. (20) is practically equal
to its value at zero temperature. Direct evaluation of the integral
in Eq. (22) gives

�q=0(ω = �)

�
= 3S

π
β2



T 2

�2
e−�/T � 1 . (24)

B. Quantum critical regime

To address the QC regime, let us tune to the critical point
by setting g = gc and increase the temperature along cut 2 in
Fig. 7(b). The solution of Eq. (20) in this situation reads

� = T

√
2(N + 2)πβ

3
�(β) . (25)

The scaling function � is nonanalytic at β → 0, �(β) =
(1 −

√
3(N+2)β

2π
+ · · · ), and therefore deviates from unity no-

ticeably even at small values of the coupling constant. The plot
of �(β) with N = 3 is shown in Fig. 8. Hence, using Eqs. (22)
and (25), we find

�q=0(ω = �)

�
= 3S

4(N + 2)
β �(β) . (26)
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FIG. 8. Scaling functions �(β) and �(β) in Eqs. (25) and (26)
for N = 3.

Similar to �, the scaling function �, normalized as �(0) = 1,
is nonanalytic in β. The plot of �(β) is presented in Fig. 8.
As expected, both �, Eq. (25), and �, Eq. (26), scale
linearly with temperature along cut 2. However, there is also
a logarithmic dependence related to the coupling constant.
The dependencies of � and � on the coupling constant are
significantly different. In a very close vicinity of QCP, T → 0,
the coupling constant (21) is logarithmically approaching zero.
Therefore here � � � � T . However, the coupling constant
grows with raising temperature and reaches the crossover
value βc where � � � = T . The value of βc immediately
follows from Eq. (25); for N = 3, it is βc ≈ 0.23, and here
�/� ≈ 0.21. The crossover value of β is sufficiently small, so
our approach is justified.

C. Crossovers and contours

One can define the crossover line between QD and QC
regimes by the equality

�(g,T ) = T . (27)

In the QD regime, � > T , and in the QC regime, � < T . The
crossover line found from Eq. (20) is shown in Fig. 7(b) by the
black dashed line. It is different from the simple power scaling
indicated in Fig. 7(a). Technically the difference is due to
the logarithmic running of the coupling constant. Physically,
we say that this difference is due to the system being at its
upper critical dimension where there are two energy scales;
the infrared scale, which is equal to temperature, and the
ultraviolet one, which is determined by the position of the
Landau pole, see discussion in Ref. [13]. As discussed in
the previous paragraph, the crossing point between the black
crossover line and cut 2 of Fig. 7(b) corresponds to β = βc.

Let us consider now the cut 3 in Fig. 7(b), which traces
from the QD regime down to the Néel phase transition. Along
this cut, the ratio �/T is monotonically decreasing from
�/T � 1 above the QD to QC crossover, to �/T = 0 at
the transition. Meanwhile, the ratio �/� is monotonically
increasing. We do not see any fingerprints of a crossover to the
“thermally disordered” regime. From our analysis of the static
and dynamic properties, we conclude that separately defining
a thermally disordered regime brings no extra meaning to the

phase diagram. On the other hand, in the very close vicinity of
the Néel temperature, the ratio �/� becomes equal to unity,
and as such brings about a very distinct regime. This regime
corresponds to the dimensional crossover to the “classical
critical” regime indicated by the light red band in Fig. 7(b).
Our next goal is to describe this crossover.

V. DECAY WIDTH EXPRESSED IN TERMS OF
THE SPECTRAL FUNCTION. THE GOLDEN

RULE OF QUANTUM KINETICS

Our analysis in previous sections and in particular the
derivation of Eq. (18) is based on two grounds: (i) the
coupling constant is small, β � 1, so as to justify the applied
perturbation theory; (ii) the paramagnon broadening is small
compared to the energy, � � �, so that the notion of the
thermal occupation number (15) is well defined. Close to the
Néel temperature point (ii) is not valid. While the coupling
constant is still small, paramagnons become relatively broad
as is clearly indicated by experiment [1]. Note: “broad”
here means that the width is comparable or larger than the
gap. Physically, the paramagnons are broad near the Néel
temperature because their gap, Eq. (9), approaches zero as
T → TN . This is the overdamped regime or the “hot quantum
soup.” In this regime, Eqs. (15) and (18) do not make
physical sense since a quasiparticle description is not well
defined. Note that quasiparticles with large momentum are
still well defined, �q(ω = ωq) � ωq for sufficiently large
q. The Bose-Einstein occupation number, as presented in
Eq. (15), explicitly assumes the quasiparticles to be on mass
shell; ω = ωq =

√
q2 + �2. However, for broad quasiparti-

cles, their dispersion could (crudely speaking) lay anywhere
in the range ωq − �/2 < ω < ωq + �/2. It is in this sense
that the quasiparticle description is not valid. With these
considerations in mind, our goal is to develop a theory for
the regime of large heat bath scattering and subsequent large
uncertainty in the quasiparticle occupation numbers. We call
this the “hot quantum soup” regime, which corresponds to
the crossover to the classical critical regime. We do not use
the terminology “classical critical,” which is appropriate to
underline the dimensional crossover; 4D → 3D, and with
it, the unimportance of time. Instead, we use the term “hot
quantum soup” to underline the broadening and overdamped
dynamics of paramagnons.

To achieve our goal, we first dispense with the Bose-
Einstein occupation numbers, and rewrite (18) in terms of
spectral functions. In the small width regime, point (ii) above,
the imaginary part of the retarded Green’s function follows
from Eq. (4),

− 1

π
Im GR(ω,q) = 1

2ωq

[δ(ω − ωq) − δ(ω + ωq)]. (28)

Combining this with (8), we find

Sq(ω) = 1

2ωq

[(1 + nq)δ(ω − ωq) + nqδ(ω + ωq)]. (29)

One can also derive this directly by applying the Fermi golden
rule to the interaction given by the external source (6). The
first term in brackets in Eq. (29) describes the creation of
a magnon by the external source, while the second term in
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=Γq(ω)

Sk1(ω1, Γk1(ω1))

Sk2(ω2, Γk2(ω2))

Sk3(ω3, Γk3(ω3))

FIG. 9. Diagrammatic illustration of Dyson equation describing
the golden rule of quantum kinetics.

brackets describes a magnon being absorbed from the heat
bath by the external source. It is easy to check that using (29)
the width (18) can be rewritten as

�q(ω) = S(8π )2β2 (1 − e−ω/T )

2ω

∫
Sk1 (ω1)Sk2 (ω2)Sk3 (ω3)

× (2π )4δ(ω − ω1 − ω2 − ω3)δ(q − k1 − k2 − k3)

× dω1d
3k1

(2π )3

dω2d
3k2

(2π )3

dω3d
3k3

(2π )3
. (30)

An important point is that we can use the general expres-
sion (11) for the structure factor, such that in this form (30)
does not contain occupation numbers. The expression is valid
for quasiparticles of arbitrary broadness. In particular, it is
valid in the “hot quantum soup” regime where quasiparticles
are poorly defined, � � ω. We call the combinations of these
two equations, Eqs. (30) and (11), the golden rule of quantum
kinetics.

Self-consistent solution of Eqs. (30) and (11) is a Dyson-
equation-like procedure to determine Sq(ω,�q). Diagram-
matically, the Dyson equation is illustrated in Fig. 9. Most
importantly, the solution of the golden rule of quantum kinetics
gives the structure factor, which can be directly compared with
experiment. Note that Fig. 9 is not a usual Feynman/Matsubara
diagram; the lines in Fig. 9 represent structure factors as
opposed to Green’s functions. We also comment that Eq. (29) is
used to derive (30) in the narrow line regime, � → 0. However,
as soon as one wishes to go beyond simple perturbation
theory, and account for the back influence of the decay width
on the decay phase space, then Eq. (29) becomes invalid
(generally), and it is Eqs. (30) and (11) that are to be solved
self-consistently.

Now we can comment on the general structure of our theory
and compare with other approaches. In essence, we perform
summations of infinite chains of diagrams. The chains of
diagrams; those for the real part of the self-energy and those
for the imaginary part of the self-energy, are different. The
different chains are dictated by different physics: the real part
is dominated by logarithmic ultraviolet/infrared physics and
is related to the logarithmic running coupling constant, see
discussion after Eq. (9), while the imaginary part, Eq. (30), in
the overdamped regime, is dominated by the power-divergent,
infrared physics. These two different summations cannot be
represented as a summation of a single infinite set of Matsubara
diagrams since within the Matsubara technique, the real part

and the imaginary part are treated on an equal footing. And as
far as we understand, Eq. (30) cannot be represented within
any standard diagrammatic technique.

One of the central points of the present work is self-
consistent Eq. (30) for the spectral function/width. The
equation takes care of the infrared, power divergence in
the overdamped regime. The following points are crucial for
the understanding and justification of our approach.

(i) We assume proximity to the quantum critical point. The
proximity implies that the logarithmically running coupling
constant is sufficiently small to justify truncation of diagrams,
βq � 1.

(ii) When approaching the Neel temperature, the per-
turbation theory for the imaginary part breaks down; the
width naively calculated using the sunset diagram (analytical
continuation of Matsubara) is diverging. This is an infrared
power divergence. The failure of the perturbative approach is
not a result of the coupling constant becoming large, instead,
the perturbative approach fails because the gap (=mass)
becomes small. The small gap implies the overdamped regime.

(iii) Away from the Neel temperature, Eq. (30) is equivalent
to the simple perturbation theory (Fermi golden rule), it gives
the same width as straightforward analytical continuation of
the sunset Matsubara diagram.

(iv) The RG procedure accounts only for the on mass-shell
contribution to the real part of the sunset self-energy. However,
in our evaluation of the imaginary part of the self-energy
using Eqs. (30) and (11), we consider both the on and off
mass-shell contributions. To subsequently find the off mass-
shell contribution to the real part of the self-energy, one can
exploit the analytic properties, i.e., Kramers-Kronig relation.
This extra step is beyond what is presented in the text, instead,
the calculation is performed in Appendix. As expected, the off
mass-shell energy-dependent contribution is negligibly small.
Furthermore, away from the Neel temperature/overdamped
regime, one does not need to consider the off mass-shell
contribution at all.

There are approaches to the thermal field theory that are
based on uncontrolled truncations of Matsubara diagrams, see,
e.g., Refs. [25,26]. These works do not rely on proximity
to a QCP, therefore the coupling constant is, without prior
knowledge, large and the truncations uncontrolled. This is not
the case in the present work, see point (i) above. Besides that,
as already explained, our technique in principle cannot be
reduced to a summation of series of Matsubara diagrams.

VI. MATHEMATICAL ANALYSIS OF THE GOLDEN
RULE OF QUANTUM KINETICS

In this section, we provide a general mathematical analysis
of the golden rule of quantum kinetics, without reference to
any particular system. Our aim is to illustrate the necessity of
the nonperturbative resummation of the imaginary part, i.e.,
the self-consistent solution of Eqs. (30) and (11). To this end,
we disregard the RG running of the coupling constant and set
it to

β = 0.2. (31)

In the next section, we will again account for the RG running.
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FIG. 10. Paramagnon width function at zero momentum,
�q=0(ω), vs frequency. The function is calculated with the coupling
constant (31) for different values of the gap �. (a) Obtained using
the simple Fermi golden rule, Eq. (18). (b) Obtained using the golden
rule of quantum kinetics; Eqs. (30) and (11).

Fortunately, the most singular integrations in Eq. (30) can
be performed analytically. To avoid long equations here, we
present the answer only for q = 0:

�q=0(ω) = Sβ2

π

(1 − e−ω/T )

ω

∫ +∞

−∞
dω1dω2

∫ +∞

0
dk2

1dk2
2

×
∫ (k1+k2)2

(k1−k2)2
dk2

3 Sk1 (ω1)Sk2 (ω2)Sk3 (ω − ω1 − ω2).

(32)

Numerical evaluation of this expression is straightforward.
Consider cut 3 in Fig. 7(b); we approach the Néel temperature
from the QC regime. Along this cut it is convenient to use
temperature as the energy scale, and have ω/T , �q/T , �/T ,
and q/T as dimensionless variables. We remind the reader
that paramagnon speed is set to unity, c = 1, and hence
q → cq has dimension of energy. To illustrate the use of the
golden rule of quantum kinetics, and to contrast with the usual
Fermi golden rule, we present Fig. 10, which shows plots of
the paramagnon width function �q=0(ω) versus ω for values
of �/T ranging from �/T = 1 to �/T = 0.1. The width
function �q=0(ω) calculated using the Fermi golden rule (18) is
shown in Fig. 10(a), while the width function calculated using
the golden rule of quantum kinetics, i.e., by iterative solution
of Eqs. (30) and (11), is shown in Fig. 10(b). Of course, at
small �/�, which here corresponds to large �,�/T � 1, the
two methods must reduce to the same result, and they do so,
as is evident from Fig. 10. They also give the same result at
large values of ω. On the other hand at small values of � and
small ω the results are very different. This is not surprising
since the Fermi golden rule assumes the on-mass-shell notion
related to Eq. (15), the notion and the Fermi golden rule fails at
sufficiently small values of �/T where the width is very large,
�/� > 1. In particular, this results in a formal divergence of
� in the limit ω,� → 0. On the other hand, the golden rule
of quantum kinetics does not require the on-mass-shell notion
and therefore does not suffer from the artificial divergence. For
the remainder of our analysis, we will use only the golden rule
of quantum kinetics.

The structure factor Sq(ω), as given by Eq. (11), provides
a direct physical link to experiment. In Fig. 11(a), we present
the structure factors Sq=0(ω), which correspond to the widths
�q=0(ω) as given in Fig. 10 by solid lines. The structure
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FIG. 11. (a) The structure factor T 2Sq=0(ω) vs frequency for
different values of the gap �. (b) The spectral density Aq=0(ω) =
− 1

π
ImGR(ω,q = 0) vs frequency for different values of the gap

�. Both Sq=0(ω) and Aq=0(ω) correspond to �q=0(ω) (solid lines)
in Fig. 10.

factor has dimension [energy]−2, therefore similar to other
variables in the QC regime we use the appropriate power of
temperature to balance dimension, S → T 2S. To supplement
the results shown in Fig. 11(a). In Fig. 11(b), we present plots
of the spectral density, Aq(ω) = − 1

π
ImGR(ω,q). The spectral

density A(ω) is related to the structure factor according to
Eq. (8). The spectral density has been used experimentally to
determine effective line widths. In the present analysis, we
define �(0)

q to be the FWHM of the spectral density, which is
indicated by the doubled-headed, arrowed lines in Fig. 11(b).
We stress that �(0)

q has no ω dependence, but it depends on the
gap �, momentum q, and temperature T .

At sufficiently small values of �/T the definition of �(0) as
FWHM of the spectral density practically does not make sense,
the A(ω) becomes hugely asymmetric, see the �/T =0.1
curve in Fig. 11(b). This corresponds to the crossover to
the overdamped regime, or in other words to the crossover
from quasiballistic dynamics to the fully diffusive one. The
crossover value of �c depends on the value of the running
coupling constant β. The smaller values of β correspond
to the smaller �c/T . All the available experimental data for
TlCuCl3 are in the regime of reasonably well defined �(0).

VII. COMPARISON WITH EXPERIMENTAL
DATA ON TlCuCl3

The widths of paramagnons �
(0)
q=0 in TlCuCl3 have been

measured via inelastic neutron scattering [1]. The data is
obtained for various values of � and T , spanning the entire
phase diagram Fig. 1. To compare our theory with the data we
need to set N = 3 and specify parameters 0 and β0 in the
running coupling constant (21) as well as γ and pc in (20). The
value of 0 is arbitrary as soon as it is below the position of
the Landau pole, and the value of β0 depends of the particular
system/compound and on the value of 0. An analysis of
the TlCuCl3 data performed in Ref. [13] shows that for this
compound

β0 = 0.23 for 0 = 1 meV;

pc = 1.01 kbar γ = 0.68 meV/kbar1/2 . (33)

Note that the analysis [13] does not include paramagnon
widths. It based solely on the phase diagram and on the data
on values of the quasiparticle gaps.
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FIG. 12. The gap (a) and the width (b) in TlCuCl3 along the cut1
in the phase diagram Fig. 7(b). We take the cut at p = 0 kbar. Squares
and circles represent experimental data [27] and the theory is shown
by lines.

Using parameters (33) and the theory developed in the
present work we can calculate gaps. Let us first consider
the cut 1 in Fig. 7(b) and put it at zero pressure pressure
position, p = 0. The gap and the width along this cut are
plotted in Fig. 12. Squares and circles represent experimental
data [27] and theory is shown by lines. The gap is determined
by Eq. (20) and the width by Eq. (22). [Note that Eq. (24) is not
sufficient since it is valid only in the regime exp(−�/T ) � 1.]
The agreement between experiment and theory for the gap is
not surprising, the experimental gap was used in Ref. [13] to
determine the parameters (33). Most important, the agreement
for the width is remarkable.

Next we consider the cut 2 in Fig. 7(b), the quantum critical
regime. The gap and the width along this cut are plotted in
Fig. 13. Squares represent experimental data [1] and theory
is shown by lines. The gap is determined by Eq. (25) and the
width by Eq. (26) Again, the agreement between experiment
and theory is remarkable.

Now we consider cuts 3 and 4 in Fig. 7(b). This cuts
approach the Neel temperature and hence the “simple” RG
used for cuts 1 and 2 is not sufficient. We need RG plus
the golden rule of quantum kinetics, Eqs. (30) and (11). In
the vicinity of the Neel temperature, spectral lines become
asymmetric and hence the definition of width becomes
ambiguous. We use values of �(0) defined in Sec. VI. In
evaluating Eq. (30), the coupling β formally runs with energy
scale  = max{

√
ω2 − q2,T }, yet we use  = max{�,T },

which makes a negligible difference Ref. [28].
In Fig. 14, we present theoretical and experimental values

of the width �
(0)
q=0 and the gap �. Panel (a) corresponds to

the vertical cut 3 in Fig. 7(b); temperature varies at fixed
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FIG. 13. The gap (a) and the width (b) in TlCuCl3 along the
critical cut 2, p = pc, in the phase digram Fig. 7(b). Squares represent
experimental data [1] and the theory is shown by lines.
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FIG. 14. Theoretical and experimental values of the width �
(0)
q=0

and the gap �. Panel (a) corresponds to the vertical cut 3 in
Fig. 7(b), temperature varies at fixed pressure, p = 1.75 kbar. Panel
(b) corresponds to the horizontal cut 4 in Fig. 7(b), pressure varies
at fixed temperature, T = 0.5 meV. In both panels, blue circles show
theoretical results of the present work, while magenta squares show
experimental results of Ref. [1]. Yellow diamonds show experimental
results for the gap [1]. Dashed blue and magenta as well as solid
yellow lines connecting the points are given just for guidance.

pressure, p = 1.75 kbar. Panel (b) corresponds to the hori-
zontal cut 4 in Fig. 7(b); pressure varies at fixed temperature,
T = 0.5 meV. Agreement between theoretical and experimen-
tal widths presented in Fig. 14(a) is very good. This includes
the highly nontrivial, hot quantum soup regime close to the
Néel temperature where the width calculated via the golden
rule of quantum kinetics is different from that calculated via the
simple Fermi golden rule. On the other hand, Fig. 14(b) demon-
strates a disagreement between theory and experiment about
factor 2 in the theoretically “simple” interval 0 < p < pc.
In principle, one can refer the disagreement to impurities.
However, it is unlikely since the agreement at endpoints of this
interval, p = 0, Fig. 12 and at p = pc, Fig. 13, is excellent.
The reason for the disagreement remains unclear to us.

Finally, to complete this section, in Fig. 15, we present
the phase diagram of TlCuCl3 with lines of constant �/�. At
large T where the running coupling constant becomes large the
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FIG. 15. Contours of �(0)/� on the phase diagram of TlCuCl3.
Thick red line is T -Neel, thick blue line is QD/QC crossover. All
other curves are traces of constant �(0)/�.

024420-9



H. D. SCAMMELL AND O. P. SUSHKOV PHYSICAL REVIEW B 95, 024420 (2017)

lines have small cusps at the QD/QC crossover line (i.e., when
� = T ). Of course the cusps are byproducts of the logarithmic
RG where the argument is ln(max{�,T }). The magnitude of
the cusp indicates the inaccuracy of the RG approach at a given
temperature. One can consider the line �/� = 1 as crossover
from the dilute gas to the hot quantum soup regime.

There are two comments in conclusion of this section. (i)
Our calculation of widths has no adjustable fitting parameters.
All parameters were taken from an independent analysis
Ref. [13], which made no reference to decay widths. (ii)
Calculations performed in this section do not take into account
the small anisotropy which exists in TlCuCl3. It relatively
straightforward to account for the anisotropy via introduction
of an additional anisotropic effective mass as is discussed in
Refs. [10,13]. We have performed such a calculation and
checked that the anisotropy does not influence the widths
presented in Figs. 12–14 beyond a few percent.

VIII. CONCLUSIONS

We analyze the magnetically disordered phase of 3D quantum
antiferromagnets. Motivated by observed kinetics of param-
agnons in quantum antiferromagnet TlCuCl3, our analysis is
concerned with the nonequilibrium properties: paramagnon
lifetimes and the neutron scattering structure factor. (i) We
show that logarithmic running of the coupling constant in the
upper critical dimension changes the commonly accepted pic-
ture of the quantum disordered and quantum critical regimes.
(ii) We calculate paramagnon decay widths in quantum critical
and quantum disordered regimes. (iii) Close to the Neel
temperature the paramagnon width becomes comparable to its
energy and falls into the hot quantum soup regime where the
quasiparticle lifetimes are very short due to multiple scattering
from other quasiparticles. To describe the “soup,” we develop
a new finite frequency, finite temperature technique for a
nonlinear quantum field theory; the golden rule of quantum
kinetics. The formulation is generic and applicable to any
quantum field theory with weak coupling. (iv) Comparing
with data on TlCuCl3, we find an excellent agreement between
theory and experiment.

In the challenging field of many-body quantum systems, a
novel technical approach can often help illuminate the physical

problem at hand. In this paper, we developed a formalism that
offers a novel means to calculating nonequilibrium properties
of 3+1 dimensional, critical quantum antiferromagnets. Our
analysis provides an economical representation, and we hope
that the formalism presented here could be applied to other
systems of this kind; for example, a wide class of spin
dimerised magnetic models.
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APPENDIX: NON-RG CONTRIBUTION TO THE REAL
PART OF THE SELF-ENERGY

In the main text, we self-consistently solve the golden rule
of quantum kinetics, Eqs. (11) and (29), to find the imaginary
part of the self-energy as well as the structure factor. In doing
so, we ignore the small frequency dependence of the real part
of the self-energy, ��q(ω). Our approximation is equivalent
to taking ��q(ω) ≈ ��q(�0), where �0 is the physical mass
calculated using RG. In this appendix, we take into account the
full frequency dependence of the real part of the self-energy.
This is achieved by adding the frequency-dependent correction
to the mass gap, δ�(ω) ≡ ��q(ω) − ��q(�0), and solving
the following set of equations self-consistently:

�2(ω) = �2
0 + δ�(ω), (A1)

�q(ω) = −�q(ω)

ω
, (A2)

Aq(ω) = 1

π

{
ω�q(ω)

[ω2 − (q2 + �2(ω))]2 + ω2�2
q(ω)

}
. (A3)

Here, �q(ω) is defined as in the main text Eq. (30), the spectral
density Aq(ω) ≡ (1 − e−ω/T )Sq(ω), while the real part is
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FIG. 16. (a) Frequency-dependent correction to mass gap; the non-RG contribution to the real part of self-energy. (b) The (normalized)
spectral density Aq=0(ω). (Blue curve) Including the non-RG, frequency-dependent correction; (maroon curve) excluding the non-RG,
frequency-dependent correction.
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found via analytic properties (Kramers-Kronig relation):

��q(ω,T ) = 1

π
P

∫ +∞

−∞

�q(ω′,T )

ω′ − ω
dω′

= 1

π
P

∫ +∞

−∞

−ω′�q(ω′)
ω′ − ω

dω′. (A4)

Here we ignore momentum dependence, which would give
some small additional correction. Since we already know
�q(ω) from solving the golden rule of quantum kinetics, we

can use the Kramers-Kronig relation (A4) to evaluate the real
part. The results are shown in Fig. 16 for the data point
{�0,T } = {0.2,0.5} meV, with coupling constant β = 0.15.
Figure 16(a) shows the frequency dependence of the non-RG
contribution to the real part of the self-energy. Figure 16(b)
shows the spectral density with and without inclusion of the
frequency-dependent real part of self-energy, blue and maroon
curves, respectively. We see that the inclusion of the real part
has a negligible influence.

[1] P. Merchant, B. Normand, K. W. Kramer, M. Boehm, D. F.
McMorrow, and Ch. Ruegg, Nat. Phys. 10, 373 (2014).
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