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The concept of temperature in nonequilibrium thermodynamics is an outstanding theoretical issue. We
propose an energy repartition principle that leads to a spectral (mode-dependent) temperature in steady-state
nonequilibrium systems. The general concepts are illustrated by analytic solutions of the classical Heisenberg
spin chain connected to Langevin heat reservoirs with arbitrary temperature profiles. Gradients of external
magnetic fields are shown to localize spin waves in a Wannier-Zeemann fashion, while magnon interactions
renormalize the spectral temperature. Our generic results are applicable to other thermodynamic systems such as
Newtonian liquids, elastic solids, and Josephson junctions.
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I. INTRODUCTION

Equilibrium thermodynamics provides a unified description
of the macroscopic properties of matter and its response to
weak stimuli without referring to microscopic mechanisms.
Statistical mechanics, on the other hand, proceeds from
quantum mechanics and describes macroscopic observables
in terms of probabilities and averages. The combination of
both fields leads to an understanding of many physical and
chemical phenomena from first principles. Temperature is a
principal quantity in the study of equilibrium physics. Energy
equipartition in classical equilibrium thermodynamics implies
that every quadratic normal mode [1] carries on average an
energy kBT /2 (quantum statistics can be disregarded when
mode energies are small compared to kBT ) [2]. Here, kB is
the Boltzmann constant and T is the absolute temperature.
The system temperature of a given system can be obtained
by, e.g., the kinetic approach [1], the entropy method [3], and
dynamical systems theory [4].

In recent years, the physics of nonequilibrium systems has
attracted attention from widely different disciplines, such as
stochastic thermodynamics [5], many-body localizations [6],
and spin caloritronics [7]. One outstanding issue is the concept
and proper definition of the temperature of a nonequilibrium
system. Most common is the local thermal equilibrium
approximation, assuming that spatially separated components
of a system thermalize with their immediate surroundings,
while the global state of the system is out of equilibrium.
The spatially distributed local temperature forms a spatial
field that gives a good impression of the nonequilibrium
dynamics of the full system. This approach, however, often
leads to contradictions: the kinetic temperature has been
found to differ from the entropic temperature [8]. This is
no issue in equilibrium systems, in which the temperature
is constant and all modes in momentum space share the same
temperature.

Recently, the (equilibrium) thermodynamic entropy has
been identified as a Noether invariant associated with an in-
finitesimal nonuniform time translation [9]. In nonequilibrium
systems, however, the translational symmetry is broken, so the
entropy appears to be not well defined either.

In this work, we propose the principle of energy repartition
in nonequilibrium systems. It provides partial answers to these
fundamental questions by enabling us to define a spectral
(mode-dependent) temperature [10]. We illustrate the principle
for magnons in a classical Heisenberg spin chain connected to
Langevin heat reservoirs with arbitrary temperature profiles.
We analytically solve the non-Markovian Landau-Lifshitz-
Miyazaki-Seki (LLMS) equation [11] [Eq. (1) below], and find
that the steady-state nonequilibrium properties are governed
by a set of normal-mode temperatures that depend on the
bath temperature profile, the boundary conditions, and the
ratio between the field gradient and the exchange coupling
between spins. We show that gradients of external magnetic
fields localize spin waves in the Wannier-Zeeman fashion,
while weak many-body interactions (nonlinearities) lead to a
mode-temperature renormalization. The LLMS equation en-
compasses all standard equations for classical spin dynamics,
reducing to the (stochastic) Landau-Lifshitz-Gilbert (LLG)
equation [12–15] and the Bloch equation [16] in respective
limits. Our generic results should be widely applicable to
describe the semiclassical dynamics of other thermodynamic
systems such as Newtonian liquids, elastic solids, and Joseph-
son junctions.

This paper is organized as follows. In Sec. II, the theoretical
model is presented. Section III gives the results and discus-
sions: we derive the the analytical solution of non-Markovian
spin waves and propose the principle of energy repartition
in Sec. III A; the temperature and chemical potential of
nonequilibrium magnons are calculated in Sec. III B; spin
pumping and spin Seebeck effects are analyzed in Sec. III C;
Wannier-Zeeman localization due to inhomogeneous magnetic
fields and its effect on magnon transport are predicted in
Sec. III D; magnon-magnon interactions are perturbatively
treated in Sec. III E. Section IV is the summary.

II. MODEL

We consider a classical monatomic spin chain along the x

direction, consisting of N + 1 local magnetic moments �Sn =
S�sn, where the unit vector �sn is the local spin direction, S

the total spin per site, and n = 0,1, . . . ,N . Each spin is in
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FIG. 1. Schematic of a monatomic spin chain consisting of N + 1
local magnetic moments �sn coupled with external Langevin bath at
temperature Tn, respectively, with n = 0,1, . . . ,N.

contact with a local Langevin bath at temperature Tn, as shown
in Fig. 1. Long wave-length excitations of complex magnets
such as yttrium iron garnet (YIG) can be treated by such a
model by coarse graining, i.e., letting each spin represents the
magnetization of a unit cell. Artificially fabricated exchange-
coupled atomic spins on a substrate [17] is another physical
realization of this model. The magnetization dynamics can
be described by the so-called Landau-Lifshitz-Miyazaki-Seki
(LLMS) equations [11]:

d�sn

dt
= −�sn × ( �Heff + �hn),

d �hn

dt
= − 1

τc

(�hn − χ�sn) + �Rn,

(1)
where �hn is the fluctuating magnetic field, �Heff = �Hn +
Dsz

n�z + J (�sn−1 + �sn+1) + �Hd is the effective field consisting
of the external magnetic field �Hn and uniaxial anisotropy
field with constant D along the same (here z) direction, and
the exchange constant J initially taken to be ferromagnetic,
i.e., J > 0. �Hd is caused by long-range dipolar fields, but
is disregarded in the following. �Rn is the random force with
zero average and a time-correlation function that satisfies the
fluctuation-dissipation theorem (FDT) [18]:〈

Ri
n(t)Rj

n′(t ′)
〉 = (2χkBTn/τc)δnn′δij δ(t − t ′), (2)

where i,j = x,y,z, the parameter χ describes the spin-bath
coupling, and τc is the relaxation time. In the following, Hn,
D, J , Hd , hn, and kBTn are all measured in hertz. Equation (1)
has been very successful in atomistic simulations of ultrafast
spin dynamics for constant bath temperatures [19] and can
be derived from microscopic spin-lattice or spin-electron cou-
plings [19,20]. Here we introduce a spatially inhomogeneous
thermal bath with arbitrary temperature profiles. We assume
statistical independence of neigboring baths, i.e., a correlation
length between reservoirs is shorter than the (course-grained)
lattice constant. By eliminating the fluctuating field �hn in
Eq. (1), we arrive at the following stochastic LLMS with
non-Markovian damping:

d�sn

dt
= −�sn × ( �Heff + �ηn) + χ�sn

×
∫ t

−∞
dt ′κ(t − t ′)

d�sn(t ′)
dt ′

, (3)

and a new stochastic field

�ηn =
∫ t

−∞
dt ′κ(t − t ′) �Rn(t ′), (4)

which is correlated as〈
ηi

n(t)ηj

n′(t ′)
〉 = χkBTnδnn′δij κ(|t − t ′|), (5)

with memory kernel κ(τ ) = exp (−τ/τc). Equation (3) is gen-
uinely non-Markovian and has been believed to be analytically
intractable [11,19]. Nevertheless, here we present an analytical
solution for non-Markovian spin waves, to the best of our
knowledge for the first time.

III. RESULTS AND DISCUSSIONS

A. Linear spin-wave theory

For small-angle dynamics �sn
.= �z + (sx

n �x + s
y
n �y) with

|sx,y
n | � 1 the stochastic LLMS equation reduces to

i
dψn

dt
+ χ

∫ t

−∞
dt ′κ(t − t ′)

dψn(t ′)
dt ′

= −
N∑

m=0

(JQnm + Hnδnm)ψm + ηn(t), (6)

for the complex scalar-fields ψn(t) = sx
n + is

y
n and ηn(t) =

ηx
n + iη

y
n, which are correlated as

〈η∗
n(t)ηn′(t ′)〉 = 2χkBTnδnn′δij κ(|t − t ′|), (7)

where ∗ is the complex conjugate. The extra factor 2 reflects
energy equipartition since ηn incorporates two degrees of
freedom. Q is a (N + 1) × (N + 1) symmetric quasiuniform
tridiagonal canonical matrix that does not depend on material
parameters (see Appendix A). In Hn = H + εn, ε models
external or anisotropy field gradients [21,22]. Since in general,
matrices Q and diag {Hn} cannot be diagonalized simulta-
neously, we introduce a new matrix Q̌ = Q + (ε/J )diag{n}
that satisfies JQnm + Hnδnm = JQ̌nm + Hδnm. We remove
the integral in Eq. (6) by taking the time-derivative

i
d2ψn

dt2
+

N∑
m=0

[
JQ̌nm + (

H + χ + iτ−1
c

)
δnm

]dψn

dt

= −τ−1
c

N∑
m=0

(JQ̌nm + Hδnm)ψm + Rn(t), (8)

where Rn(t) = Rx
n + iR

y
n is correlated as

〈R∗
n(t)Rn′(t ′)〉 = (4χkBTn/τc)δnn′δ(t − t ′). (9)

In the limit of τc → 0, the above equation reduces to the
Markovian LLG:

(i + α)
dψn

dt
= −

N∑
m=0

(JQ̆nm + Hδnm)ψm + ξn(t), (10)

with correlator

〈ξ ∗
n (t)ξn′(t ′)〉 = 4αkBTnδnn′δ(t − t ′) (11)

expressed in terms of the Gilbert damping constat α = χτc.

The mathematical structure is identical to that of fluctuating
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heat [23] and/or mass [24] transport and the widely studied
macroscopic fluctuation theory of fluids [25], where the
scalar field ψ represents temperature [23] or number density
fluctuations [24], while ξ (t) is the divergence of a heat or
particle current.

The symmetric tridiagonal matrix Q̌ can be diagonalized
by a linear transformation P −1Q̌P with an orthogonal matrix
P which solely depends on the ratio ε/J . This is equivalent
to an expansion of the field into normal magnon modes φk =∑N

n=0 P −1
kn ψn that obey

d2φk

dt2
+ νk

dφk

dt
− iωk

τc

φk = fk(t), (12)

where ωk = H + Jλk is the eigenfrequency of the kth mode,
λk is the kth eigenvalue of Q̌, and νk = τ−1

c − i(χ + ωk). The
structure of Eq. (12) is reminiscent of the thermal acoustic
wave equations [1] and the dynamic equations of fluctuating
superconducting Josephson junctions [26]. The boundary
conditions affect the dispersion relation ωk . The modes interact
via the transformed stochastic variable fk = −i

∑N
n=0 P −1

kn Rn

with nonlocal correlator

〈f ∗
k (t)fk′(t ′)〉 = (4χkBTkk′/τc)δ(t − t ′), (13)

introducing the temperature matrix

Tkk′ =
N∑

n=0

PnkPnk′Tn. (14)

T is diagonal in the absence of temperature gradients, i.e.,
when Tn = T ∀n.

We now show that the diagonal terms Tkk encode the
energy distribution over the different magnon modes in the
nonequilibrium steady state. The average energy of the k-th
magnon mode is Ek = ωk〈φ∗

k φk〉/2, where the expectation
value 〈· · · 〉 is taken over different realizations of the thermal
noise Rn(t) and 〈φ∗

k φk〉/2 is the magnon number. Equation (12)
can be solved exactly by introducing the Green function
corresponding to the left-hand side and integrating over the
noise source term:

φk(t) =
∫ t

−∞
dt ′

1

c1 − c2
[e−c2(t−t ′) − e−c1(t−t ′)]fk(t ′), (15)

with two complex numbers

c1,2 = (
νk ±

√
ν2

k + 4iτ−1
c ωk

)
/2. (16)

We thus arrive at the central result of this work that the energy
stored in mode k is nothing but the thermal energy as defined
by the diagonal elements of T :

Ek = kBTkk. (17)

The entropy of the nonequilibrium steady system then can
be expressed as S = −kB

∑
k pk ln pk, with the probability

distribution pk = 〈|φk|2〉/
∑

k′ 〈|φk′ |2〉. Interestingly, for ho-
mogeneous external magnetic fields, Tkk is parameter-free,
depending only on the bath temperature profile Tn and the
boundary conditions. A magnetic field gradient modifies the
mode temperature only via the ratio ε/J. The memory kernel
with relaxation time τc does not affect the repartition. Although
we consider an exponential memory kernel here, we envision

that the obtained energy repartition principle (17) should be
robust to the specific form of the kernels. The generalization
to two spins in the unit cell leads to acoustic and optical
magnon branches and can be used to study ferrimagnets and
antiferromagnets [27]. In the following, we limit ourselves
to the temperature distribution of nonequilibrium ferromag-
netic magnons. Off-diagonal terms Tkk′ (k �= k′) encode the
magnonic spin current, which can be obtained from the spin
continuity equation [28,29]

�jM,n = J �sn−1 × �sn,(0 < n ≤ N). (18)

Its dc component can be expanded into normal modes as

jz
M,n = J

∑
kk′

P(n−1)kPnk′ Im〈φ∗
k φk′ 〉, (19)

where Im denotes the imaginary part. The associated real
space magnon density distribution [30] ρM,n = 〈ψ∗

nψn〉/2
is conjugate to the magnon number in reciprocal space
〈φ∗

k φk〉/2. These quantities are expressed in terms of spectral
temperatures in Appendix A.

B. Temperature and chemical potential of nonequilibrium
magnons under uniform magnetic field

We first consider a simple case with a vanishing field
gradient (ε = 0). Under free boundaries (no pinning), we
derive (Appendix A)

Tkk =
{
T̄ , k = 0,

T̄ + ∑N
n=0

Tn

N+1 cos (2n+1)kπ

N+1 , k �= 0,
(20)

where T̄ = ∑N
n=0 Tn/(N + 1) is the average bath temperature.

The energy stored in mode k emerges as a correction to the
average temperature T̄ , but never exceeds ±T̄ . Tkk − T̄ is an
average over the bath temperature profile weighted by a cosine
function. We study the spectrally resolved temperature Tkk for
five different model baths, all with T0 = 300, TN = 350, and
N = 99 [see Fig. 2(a)] (in arbitrary temperature units): (i)
a linear temperature profile, i.e., Tn = T0 + (TN − T0)n/N ,
(ii) a quadratic profile, i.e., Tn = T0 + (TN − T0)(n/N )2, (iii)
a “subduplicate” profile, i.e., Tn = T0 + (TN − T0)

√
n/N , (iv)

a Sanders-Walton profile, i.e.,

Tn = T0 + TN − T0

N + 2μ sinh
(

N
ν

)
×

[
n + μ

(
sinh

2n − N

ν
+ sinh

N

ν

)]
(21)

with adjustable parameters μ and ν [31–33] chosen to be
μ = 1 and ν = 16, and (v) an asymmetric Heaviside step
function [34] at 10 + (N + 1)/2. While a linear and sinh
profiles can make physical sense being solutions of a simple
heat diffusion equation, arbitrary temperature profiles can be
engineered in terms of a string of heat sources such as Peltier
cells placed along the spin chain.

Figure 2(b) shows the resulting Tkk for free boundary
conditions. The magnon temperature does not deviate from
the average temperature T̄ for both the linear and the Sanders-
Walton profile. The correction terms in Eq. (14) vanish for all
temperature profiles that are odd around (N/2,T̄ ). For free
boundary conditions the equipartition at equilibrium persists
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FIG. 2. (a) Thermal bath temperature profiles chosen to study
the mode-resolved temperature of nonequilibrium magnons. (b)–(d)
Dependence of the temperatures of normal magnon modes φk on
boundary conditions: (b) both ends are free, (c) both ends are pinned,
and (d) the left end is pinned, while the right one is free. (e)
Temperature of k magnons under a asymmetric Heaviside temperature
distribution with free boundary conditions. The applied magnetic field
is uniform.

for temperature profiles with odd symmetry. For quadratic
(subduplicate) profiles, on the other hand, low- (high-) k

magnons are heated and high- (low-) k magnons cooled. In
general, pinning can reduce the magnon amplitude at the sam-
ple boundaries, which obviously affects transport. However,
boundary conditions also modify the energy repartition of
nonequilibrium magnons, as demonstrated in Fig. 2(c) for
fixed (pinned) boundary conditions (the analytical expression
of Tkk are given in Appendix A). Notably, long-wavelength
magnons are strongly affected by the boundary conditions,
which leads to the inverted temperature profile when magnons
are pinned and thereby do not sense the temperature at
the edges. Figure 2(d) shows Tkk as a function of k under
boundary conditions with a pinned left and a free right
terminals. Since the boundaries now break symmetry, even for
the antisymmetric profiles the magnon temperature becomes
distributed; the low-k magnons are getting hotter. We find
that a higher asymmetry of either the bath temperature profile
or the boundary condition leads to a smaller decay length in
the reciprocal space (k space). Figure 2(e) shows oscillations
of the mode-dependent temperatures for a nonsymmetric and
nonadiabatic thermal bath profile, i.e., with a Heaviside step
function displaced from the midpoint. Though calculated for
free boundary conditions this feature is robust with respect to
other choices.

For free boundary conditions and bath temperature profiles
with odd symmetry with respect to (N/2,T̄ ), all magnons share
the same temperature T̄ , cf. Eq. (20). One might therefore

FIG. 3. (a) Spatial distribution of thermally induced magnon
accumulations for different heat-bath profiles. Inset (upper-middle)
γn as function of system size N . Inset (lower-left corner) Zoom
of the accumulation for linear and Sanders-Walton bath profiles
at the sample center. (b) Magnon chemical potential distribution
for different heat baths. In (a) and (b), we set damping parameter
α = 0.001. (c) Magnon accumulation as a function of the damping
parameter for a linear heat-bath. In calculations, we consider free
boundary conditions at the edges and set H/J = 0.01.

naively conclude that the magnon distribution is then not
modified by the temperature gradient. However, the local
temperature differences between bath and magnon would
make the steady state unsustainable since we find a heat
current-induced magnon accumulation �ρM,n = ρM,n − γnT̄

with γn = ∑
k (Pnk)2kB/ωk (Appendix A). Figure 3(a) shows

the calculated spatial distribution �ρM,n for different heat
baths and free boundary conditions. For lattice temperatures
with odd symmetry, the magnon accumulation around the
center N/2 increases linearly with site n [the lower-left-corner
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inset of Fig. 3(a) zooms in on the details] with a slope
that depends on the shape of the temperature profile. The
magnon accumulation is distributed in space, in spite of
the uniform magnon temperature Tkk = T̄ ∀k at all sites n.

Therefore the magnon distribution cannot be parameterized
by temperature alone. The solution is provided by introducing
a distributed magnon chemical potential. A finite magnon
chemical potential is the precursor of the magnon Bose-
Einstein (or Rayleigh-Jeans) condensation that has been
observed in magnetic insulators parametrically pumped by
microwaves [20].

The semiclassical nonequilibrium distribution function of
magnons can be described by Bose-Einstein statistics,

fBE(k,n) = 1

exp
(ωk−μM,n

kBTkk

) − 1
, (22)

in phase space spanned by coordinate and momentum, which
in the high-temperature limit approaches the Rayleigh-Jeans
distribution fBE(k,n) → kBTkk/(ωk − μM,n). The magnon
chemical potential profile μM,n can therefore be determined
by equating

ρM,n =
∑

k

(Pnk)2 kBTkk

ωk − μM,n

, (23)

with 〈ψ∗
nψn〉/2.

The calculated μM,n for different heat baths under free
boundary conditions are shown in Fig. 3(b). At equilibrium
μM,n vanishes and the local magnon density is governed
by the magnon temperature only. For quadratic, subdupli-
cate, and Heaviside profiles, the magnon accumulation is
nonmonotonic. In a subduplicate bath, it first increases and
then decreases with n, opposite to the cases of quadratic
and Heaviside profiles. We therefore conclude that heat-
bath temperature profiles can strongly affect the magnon
accumulation. In Fig. 3(c), by tuning the damping parameter
α, we find that a larger dissipation causes a spatially steeper
magnon accumulation (a smaller diffusion length) under free
boundary conditions. Using other boundary conditions does
not change the results qualitatively.

C. Spin pumping and spin Seebeck effects

Thermal spin currents can be detected by heavy normal
metal contacts that convert them into a transverse voltage by
the inverse spin Hall effect [35]. We can model this situation
by contacting the spin chain either at the two ends or at some
intermediate site. The former configuration corresponds to the
“longitudinal” spin Seebeck effect [36–41], while the latter one
is referred to as “transverse” [35,42–46] or “nonlocal” [47].
The spin dynamics at the interface pumps a spin current into
the contact at site n given by

�js,n = g
↑↓
eff

�

4π
�sn × d�sn

dt
, (24)

where g
↑↓
eff is the effective spin-mixing conductance including

a back-flow correction [48] and/or spin-orbit coupling at the
interface [49]. Its averaged dc component reads

jz
s,n = −g

↑↓
eff

�

4π

∑
k,k′

Pn,kPn,k′ Im〈φ̇∗
k φk′ 〉. (25)

In the small dissipation/Markovian limit, the pumped dc spin
current can be expressed as

jz
s,n = 2�g

↑↓
eff

π (1 + α2)

∑
kk′

PnkPnk′kB(Tkk′ − Teδkk′)G(α,ωk,ωk′),

(26)
where

G = α2ωkωk′

α2(ωk + ωk′)2 + (ωk − ωk′)2 . (27)

Experimentally, this spin current can be detected by the inverse
spin Hall voltage in attached heavy metal contacts. Here we
include the Johnson-Nyquist noise generated in the metal
that is proportional to the electron temperature Te, usually
assumed to be in equilibrium with its phonon temperature.
Disregarding the Kapitza interface heat resistance, the phonon
temperature is continuous over the interface and Te = Tn.
For small damping, α � 10−5 in YIG, the cross correlations
between modes become unimportant and

jz
s,n � g

↑↓
eff

�

2π

∑
k

(Pnk)2kB(Tkk − Te), (28)

as found in conventional spin Seebeck theory [32] for uniform
magnon temperature Tkk = Tm ∀k. According to this theory,
the spin Seebeck effect vanishes when magnon and electron
temperatures are the same. However, the full Eq. (26) reveals
the limitations of this approximation: the off-diagonal terms
generate an SSE even in the absence of a temperature
difference between magnons and electrons. Figure 4 shows
the spatial distribution of the pumped spin current (26) for
Te = T̄ , i.e., the contribution to the SSE driven by the chemical
potential alone, for different bath temperature profiles and
mixed boundary conditions. The details of the bath profile
strongly affect the distribution and magnitude of the spin
current and spin Seebeck effect.

FIG. 4. Spin Seebeck spin current (in units of �g
↑↓
eff kBT̄ /π ) in a

metal contact attached to site n for different heat-bath profiles and
mixed boundary conditions. Parameters used in the calculations are
α = 0.001 and H/J = 0.01.
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D. Wannier-Zeeman localization

It follows from Eq. (6) that magnetic field gradients act on
magnons like electric fields act on electrons. Sufficiently strong
electric potential gradients in crystals can cause Wannier-
Stark electron localization [50]. We may therefore expect an
analogous Wannier-Zeeman magnon localization in strongly
inhomogeneous magnetic fields, which may modify the mode
temperature of magnons. The matrix Q̌ generally can in that
limit not be diagonalized analytically anymore, but small or
a large magnetic-field gradient can be treated perturbatively.
In the limit of large magnetic field gradients |ε/J | � 1
and free boundary conditions: ω0 = H + J, ωN = H + J +
εN, ωk = H + 2J + εk for 0 < k < N, and Pnk = δnk. The
spectrum then becomes a Wannier-Zeeman ladder. The tem-
perature matrix Tkk′ = δkk′Tk is then diagonal even at nonequi-
librium, i.e., the localization length is of the order of the lattice
constant. The magnon density becomes ρM,n = kBTn/ωn,

thereby recovering the classical Rayleigh-Jeans distribution
with zero chemical potential, i.e., local thermal equilibrium.
Strong magnon localizations renders the spin chain insulating
since jz

M,n = 0. In the limit of small damping, the pumped

spin current becomes jz
s,n = g

↑↓
eff (�/2π )kB(Tn − Te); the spin

Seebeck effect becomes local and vanishes when electrons on
the metal side of the contact are at the same temperature as the
thermal bath (phonons) on the magnetic side.

Numerical calculations describe the transition from ex-
tended Bloch states for small field-gradients to localized
Wannier-Zeeman ladder states under large magnetic field
gradients (referring to Appendix A for details and figures). The
localization length L = 1/

∑N
n=0 (Pnk)4 (in units of the lattice

constant) shrinks with increasing gradient, down to unity in
the limit of high field-gradients. The localized magnon states
shift from the low- to the high-field region with increasing
energy. For a long chain (N → ∞), we find an asymptotic
L ∼ −1/[(ε/J ) ln (ε/J )] for ε/J → 0. Magnon localization
suppresses the transverse or nonlocal spin Seebeck effect.
However, most experiments are carried out on YIG films
with very small anisotropy, which makes observation difficult.
On the other hand, strong perpendicular anisotropies can be
induced by alloying and doping (but preserving high magnetic
quality) [51–53]. In (YBi)3(FeGa)5O12, this is reflected by
domain wall widths of 8–11 lattice constants [54]. The material
parameters at low temperatures are [54–56] an exchange
coupling J = 1.29 K and crystalline magnetic anisotropy
D = 0.3 K, and lattice constant a = 1.24 nm. An upper
bound for the field gradient generated by a position dependent
magnetic anisotropy in a temperature gradient can be obtained
assuming its low temperature value on the cold side and a
vanishing one at the hot side, or ε = (D/l)a = 4 × 10−7 K and
ε/J = 3 × 10−7. This leads to a magnon localization length
L = −1/[(ε/J ) ln (ε/J )] × a = 0.3 mm. When the magnons
are localized on the scale of the metal contact widths (typically,
0.1 mm, see, e.g., Ref. [46], and references therein) we predict a
suppressed spin Seebeck signal. Magnon localization can also
be induced by applying magnetic field gradients, for example,
by the stray fields of proximity ferromagnets or by the Oersted
fields due to current-carrying wires close to the magnon
conduits. Magnetic write heads generate local field gradients

of up to 20 MT/m. Analogous to electronic Wannier-Stark
localizations in semiconductor superlattices [57], magnonic
crystals with tunable lattice periods can display magnon lo-
calization at possibly much weaker inhomogeneous magnetic
fields.

E. Magnon-magnon interactions

The results above assume the presence of magnon-phonon
thermalization, but absence of magnon-magnon interactions
that modify the equations of motion for higher magnon
densities. Anisotropy-mediated magnon interactions dominate
in the long-wave lengths regime considered here [58–60].
Adopting the Markov approximation and to leading order in the
magnon density, we arrive at a dissipative discrete nonlinear
Schrödinger (DNLS) equation with stochastic sources and a
local interaction,

(i + α)
dψn

dt
= −

N∑
m=0

[JQ̆nm+(H − ν|ψm|2)δnm]ψm + ξn(t),

(29)
where ν is the interaction strength governed by the anisotropy
constant D but treated here as a free parameter. For ν =
0, eigenstates are affected by magnetic field gradients ε,

as discussed above. The mode frequency splitting �ω ∼
min [J (λk+1 − λk)], while for large ε, �ω ∼ ε. The non-
linearity in Eq. (29) for the uniaxial anisotropy considered
(D,ν > 0) corresponds to an attractive interaction and a
frequency redshift δωn ∼ ν|ψn|2. The interaction is assumed
short range, which is allowed when dipolar coupling between
spins is small in our coarse grained model. We may then
expect three qualitatively different regimes: (i) |ν| < �ω;
(ii) �ω < |ν| < �; and (iii) � < |ν|, where the bandwidth
� = ωN − ω0. In case (i), the local frequency shift is smaller
than the spacing �ω. Therefore the long-time dynamics is not
modified from the limit ν = 0. For (ii), nonlinearities become
important since the mode frequencies overlap. In the limit (iii),
the interaction is stronger than the noninteracting bandwidth,
drastically transforming the spectrum. Discrete bound states
may develop at the band edges, leading to interaction induced
self-trapping [26].

We may expand (29) into normal modes as before to obtain

(i + α)
dφk

dt
= −ωkφk + ν

∑
k1,k2,k3

Ik,k1,k2,k3φ
∗
k1

φk2φk3 + ζk(t),

(30)
where the matrix elements

Ik,k1,k2,k3 =
∑

n

PnkPnk1Pnk2Pnk3 (31)

describe four-magnon scattering events and the stochastic
variables are correlated as

〈ζ ∗
k (t)ζk′(t ′)〉 = 4αkBTkk′δ(t − t ′). (32)

For arbitrary field gradients, we obtain the analytical formula
of the nonlinearity correction to the energy repartition up to
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the first order of ν as follows (Appendix B):

kBT ′
kk = kBTkk + 16ν

∑
k1,k2,k3

Ik,k1,k2,k3

α2(kBTkk3 )(kBTk1k2 )[(−3 + α2)ωkωk1 + (1 + α2)(ωkωk2 + ωk1ωk3 + ωk2ωk3 )]

[(ωk1 − ωk2 )2 + α2(ωk1 + ωk2 )2][(ωk − ωk3 )2 + α2(ωk + ωk3 )2]
, (33)

where we introduce the renormalized thermal energy kBT ′
kk =

ωk〈φ∗
k φk〉/2. It reduces to T ′

kk = (1 + �)Tkk in the strongly
localized limit in leading order of the small parameter
� = 4νkBTkk/ω

2
k . The interaction generates a redshift of the

spectrum and corresponding higher thermal occupation, as
confirmed by numerical simulations for few-spin systems
(Appendixes C, D, and E) for both strong and relatively
weak localizations. The nonlinearity is therefore acting like an
additional heat source leading to mode-dependent corrections
to the temperature that are observable in the spin Seebeck
effect, e.g., by tuning the anisotropy while keeping other
material parameters approximately constant.

IV. SUMMARY

To conclude, we report here a principle of energy repartition
for nonequilibrium system. We illustrate the general principle
at the hand of analytical solutions of the non-Markovian
Landau-Lifshitz-Miyazaki-Seki equations. We find that fluc-
tuations are governed by a set of normal-mode temperatures
without strong effect of the non-Markovian memory kernel.
The mode temperatures strongly depend on the temperature
profile of the heat bath and the boundary conditions, while the
nonequilibrium magnon density distribution can be described
only by introducing a chemical potential. Gradients of mag-
netic fields cause Wannier-Zeeman magnon localization that
should be observable in the transverse or nonlocal spin Seebeck
effect on magnetic insulators with strong magnetocrystalline
anisotropies such as (YBi)3(FeGa)5O12. Magnon-magnon
interactions can to leading order be captured by increased
mode temperatures. Our generic results shed light on the
fundamental concept of temperature and are applicable to
many disciplines beyond spintronics.
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APPENDIX A: SYMMETRIC TRIDIAGONAL MATRIX Q̌

Here we consider the effect of boundary conditions on the
canonical (N + 1) × (N + 1) matrix Q̌ = Q + (ε/J )diag{n}
for the n = 0,1,2, . . . ,N spin chain with nearest-neighbor
exchange coupling J . Q is diagonalized by a matrix P, i.e.,
P −1Q̌P = diag{λk}, which must be orthogonal: P −1 = P T.

We first consider the case of homogeneous magnetic fields
(ε = 0, so Q̌ = Q) for different boundary conditions.

Case I. For free boundaries at the ends,

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 0 · · · 0

−1 2 −1 0
...

0 −1 2 −1
. . .

. . .
. . .

−1 2 −1 0
... −1 2 −1

0 · · · 0 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A1)

has eigenvalues

λk = 2

(
1 − cos

kπ

N + 1

)
, (A2)

with k = 0,1,2, . . . ,N and eigenvectors

vk =
[

cos
kπ

2(N + 1)
, cos

3kπ

2(N + 1)
, . . . , cos

(2N + 1)kπ

2(N + 1)

]T

(A3)

that can be normalized as

uk =
{ 1√

N+1
vk, k = 0√

2
N+1 vk, k �= 0

, (A4)

leading to the orthogonal matrix P ,

Pnk =
{ 1√

N+1
, k = 0√

2
N+1 cos (2n+1)kπ

2(N+1) , k �= 0
. (A5)

The temperature matrix defined as

Tkk′ =
N∑

n=0

PnkPnk′Tn (A6)

has diagonal elements

Tkk =
{

T̄ , k = 0

T̄
[
1 +

∑N
n=0 Tn cos (2n+1)kπ

N+1∑N
n=0 Tn

]
, k �= 0

, (A7)

with T̄ = ∑N
n=0 Tn/(N + 1). At equilibrium, we recover

Tkk = T̄ ∀k, since
∑N

n=0 cos (2n+1)kπ

N+1 = 0 and Tn = T̄ ∀n.

In the limit of very small Gilbert damping, e.g., α � 10−5

in YIG, the magnon density can be approximated as ρM,n �∑
k (Pnk)2kBTkk/ωk , which becomes exact for constant tem-

peratures. f (ω,T ) = kBT /(�ω) is the Rayleigh-Jeans distri-
bution function and (Pnk)2 the probability to find a k-magnon
at site n. At equilibrium, i.e., Tn ≡ T ∀n, all magnons
share the temperature of the heat bath (Tkk′ = T δkk′) and
ρM,n = γnT with γn = ∑

k (Pnk)2kB/ωk. This agrees with the
low-temperature expansion of the Watson-Blume-Vineyard
formula by introducing γn ≡ βn/Tc with the Curie temperature
Tc. We thereby derive expressions for a site-dependent critical
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exponent βn. γn becomes a constant in the thermodynamic
limit (N → ∞) as shown in the upper-middle inset of Fig. 3(a).
In the present 1D model, we have

γn

kB/J
= 1

N + 1

1

x
+ 1

π

N∑
k=0

1 + cos (2n+1)kπ

N+1

x + 2
(
1 − cos kπ

N+1

) π

N + 1
,

(A8)
where x = H/J. Its thermodynamic limit is

lim
N→∞

γn

kB/J
= 1

π

∫ π

0

1

x + 2(1 − cos y)
dy

= 1√
x(4 + x)

. (A9)

We therefore obtain limN→∞ γn = kB/
√

H (H + 4J ).
Case II. For fixed (pinned) boundaries at the two ends, the

number of spins is effectively reduced to N − 1 and

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 · · · 0

−1 2 −1
...

0 −1 2 −1
. . .

. . .
. . .

−1 2 −1
... −1 2 −1

0 · · · −1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A10)

has eigenvalues

λk = 2

(
1 − cos

kπ

N

)
, (A11)

with k = 1,2, . . . ,N − 1, and eigenvectors

vk =
[

sin
kπ

N
, sin

2kπ

N
, . . . , sin

(N − 1)kπ

N

]T

, (A12)

normalized as

uk =
√

2

N
vk, (A13)

and the matrix elements of P

Pnk =
√

2

N
sin

nkπ

N
, n = 1,2, . . . ,N − 1. (A14)

Now

Tkk = N − 1

N
T̄

[
1 −

∑N−1
n=1 Tn cos 2nkπ

N∑N−1
n=1 Tn

]
,

k = 1,2, . . . ,N − 1, (A15)

with T̄ = ∑N−1
n=1 Tn/(N − 1). Since

∑N−1
n=1 cos 2nkπ

N
= −1, we

again recover Tkk = T̄ ∀k at equilibrium.
Case III. For fixed amplitude at site n = 0 and free

amplitude at site n = N, the number of spins is N . The N × N

matrix

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 · · · 0

−1 2 −1 0
...

0 −1 2 −1
. . .

. . .
. . .

−1 2 −1 0
... −1 2 −1
0 · · · 0 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A16)

has eigenvalues

λk = 2

(
1 − cos

2k − 1

2N + 1
π

)
, k = 1,2, . . . ,N, (A17)

with k = 1,2, . . . ,N, and eigenvectors

vk=
[

sin
2k − 1

2N + 1
π, sin

2(2k − 1)

2N + 1
π, . . . , sin

N (2k − 1)

2N + 1
π

]T

(A18)

that can be normalized as uk = 2vk/
√

2N + 1 and matrix
elements

Pnk = 2√
2N + 1

sin
n(2k − 1)

2N + 1
π, n = 1,2, . . . ,N. (A19)

Now

Tkk = 2N

2N + 1
T̄

[
1 −

∑N
n=1 Tn cos 2n(2k−1)

2N+1 π∑N
n=1 Tn

]
,

k = 1,2, . . . ,N, (A20)

with T̄ = ∑N
n=1 Tn/N. In this case,

∑N
n=1 cos 2n(2k−1)

2N+1 π =
−1/2, and again we recover Tkk = T̄ ∀k at equilibrium.

In the presence of finite field gradients, the matrix Q̌

generally cannot be diagonalized analytically. Here, we are
interested in the limit of large magnetic field gradients, i.e.,
|ε/J | � 1. With free boundary conditions, we obtain by
perturbation theory

λ0 = 1, k = 0,

λk = 2 + ε

J
k, 1 ≤ k ≤ N − 1, (A21)

λN = 1 + ε

J
N, k = N,

and

P = I(N+1)×(N+1) or Pnk = δnk. (A22)

Correspondingly, the eigenfrequency of the kth mode is

ω0 = H + J, k = 0,

ωk = H + 2J + εk, 1 ≤ k ≤ N − 1, (A23)

ωN = H + J + εN. k = N.

The spectrum is no longer a trigonometric function of wave
number but forms a Wannier-Zeeman ladder. The temperature
matrix

Tkk′ =
N∑

n=0

PnkPnk′Tn =
N∑

n=0

δnkδnk′Tn = δkk′Tk (A24)
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FIG. 5. Magnon dispersion and wave functions without field gradients.

is now diagonal. The mangons are now Wannier-Zeeman
localized to the unit cell rendering the spin chain insulating
for spin and energy currents. This can be illustrated in small
damping/Markovian limit with magnonic spin current

jz
M,n = J

∑
k �=k′

PnkP(n−1)k′kBTkk′F(α,ωk,ωk′), (A25)

whereF = 4α(ωk − ωk′)/[α2(ωk + ωk′)2 + (ωk − ωk′)2] is an
antisymmetric Lorentzian that vanishes for a diagonal temper-
ature matrix. The associated magnon density

ρM,n = 1

2
〈ψ∗

nψn〉 = kBTn

ωn

(A26)

indicates local equilibrium.
In the following, we present numerical calculations for

different field gradients in order to illustrate the transition
from propagation Bloch to localized Wannier-Zeeman states
by increasing ε. Here, we adopt J = 1, H = 0 (its value
only shifts the magnon band gap) and consider free boundary
conditions.

Figure 5 shows the results without field gradients. The
magnon dispersion is a cosine function. The magnon wave
functions are spreading Bloch states.

Figure 6 shows the results at ε = 0.1. The magnon
dispersion is starting to deviate from the cosine function. The
magnon wave functions are localized.

Figure 7 shows the results at ε = 1. The magnon disper-
sion becomes linear. The magnon wave functions are more
localized.

Figure 8 shows the results at ε = 10. The magnon dis-
persion is linear with strongly localized wave functions. The
localization length is close to a lattice constant. Figures 6–8
show that in the valleys of an inhomogeneous magnetic
field distribution only low-energy magnons contribute, since
high-energy magnons are localized to the hills. The case is
opposite in the high-field side that only high-energy magnons
contribute, since low-energy magnons are localized in the
low-field side.

The magnon localization length

L(ε/J ) = 1∑N
n=0 (Pnk)4

. (A27)

is plotted in Fig. 9 as a function of the field gradient.
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FIG. 6. Magnon dispersion and wave functions with a field gradient ε = 0.1.

APPENDIX B: PERTURBATION THEORY

In this section, we present a perturbative solution of the
stochastic nonlinear equation including the interaction term ν

for arbitrary field gradients. We expand the normal modes as

φk(t) = φk,0(t) + νφk,1(t) + ν2φk,2(t) + · · · , (B1)

and

φ̇k(t) = φ̇k,0(t) + νφ̇k,1(t) + ν2φ̇k,2(t) + · · · . (B2)

Keeping only first-order terms,

(i + α)(φ̇k,0 + νφ̇k,1)

= −ωk(φk,0 + νφk,1)

+ν
∑

k1,k2,k3

Ik,k1,k2,k3φ
∗
k1,0φk2,0φk3,0 + ζk(t).

We therefore obtain

zero order: (i + α)φ̇k,0 = −ωkφk,0 + ζk(t), (B3)

first order: (i + α)φ̇k,1 = −ωkφk,1

+
∑

k1,k2,k3

Ik,k1,k2,k3φ
∗
k1,0φk2,0φk3,0.

(B4)

The stationary solution of the zero-order equation is

φk,0(t) = 1

i + α

∫ t

−∞
dt ′ exp

[
− ωk

i + α
(t − t ′)

]
ζk

(
t ′
)
, (B5)

and that for the first-order one is

φk,1(t) = 1

i + α

∫ t

−∞
dt ′ exp

[
− ωk

i + α
(t − t ′)

]

×
∑

k1,k2,k3

Ik,k1,k2,k3φ
∗
k1,0(t ′)φk2,0(t ′)φk3,0(t ′). (B6)

The quantity we aim to evaluate is
ωk

2
〈φ∗

k (t)φk(t)〉 = ωk

2
〈φ∗

k,0(t)φk,0(t)〉
+νωk Re〈φ∗

k,0(t)φk,1(t)〉. (B7)
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FIG. 7. Magnon dispersion and wave functions with a field gradient ε = 1.

The first term in the right-hand side of the above equation is simply kBTkk, while the second term is

〈φ∗
k,0(t)φk,1(t)〉 = 1

i + α

∫ t

−∞
dt ′ exp

[
− ωk

i + α
(t − t ′)

] ∑
k1,k2,k3

Ik,k1,k2,k3〈φ∗
k1,0(t ′)φk2,0(t ′)φk3,0(t ′)φ∗

k,0(t)〉,

where the correlation is

〈φ∗
k1,0(t ′)φk2,0(t ′)φk3,0(t ′)φ∗

k,0(t)〉 = 1

(1 + α2)2

∫ t ′

−∞
dt ′′

∫ t ′

−∞
dt ′′′

∫ t ′

−∞
dt ′′′′

∫ t

−∞
dt ′′′′′ exp

[
− ωk1

−i + α
(t ′ − t ′′) − ωk2

i + α
(t ′ − t ′′′)

− ωk3

i + α
(t ′ − t ′′′′) − ωk

−i + α
(t − t ′′′′′)

]
〈ζ ∗

k1
(t ′′)ζk2 (t ′′′)ζk3 (t ′′′′)ζ ∗

k (t ′′′′′)〉.

By Isserlis’ (or Wick’s) theorem, we have

〈ζ ∗
k1

(t ′′)ζk2 (t ′′′)ζk3 (t ′′′′)ζ ∗
k (t ′′′′′)〉 = 〈ζ ∗

k1
(t ′′)ζk2 (t ′′′)〉〈ζk3 (t ′′′′)ζ ∗

k (t ′′′′′)〉 + 〈ζ ∗
k1

(t ′′)ζk3 (t ′′′′)〉〈ζk2 (t ′′′)ζ ∗
k (t ′′′′′)〉

= (4αkB)2[Tkk3Tk1k2δ(t ′′ − t ′′′)δ(t ′′′′ − t ′′′′′) + Tkk2Tk1k3δ(t ′′ − t ′′′′)δ(t ′′′ − t ′′′′′)],

where we only keep the nonzero terms. After straightforward substitutions,

〈φ∗
k,0(t)φk,1(t)〉 = (4αkB)2(−i + α)

αωk

∑
k1,k2,k3

Ik,k1,k2,k3

Tkk3Tk1k2

[ωk1 (i + α) + ωk2 (−i + α)][ωk(i + α) + ωk3 (−i + α)]
.
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FIG. 8. Magnon dispersion and wave functions with a field gradient ε = 10.

The perturbative mode temperature (B7) is thus given by

ωk

2
〈φ∗

k (t)φk(t)〉 = kBTkk + 16ν
∑

k1,k2,k3

Ik,k1,k2,k3

α2(kBTkk3 )(kBTk1k2 )[(−3 + α2)ωkωk1 + (1 + α2)(ωkωk2 + ωk1ωk3 + ωk2ωk3 )]

[(ωk1 − ωk2 )2 + α2(ωk1 + ωk2 )2][(ωk − ωk3 )2 + α2(ωk + ωk3 )2]
.

(B8)

In the limit of a very strong Wannier-Zeeman localization, i.e.,
Pnk = δnk,Pnk1 = δnk1 ,Pnk2 = δnk2 , and Pnk3 = δnk3 ,

Ik,k1,k2,k3 =
∑

n

PnkPnk1Pnk2Pnk3 = δkk1δkk2δkk3, (B9)

which implies absence of mode coupling. The above mode
temperature (B8) is then modified to

ωk

2
〈φ∗

k (t)φk(t)〉 = kBTkk

(
1 + 4νkBTkk

ω2
k

)
.

In the limit of a very weak Gilbert damping, only the trivial
resonance terms, i.e., ωk = ωk3 and ωk1 = ωk2 , in Eq. (B8)

survive. We thus have

ωk

2
〈φ∗

k (t)φk(t)〉 = kBTkk + 4ν
∑
k1

Ik,k1,k1,k

(kBTkk)
(
kBTk1k1

)
ωkωk1

.

Higher-order perturbation calculations are straightforward if
necessary.

APPENDIX C: SPIN MONOMER

We implement numerical calculations for a single spin
(spin monomer) in contact with a thermal bath corresponding
to either an isolated classical atomic moment or a strongly
localized normal mode in k space. The equation of motion
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FIG. 9. Localization length L as a function of the field gradient
ε/J .

including the magnon interaction is simplified to

(i + α)
dφ

dt
= −ωφ + ν|φ|2φ + ζ (t), (C1)

where we omitted subscripts. Here, the source term ζ (t) =
ξ1(t) + iξ2(t) is the complex noise defined in the main text,
with two real-valued Gaussian white noise sources (Wiener
process) ξ1(t) and ξ2(t).

Figure 10 shows the dynamics of the function ωφ∗(t)φ(t)/2.

We simulate 2 × 106 steps with a time step 0.01 for the
time evolution. In numerical calculations, we use parameters
ω = kB = α = 1,T = 1, and ν = −0.5. The Ito interpretation
is adopted when integrating the above stochastic differential
equation.

The time average of ωφ∗(t)φ(t)/2 represents the tempera-
ture of the (single) normal mode. Numerical simulations for
every ν are repeated 20 times in order to suppress the statistical
error (Fig. 10 is just one of them at ν = −0.5). Figure 11
shows the renormalized temperature of the normal mode as a
function of the nonlinearity strength ν. It demonstrates that an
increasing nonlinearity increases the temperature of the mode.
In the regime of weak nonlinearity (|ν| ≤ 0.02), the numerical
results compare very well with the analytical formula.

FIG. 10. Time evolution of function ωφ∗(t)φ(t)/2 in a spin
monomer driven by a stochastic white noise.

FIG. 11. Renormalization of mode temperature in a spin
monomer, tuned by the strength of nonlinearity ν.

APPENDIX D: SPIN DIMER

We implement numerical calculations on a spin dimer
model contacting with two thermal baths with different
temperatures. Under free boundary conditions, the 2 × 2
matrix Q̌ is

Q̌ =
(

1 −1
−1 1 + ε/J

)
. (D1)

In the following, we set J = 1. The corresponding diagonal
matrix

P =
⎛
⎝ ε+√

4+ε2

2
√

1+ 1
4 (ε+√

4+ε2)2

ε−√
4+ε2

2
√

1+ 1
4 (ε−√

4+ε2)2

1√
1+ 1

4 (ε+√
4+ε2)2

1√
1+ 1

4 (ε−√
4+ε2)2

⎞
⎠ (D2)

has the eigenvalues

ω0 = H + 2 + ε − √
4 + ε2

2
, (D3)

ω1 = H + 2 + ε + √
4 + ε2

2
. (D4)

For ε = 1, the equations of motions for the normal modes in
the main text become

(i + α)
dφ0

dt
= −ω0φ0 + ν(−0.2|φ0|2φ0 + 0.8|φ0|2φ1

+ 0.2φ∗
0φ2

1 + 0.4φ2
0φ

∗
1 + 0.4φ0|φ1|2

+ 0.6|φ1|2φ1) + ζ0(t), (D5)

(i + α)
dφ1

dt
= −ω1φ1 + ν(0.6|φ0|2φ0 − 0.4|φ0|2φ1

+ 0.4φ∗
0φ2

1 − 0.2φ2
0φ

∗
1 + 0.8φ0|φ1|2

+ 0.2|φ1|2φ1) + ζ1(t), (D6)
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FIG. 12. Time evolution of function ωkφ
∗
k (t)φk(t)/2 for the two

normal modes (k = 0 and k = 1) in a spin dimmer.

with

ζ0(t) = −0.850651ξ0(t) − 0.525731ξ1(t), (D7)

ζ1(t) = −0.525731ξ0(t) + 0.850651ξ1(t), (D8)

in which source terms ξ0(t) = ξ01(t) + iξ02(t) and ξ1(t) =
ξ11(t) + iξ12(t) with Gaussian white noises (Wiener process)
ξ01(t),ξ02(t),ξ11(t), and ξ12(t).

Figure 12 shows the dynamics of function ωkφ
∗
k (t)φk(t)/2

for k = 0 and 1. We simulate 2 × 106 steps with a time
step 0.01 for the time evolution. The parameters used in the
numerical calculations are H = ε = J = kB = α = 1, T1 =
2T0 = 2, and ν = −0.6. Ito interpretation is adopted to
integrate the above stochastic differential equations.

The time-average of ωkφ
∗
k (t)φk(t)/2 represents the temper-

ature of the normal mode. Numerical simulations for every
ν are repeated 20 times (Fig. 12 is just one of them when
ν = −0.6). Figure 13 shows the renormalized temperatures
of normal modes as a function of the nonlinearity strength ν.
It demonstrates that an increasing nonlinearity increases the
temperature of all modes.

FIG. 13. Renormalization of mode temperatures in a spin dimer,
tuned by the strength of nonlinearity ν. T00 and T11 represent the
temperatures of normal modes for k = 0 and k = 1, respectively,
without nonlinearity.

APPENDIX E: SPIN TRIMER

Numerical calculations of a spin trimer model are presented
here. Under free boundary conditions, the 3 × 3 matrix Q̌ is

Q̌ =
⎛
⎝ 1 −1 0

−1 2 + ε −1
0 −1 1 + 2ε

⎞
⎠, (E1)

where we assume J = 1. Because the analytical form of
the eigenvalues and eigenvector of the above matrix is too
complicated, we assign a specific number to ε, e.g., ε = 0.5.

The corresponding diagonal matrix then reads

P =
⎛
⎝−0.313433 −0.516706 0.796727

0.796727 0.313433 0.516706
−0.516706 0.796727 0.313433

⎞
⎠,

and the eigenvalues of three normal modes are

ω0 = H + 0.351465, (E2)

ω1 = H + 1.6066, (E3)

ω2 = H + 3.54194. (E4)

In the following numerical calculations, we use parameters
H = kB = α = 1, T0 = 1, T1 = 2, and T2 = 3. The three
eigenfrequencies are then ω0 = 1.351465, ω1 = 2.6066, and
ω2 = 4.54194. The equations of motions for normal modes
become

(i + α)
dφ0

dt
= − ω0φ0+ν

(
0.193548|φ0|2φ0+0.516129|φ0|2φ2

− 0.0645161φ∗
0φ2

2 + 0.258065|φ0|2φ1

+ 0.258065φ∗
0φ1φ2 − 0.129032φ∗

0φ2
1

+ 0.258065φ2
0φ

∗
2 − 0.129032φ0|φ2|2

+ 0.483871|φ2|2φ2 + 0.258065φ0φ1φ
∗
2

− 0.387097φ1|φ2|2 + 0.258065φ2
1φ

∗
2

+ 0.129032φ2
0φ

∗
1 + 0.258065φ0φ

∗
1φ2

− 0.193548φ∗
1φ2

2 − 0.258065φ0|φ1|2

+ 0.516129|φ1|2φ2 + 0.0645161|φ1|2φ1
)

+ ζ0(t), (E5)

(i+α)
dφ1

dt
= − ω1φ1+ν

(
0.0645161|φ0|2φ0+0.258065|φ0|2φ2

+ 0.129032φ∗
0φ2

2 + 0.516129|φ0|2φ1

− 0.258065φ∗
0φ1φ2 − 0.193548φ∗

0φ2
1

+ 0.129032φ2
0φ

∗
2 + 0.258065φ0|φ2|2

− 0.193548|φ2|2φ2 − 0.258065φ0φ1φ
∗
2

+ 0.516129φ1|φ2|2 + 0.0645161φ2
1φ

∗
2

+ 0.258065φ2
0φ

∗
1 − 0.258065φ0φ

∗
1φ2

+ 0.258065φ∗
1φ2

2 − 0.387097φ0|φ1|2

+ 0.129032|φ1|2φ2 + 0.483871|φ1|2φ1
)

+ ζ1(t), (E6)
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FIG. 14. Time evolution of function ωkφ
∗
k (t)φk(t)/2 for the three

normal modes (k = 0, 1, and 2) in a spin trimmer. The nonlinearity
strength is ν = −0.5.

(i + α)
dφ2

dt
= − ω2φ2+ν

(
0.483871|φ0|2φ0

+ 0.387097|φ0|2φ2

+ 0.258065φ∗
0φ2

2 + 0.129032|φ0|2φ1

+ 0.258065φ∗
0φ1φ2 + 0.258065φ∗

0φ2
1

+ 0.193548φ2
0φ

∗
2 + 0.516129φ0|φ2|2

− 0.0645161|φ2|2φ2 + 0.258065φ0φ1φ
∗
2

+ 0.258065φ1|φ2|2 − 0.129032φ2
1φ

∗
2

+ 0.0645161φ2
0φ

∗
1 + 0.258065φ0φ

∗
1φ2

+ 0.129032φ∗
1φ2

2 + 0.516129φ0|φ1|2

− 0.258065|φ1|2φ2 − 0.193548|φ1|2φ1
)

+ ζ2(t), (E7)

with

ζ0(t) = 0.796727ξ0(t) + 0.516706ξ1(t) + 0.313433ξ2(t),

(E8)

FIG. 15. Renormalization of mode temperatures in a spin trimer,
tuned by the nonlinearity parameter ν. T00, T11, and T22 represent the
temperatures of normal modes for k = 0, 1, and k = 2, respectively,
without nonlinearity.

ζ1(t) = −0.516706ξ0(t) + 0.313433ξ1(t) + 0.796727ξ2(t),

(E9)

ζ2(t) =−0.313433ξ0(t) + 0.796727ξ1(t) − 0.516706ξ2(t),

(E10)

in which source terms ξ0(t) = ξ01(t) + iξ02(t), ξ1(t) =
ξ11(t) + iξ12(t), and ξ2(t) = ξ21(t) + iξ22(t) with Gaus-
sian white noises (Wiener process) ξ01(t), ξ02(t), ξ11(t),
ξ12(t), ξ21(t), and ξ22(t).

Figure 14 shows the dynamics of function ωkφ
∗
k (t)φk(t)/2

with k = 0, 1, and 2. We simulate 2 × 106 steps with a time
step 0.01 for the time evolution. Ito interpretation is adopted
to integrate the above stochastic differential equations.

The time average of ωkφ
∗
k (t)φk(t)/2 represents the temper-

ature of the normal mode. Numerical simulations for every ν

are repeated 20 times in order to diminish the sample deviation
(Fig. 14 is one example of them at ν = −0.5). Figure 15 shows
the renormalized temperatures of normal modes as a function
of the nonlinearity strength ν. It demonstrates similar red-shift
behavior as that in spin dimers.
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