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We examine the ultrafast demagnetization process of iron-based materials, namely, Fe6 clusters and bulk bcc
Fe, with time-dependent spin-density functional theory (TDSDFT). The magnetization continuity equation is
reformulated and the torque due to the spin-current divergence is written in terms of an effective time-dependent
kinetic magnetic field, an object already introduced in the literature. Its time evolution, as extracted from the
TDSDFT simulations, is identified as one of the main sources of the local out-of-equilibrium spin dynamics
and it plays a major role in the demagnetization process in combination with the spin orbit interaction. Such
demagnetization is particularly strong in hot spots where the kinetic torque is maximized. Finally, we find the
rate of demagnetization in Fe6 to be strongly dependent on the direction of polarization of the exciting electric
field and this can be linked to the out-of-equilibrium distribution of the kinetic field in two comparative cases.
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I. INTRODUCTION

The search for practical solutions for increasing the speed
of manipulation of magnetic bits is essential for the progress
of modern information and communication technology. It has
been shown that there is an upper limit to the speed of the
magnetization switching process when this is driven by a
magnetic field [1,2]. An increase in power absorption beyond
this limit and for higher magnetic-field amplitudes push a spin
system out of equilibrium into a chaotic behavior and the
switching speed decreases. For this reason the discovery made
by Beaurepaire et al. [3] that a ferromagnetic Ni film could
be demagnetized by a 60-fs optical laser pulse has attracted
a great deal of interest and was the seed of a new field, now
called femtomagnetism.

In a standard pump-probe experiment the system is initially
excited by an optical pulse (pump) and then the magneti-
zation dynamics is monitored by analyzing a second signal
(probe) [4,5]. Depending on the minimal delay between the
pump and the probe, one can analyze the demagnetization
process at different time scales and thus observe the dissipation
mechanisms active at that particular time. The interpretation
of the results is, however, a complicated matter. In general,
for demagnetization processes observed on a time scale
ranging from nanoseconds to 100 ps, one considers an
empirical three-temperature model [6], where electrons, spins,
and phonons define three energy baths, all interacting with
each other. In contrast, ultrafast spin dynamics, taking place
within a few hundred femtoseconds, is yet not described in
terms of a single unified scheme and various models for the
demagnetization process have been advanced. These include
fully relativistic direct transfer of angular momentum from
the light to the spins [7,8], dynamical exchange splitting [9],
electron-magnon spin-flip scattering [10], electron-electron
spin-flip scattering [11], and laser-generated superdiffusive
spin currents [12].

Given the complexity of the problem, ab initio methods,
resolved in the time domain, provide a valuable tool to probe
the microscopic aspects of the ultrafast spin dynamics of real
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magnetic materials by means of time-dependent simulations.
In this work we apply time-dependent spin-density functional
theory (TDSDFT) [13,14] in its semirelativistic, noncollinear,
spin-polarized version to analyze the ultrafast laser-induced
demagnetization of two ferromagnetic transition metal sys-
tems: a Fe6 cluster (see Fig. 1) and bulk bcc Fe. Recently,
within a similar theoretical description, it has been demon-
strated that the spin-orbit (SO) interaction plays a central
role in the demagnetization process [15–17]. Furthermore, it
was showed by us [18] that the laser-induced spin dynamics
can be understood as the result of the interplay between the
SO-coupling potential and an effective magnetic field. The
so-called kinetic magnetic field [19,20] Bkin(r,t) originates
from the presence of nonuniform spin currents in the system.
In this work we focus on the anatomy of Bkin(r,t) and we
analyze in detail its role in the highly nonequilibrium process
of ultrafast demagnetization.

The first formulation of the spin dynamics problem in
transition metal systems was given in Refs. [19,20] by Katsnel-
son and Antropov, who laid down the foundation of density
functional theory (DFT) -based spin dynamics, by deriving
a set of equations of motion for the local magnetization
vector. In those seminal works the magnetization dynamics
was analyzed at the level of the adiabatic local spin-density
approximation (ALSDA), but actual applications to real out-
of-equilibrium systems were not described. Our purpose is to
clarify and quantify, through TDSDFT simulations at the level
of the noncollinear ALSDA, the role played by Bkin(r,t) in
the laser-induced ultrafast spin dynamics of transition metal
ferromagnets.

The paper is divided into four main sections. In Sec. II we
define the various fields that couple to the spins by isolating in
the continuity equation only the terms that play a major role
in the dynamical process. In Sec. III we present the results
of the calculations for Fe6 clusters and show that hot spots
for demagnetization are associated with larger misalignment
of the kinetic magnetic field and the local spin density. This
becomes more clear through evaluation of material derivatives.
A demonstration of the effect of the polarization of the electric
field on the rate of demagnetization of Fe6 is discussed in
Sec. IV. In Sec. V we show that previous observations for Fe6

are valid for bulk bcc Fe as well. We summarize in Sec. VI.
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FIG. 1. (a) Typical electric-field pulse used to excite the Fe6

cluster with the black arrow indicating the direction of the field.
The fluence of this pulse is 580 mJ/cm2. (b) Time evolution of the z

component of Bkin and BX (exchange component of the field), with
respect to their values at t = 0 integrated over the system volume
μBBtot(t) = μB

∑
I BI(t). (c) Time evolution of the variation of the

total magnetization �S tot
z (t) = ∑

I �SI
z(t) with respect to its initial

value. (d) Time evolution on atomic site 6 of the magnetization
variation along z and of the electron density variation with respect to
its value at t = 0 integrated inside a sphere of radius R = 0.9 Å.

In the Appendix we present a detailed derivation of the spin
continuity equation.

II. THEORY

We consider the TDSDFT problem within the ALSDA for a
spin-polarized system excited by an electric-field pulse. If one
neglects second-order contributions arising from the solution
of the coupled Maxwell-Schrödinger system of equations, the
dynamics will be governed by the usual set of time-dependent
Kohn-Sham (KS) equations

i�
d

dt
ψKS

j (r,t) = HKS(r,t)ψKS
j (r,t). (1)

In Eq. (1) ψKS
j (r,t) are the KS orbitals and the KS Hamiltonian

HKS(r,t) can be expressed in the velocity gauge formulation
and the minimal coupling substitution as

HKS(r,t) = 1

2m

(
−i�∇ − q

c
Aext(t)

)2

− μBσ̂ · Bs[n,m](r,t) + vs[n](r,t), (2)

where

vs[n](r,t)=
∫

d3r′ n(r′)
|r − r′| + vALSDA

XC [n](r,t)

+
∑

I

V I
PP(|r − RI |) (3)

and

Bs[n,m](r,t) = BALSDA
XC [n,m](r,t) + Bext(r,t). (4)

Here vs(r,t) represents the usual noninteracting KS potential
and the full noninteracting magnetic field Bs(r,t) consists of
the external one Bext(r,t) and the exchange-correlation (XC)
magnetic field BALSDA

XC (r,t). In the equations above m is the
electron mass, q the electron charge, c the speed of light, Aext(t)
the vector potential associated with the external magnetic field,
σ̂ the spin operator, μB the Bohr magneton, n the electron
density, and m the magnetization density. Then vs(r,t) is
decomposed into a Hartree contribution, an XC correlation one
vALSDA

XC [n](r,t), and an ionic pseudopotential V I
PP(|r − RI |).

For a fully relativistic, norm-conserving pseudopotential the
SO coupling enters the KS equations in the form [21]

V I
PP(|r − RI |) =

∑
l

(
V̄ I

l (r) + 1

4
V

I,SO
l (r)

+
l∑

m=−l

V
I,SO
l (r)L̂I · Ŝ |I,l,m〉 〈I,l,m|

)
.

(5)

In Eq. (5) the orbital momentum operator associated with the
I th atomic center is L̂I , while the vectors {|I,l,m〉} are the
associated set of spherical harmonics centered on that given
atomic position. In Eq. (5) V

I,SO
l (r) defines a generalized

space-dependent SO coupling parameter providing a measure
of the SO interaction strength close to the atomic site, while
V̄ I

l (r) includes all the ionic relativistic corrections such as
the Darwin and the mass correction terms. Within the ALSDA
vXC(r,t) and BXC(r,t) are local functions in time of the electron
density and magnetization, which in turn are written in terms
of the time-dependent KS orbitals

n(r,t) =
∑
j∈O

∑
σ

ψKS
jσ (r,t)∗ψKS

jσ (r,t), (6)

m(r,t) =
∑
j∈O

∑
α,β

ψKS
jα (r,t)∗σ α,βψKS

jβ (r,t), (7)

where O denotes occupied states. Starting from the set of
time-dependent KS equations in (1), it is possible to derive an
equation of motion for the magnetization, or a spin-continuity
equation, in terms of the noninteracting KS observables. This
reads

d

dt
m(r,t) = −∇ · JKS(r,t) + μBm(r,t) × Bs(r,t)

+ TSO(r,t), (8)

where JKS(r,t) represents the noninteracting KS spin-current
rank-2 tensor

JKS(r,t) = �

2mi

∑
j∈O

(
ψ

KS†
j σ̂∇ψKS

j − H.c.
)

(9)

and the SO torque contribution reads

TSO(r,t) =
∑

I

∑
l,m1,m2

O∑
j,α,β

V SO
l (|r − RI |)

× 〈
ψKS

jα

∣∣l,m1,I
〉 〈l,m1,I | LI |l,m2,I 〉 × σ αβ

× 〈
l,m2,I

∣∣ψKS
jβ

〉
. (10)
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The KS magnetic field Bs(r,t) is taken as in Eq. (4), which in
the absence of an external magnetic field reduces to BXC(r,t).
In DFT there is a set of zero-force theorems stating that
the interaction between the particles cannot generate a net
force [22]. In the case of the exchange-correlation magnetic
field we have the exact condition

∫
d3r m(r,t) × BXC(r,t) =

0, which is satisfied by the ALSDA. Combining this equality
with the assumption that the currents at the system boundary
are negligible allows us to conclude that the only source of
global spin loss is the SO coupling torque TSO and that the
spin lost during the temporal evolution is transferred to the
orbital momentum of the system, which in turn is partially
damped into the lattice (we consider frozen ions). Hence we
have the relation

d

dt

∫
�

d3r m(r,t) =
∫

�

d3r TSO(r,t), (11)

where the integration extends over the entire volume �.
Within the ALSDA, the exchange-correlation functional

satisfies also a local variant of the zero-torque theorem [23],
which is not a property of the exact DFT functional [24–26].
According to this condition, m(r,t) × BXC(r,t) = 0 and there-
fore the exchange-correlation magnetic field cannot contribute,
even locally, to the magnetization dynamics. This leads us to
conclude that the local magnetization dynamics is solely the
result of the interplay between the spin-polarized currents and
the SO torque (in reality BXC can still contribute indirectly
to the spin dynamics through a dynamical modification of the
gap between up- and down-spin-polarized bands, which in
turn may give rise to an enhancement of the spin dissipation
via the spin-orbit-coupling channel). In order to elucidate this
view further we make use of the hydrodynamical formalism
applied to spin systems, which has already been introduced in
Refs. [27,28]. This approach needs to be slightly modified
in view of the fact that we are considering an effective
Kohn-Sham system and not a set of independent spin particles.
In fact, as it was already pointed out in Refs. [19,20], Eq. (8)
can be written in a different form (the details of the derivation
are shown in the Appendix)

D

Dt
m(r,t) +

∑
j∈O

∇ · vj (r,t)mj (r,t) = −∇ · D(r,t)

+ μBm(r,t) × Beff(r,t) + TSO(r,t), (12)

where a couple of new terms appears. In the equation
D
Dt

= d
dt

+ v · ∇ is a material derivative, vj (r,t) represents a
single Kohn-Sham state velocity field (see the Appendix), and
mj (r,t) = ψ

KS†
j σ̂ψKS

j . On the right-hand side of Eq. (12), in
addition to the spin-orbit coupling torque TSO(r,t) we have a
new term −∇ · D(r,t) that describes the spin dissipation in the
system due to the internal motion of the spin currents. It can
be interpreted as an effective spin-current divergence object
involving only transitions among different Kohn-Sham states
(interband transitions) [see Eq. (A16)]. Finally, the effective
field Beff is given by the sum of two terms Beff = BXC + Bkin,
with BXC the exchange-correlation field and Bkin defined as

[see Eq. (A25)]

Bkin(r,t) = 1

F̄e

[∇n · ∇s
n

+ ∇2s
]
, (13)

with spin vector field s(r,t) = m(r,t)
n(r,t) .

Such a Bkin(r,t) field has only an instrumental role in
the equations of motion for the spin density; a very similar
expression was already introduced in some previous work. In
Ref. [19] it is expressed in the form ∂k

1
n

(m × ∂km), while in
Ref. [20] it appears as ∇n∇m

n
. The interpretation of Bkin may

look quite obscure at first, however, in Refs. [29,30] it was
identified as a possible source of spin-wave excitations in the
form of a spin-spin interaction potential.

In order to clarify this point, let us consider the Heisenberg
interaction between two spins centered on atoms placed at a
distance d = |d|. We can assume naively, but reasonably, that
the spin-spin interaction between the two spin distributions,
computed at an arbitrary point r in space, may be expressed in
the form

Heff(r) � s(r − d/2) · s(r + d/2), (14)

where it is more convenient for us to employ a spin field s(r),
which describes the spin distribution in space, instead of an
atom localized spin vector. Hence, Heff defines an effective
single-particle Hamiltonian. By averaging over the number of
electrons in the entire space we obtain

S1 · S2 �
∫

�

d3r n(r)s(r − d/2) · s(r + d/2). (15)

Then, by expanding the spin density in a Taylor series up to
second order over the distance d and then neglecting the zeroth-
order contribution (we focus our attention on the nonlocal
term appearing in the expansion), after some straightforward
rearrangement we arrive at

S1 · S2 � −d2

4

∫
�

d3r n(r)∇s(r) · ∇s(r), (16)

which in turn becomes

S1 · S2 � d2

4

∫
�

d3r

[
−∇ · [n(r)s(r) · ∇s(r)]

+ m(r) ·
(∇n(r) · ∇s(r)

n(r)
+ ∇2s(r)

)]
. (17)

Finally, by considering a sufficiently large integration volume,
the use of the divergence theorem allows us to neglect all the
boundary terms with the consequent final expression

S1 · S2 � d2

4

∫
�

d3r m(r) ·
[∇n(r) · ∇s(r)

n(r)
+ ∇2s(r)

]
, (18)

which remarkably resembles the result in Eq. (13) for the
kinetic magnetic field. We can therefore tentatively interpret
Bkin(r,t) as an effective mean-field internal magnetic field,
which plays a role in coupling the spins at different loca-
tions in the system analogously to the Heisenberg spin-spin
interaction.
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III. ANALYZING SPIN DYNAMICS FROM TDSDFT
SIMULATIONS IN THE Fe6 CLUSTER

Here we present the results of TDSDFT calculations,
performed with the OCTOPUS code [31], where we simulate the
ultrafast demagnetization process in iron-based ferromagnetic
systems. In all those, at time t = 0 the system is in its
ground state. Then we apply an intense electric-field pulse
with a duration of less than 10 fs, which initiates the
dynamics. The pseudopotentials for Fe used in the calculations
are fully relativistic, norm conserving, and generated using
a multireference-pseudopotential scheme [32] at the level
implemented in APE [33,34], which takes directly into account
the semicore states. For the XC functional we employ the
ALSDA with parametrization from Perdew and Wang [35].
Our simulations then consist in evolving in time the KS wave
functions, i.e., in solving numerically the set of equations (1).
The results are then interpreted through the magnetization
continuity equation (12).

In Fig. 1 the extracted magnetization dynamics of a Fe6

magnetic cluster is presented. We use the LSDA ground-state
geometry of Fe6 as extracted from Refs. [36,37] for which
we reproduce the reported therein spin state S = 20�/2. The
nuclei are kept stationary during the dynamics. In Fig. 1(c)
we observe that the total loss of the z component of the
total magnetization S tot

z (t) is exactly equal to the variation
in value of its module |Stot| since the global noncollinear
contribution is negligible. This indicates that the spin is not
exchanged globally between the different components of the
magnetization vector, but, according to Eq. (11), it is at least
partially transferred into the orbital momentum of the system.
We note that, due to the electrostatic interactions with the
nuclei and due to the interaction with the laser field, the
rotational invariance of the electronic system is broken and
the total angular momentum is not conserved.

In Fig. 1(b) we observe that the average kinetic magnetic
field (over the entire simulation box, for F̄ = 1) is comparable
in magnitude to the exchange component. At the same time,
Btot

kin,z shows a much more oscillatory behavior compared
to Btot

X,z. In particular, while Btot
X,z evolves smoothly in time

following the action of the optical excitation, Btot
kin,z presents an

abrupt variation at the onset of the electrical pulse. This is due
to the fact that the laser pulse directly excites currents, through
the term −∇ · D(r,t) in Eq. (12), which in turn produces
a modification of the gradients of the charge/spin density,
even on a global scale since they are not conserved. Thus
we observe large variations of B tot

kin,z. In addition, BX,z can also
oscillate very strongly locally, following the temporal variation
of the densities, but in the evaluation of B tot

X,z these oscillations
are averaged out given that the densities are approximately
conserved over the entire simulation box. During the action of
the pulse we see a tendency of the two fields to compensate
each other, an effect strongly resembling the Lenz law. After
the pulse, Bkin continues to oscillate dramatically with its aver-
age value, only slowly increasing. In contrast, Btot

x,z decreases
(in absolute value) due the net dissipation of spin angular
momentum.

Moving from an analysis of global quantities to probing
locally the spin dynamics, in Fig. 1(d) we compare the
magnetization and the electron density around atomic site 6 at

the tip of the cluster [see inset of Fig. 1(a) for the numbering
labels of all the cluster atoms]. We define local magneti-
zation and charge associated with the particular atomic site
I as

SI(t) = 1

|S I
R|

∫
S I

R

d3r m(r,t), QI(t) = 1

|S I
R|

∫
S I

R

d3r n(r,t),

(19)
where the integration volume S I

R is a sphere of radius R
centered at site I. Our results show that the loss of S6

z is not
taking place just during the action of the external pulse, but it is
rather distributed over the entire time evolution. This suggests
that the spin-sink mechanism is not directly related to the
coupling of the system to the laser field, but is rather intrinsic
to the electron dynamics following the pulse. Furthermore,
close to the atomic site, the temporal variation of the charge
Q6 is much smaller in magnitude and smoother than that of
S6

z . In addition, for long times Q6 settles close to an average
value, while S6

z continues to decrease. Hence the long-term
spin dynamics is not the result of a net charge displacement
from the region close to the ions to the interstitial space. These
observations are valid for all the atomic sites in the cluster.

If we now consider the continuity equation for the electron
density (see the Appendix for further explanation)

D

Dt
n(r,t) = −n(r,t)∇ · v(r,t), (20)

where D
Dt

n(r,t) is the material derivative of the electron density

D

Dt
n(r,t) =

(
d

dt
+ v · ∇

)
n(r,t). (21)

From Fig. 1(d) we observe that during the action of the pulse
the density variation in the vicinity of the atoms appears to be
very small compared to the magnetization variation. We can
therefore safely assume that in this spatial region ṅ(r,t) � 0,
with at the same time n(r,t) 	= 0. From these considerations
we deduce that v(r,t) � 0 is a reasonably good approximation
for the velocity field in the vicinity of the atoms (this does not
imply that the velocity field is exactly zero, but only that its
effect on the spin dynamics in this particular case is negligible).
The same argument is valid also for the state resolved density
nj (r,t), given that ṅ(r,t) = ∑

j∈O ṅj (r,t), the contribution of
the local time derivative of the Kohn-Sham state density can be
neglected. By applying the latter in Eq. (12) we finally obtain
a relation that can be considered approximately valid in this
spatial region of the simulation box,

d

dt
m(r,t) � −∇ · D + μBm × Bkin + TSO, (22)

where the contribution to the spin dynamics due to the
velocity-field term has been neglected. Note that here we
have also used the condition m(r,t) × BXC(r,t) = 0, which
is consequential to the LSDA. In addition, the decay of BXC

during the evolution, is not so significant as to produce a
dynamical modification of the gap between up- and down-spin
states.

In Fig. 2 we compare the behavior of the kinetic field and of
the local magnetization at two atomic sites, respectively: 1 (one
of the atoms in the base plane of the bipyramid) and 6 (an atom
at one of the apexes). It can be seen from Fig. 2(a) that these two
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FIG. 2. Local spin dynamics of the Fe6 cluster: (a) time evolution
of the magnetization SI

z(t) around the atomic centers and (b) time
evolution of the z component of BI

kin(t). All the quantities are
integrated inside a sphere of radius R = 0.9 Å centered on the two
atomic sites, where we have used B I

z(t) = 1
|SI

R|
∫
SI

R
d3r Bz(r,t).

sites present different rates of demagnetization. In particular,
at site 6 the spin decay is considerably more prominent with
respect to that observed at site 1. In contrast, the fluctuations
in SI

z are significantly more pronounced for site 1 than for site
6. This can be understood from the fact that we have chosen
here an electric pulse with polarization vector in the basal
plane of the bipyramid. As such, the charge fluctuations for
the atoms in the basal plane are expected to be much larger
than those of the apical atoms. Finally, we note that BI

kin,z(t)
follows similar qualitative trends as SI

z(t) [see Fig. 2(b)]. In
fact, the average change following the excitation pulse is larger
for site 6 (the one experiencing the larger demagnetization),
but the fluctuations are more pronounced for site 1 [the one
experiencing the larger fluctuations in SI

z(t)].
The correlation between the kinetic field and the mag-

netization loss is also rather evident in Fig. 3. There the
time-averaged variations in the x component of the two fields
m × Bkin and ṁ(r,t) are clearly comparable in magnitude
and localized over the same regions of the simulation box.
This demonstrates that the kinetic field can be considered
as the main force driving the noncollinearity during the spin
evolution. The fact that the contrast is stronger at the apex
atoms (hot spots for demagnetization) agrees with Fig. 2(a),
while the dipole-type patterns indicate how the longitudinal
spin decays preserving global collinearity. The correlation
between the z components of m × Bkin and ṁ(r,t) is not as
evident as that for the transverse component x. This is due to
the fact that the x and y components of the field are much
smaller compared to the z one. Furthermore, the contribution
to the spin dynamics along z of the SO coupling, together with
the internal dissipative term due to the spin currents, cannot
be neglected.

In order to quantify the local noncollinearity we examine the
evolution of the misalignment angle θ between the z axis and
the direction of the magnetic fields (averaged over spheres). It
can be seen in Fig. 4 that at site 1 the averaged kinetic field and

FIG. 3. Contour plots of the time- and space-averaged (in the
direction perpendicular to the plane spanned by atoms 1, 3, 5 and 6,
as indicated on the plot) observables evaluated only within spheres of
radius R = 1.0 Å around each atom: (a) and (b) the temporal variation
of the spin density �m(x,z)(r,t)/�t for �t = 0.1 fs and (c) and (d)
the x and z components of the second term on the right-hand side of
Eq. (22).

the local spin deflect very little from the quantization axis and
remain rather parallel to each other. The angle that B1

kin(t)
forms with the magnetization direction (the m1 direction)
is practically negligible. Instead, at site 6, B6

kin(t) shows a
significant deflection from the z axis after the first 5 fs of the
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FIG. 4. Evolution of the spin noncollinearity in the Fe6 cluster.
(a) Plot of �θ = θ (t) − θ (0) at site 1 for the BXC [or S(t)] direction
(black curve) and the Bkin direction (red dashed curve). (b) Same
quantities as in (a) but calculated at atomic site 6. (c) Plot of

√
Ā2

1+Ā2
2,

where Ā =√∑3
i=1 A2

i
and Ai is introduced in Eq. (23), compared to Ā3

at atomic site 1. (d) Same quantities as in (c) but calculated at atomic
site 6. The fields are measured within a sphere of radius R = 0.8 Å
centered on the atom center.
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evolution and so does the spin, without the two being parallel
to each other. It is important to notice that the angle between
magnetization m and Bkin starts to grow only after the action of
the pulse. These results for atoms 1 and 6 are representative of
all the other sites in the base plane or outside of it, respectively.
The sites located in the plane, where BI

kin is mostly collinear,
lose less magnetization with respect to the ones at the apices
where instead the kinetic field shows a significant deflection
from the magnetization axis and provides additional torque
driving further demagnetization.

Analogous conclusions arise from the introduction of the
concept of parallel transport, commonly used in differential
geometry. This requires a proper definition of the covariant
derivative obtained by comparing s(r + dr) not with s(r),
but with the value that the spin vector would have if it was
translated from r to r + dr while keeping the axes in the spin
space fixed,

Dis(r,t) = dis(r,t) + Ai(r,t) × s(r,t). (23)

The connection field A(r,t) provides a measure of the amount
of noncollinearity accumulated in the translation of the spin
vector from r to r + dr.

By using the previous expression to rewrite the first- and
second-order spatial derivatives, the kinetic field of Eq. (13)
can be divided into two components

Bkin(r,t) = B0
kin(r,t) + δBkin(r,t). (24)

Here we have introduced

B0
kin(r,t) = 1

F̄e

[∇n(r,t)
n(r,t)

· Ds(r,t) + D2s(r,t)
]
, (25)

which has no effect on the dynamics, having locally the same
direction of the spin vector by construction, and

δBkin(r,t) = 1

F̄e

3∑
i=1

[
din

n
[−s2Ai + (s · Ai)s]

− 2[s2diAi − s(s · diAi)] − 2[Ai(s · Dis)

− Dis(s · Ai)] + 4(s × Ai)(s · Ai)

]
. (26)

According to Fig. 4, in the case of Fe6, the direction in the
spin space of the connection tensor Ai for every i component
can be considered in a first approximation orthogonal to the
direction of the spin vector s(r,t), since its component along
z is considerably smaller than the components along x and y.
From this we could assume that s · Ai � 0 and we obtain the
following simplified expression for δBkin(r,t):

δBkin(r,t) = 1

F̄e

3∑
i=1

[(
−din

n
s2 − 2s · Dis

)
· Ai

− 2s2diAi

]
. (27)

This represents the part of Bkin that gives rise to a nonzero
torque in Eq. (22).

FIG. 5. Global (a) spin and (b) energy variation in Fe6 for two
different excitations differing only by the direction of polarization
of the electric-field pulse. Cartoon of the cluster with labels of the
relevant atoms and a reference frame are depicted as insets. The
contour plots represent (c) and (e) the distribution of the angle
between m and Bkin in a plane through atoms 1, 3, 5, and 6 (as
in Fig. 3) and (d) and (f) the perpendicular component of m with
respect to Bkin averaged over the time of the simulation, for the two
different excitations (a), (c), and (d) E‖x and (b), (e), and (f) E‖z.

IV. DIRECTIONALITY OF THE DEMAGNETIZATION
IN THE Fe6 CLUSTER

In the previous sections we have revisited the concept of
kinetic field, its derivation within DFT, and its properties as
a major source of torque for the spin dynamics within the
ALSDA. We have provided supporting evidence for the latter
from TDSDFT calculations of the ultrafast demagnetization
of the Fe6 cluster under the effect of a sub-10 fs electric-field
pulse. Despite the conceptual clarity of Bkin as an instrumental
object, very little useful physical intuition can be drawn from
its definition in Eq. (13). Clearly, it is an intrinsic dynamic
field that depends on the spin texture and its response to the
external stimuli. It also feeds back into the dynamics of this
same spin density, which is obviously a nonlinear process.
In this section we seek to extend the evidential base for
the connection between the torque due to Bkin and the rate
of demagnetization. Together with that we report a situation
where the direction of the polarization vector of the electric
field of the laser pulse alone has a significant effect on the
demagnetization of a material (the Fe6 cluster).

Figure 5 shows a comparison between two simulations
differing only by the direction (but notably not the magnitude)
of the electric field applied. In one case this is in the x direction,
which is oriented along the slightly longer side of the base of
the bipyramid [36]; in the other simulation it is along z, the
direction connecting the two apex atoms 5 and 6. The case
E‖x shows nearly 3 times faster demagnetization compared to
the E‖z one. Evidently, in the former situation more energy
is absorbed by the cluster (an excess of about 8.6 eV); we
show a comparison of the total energy shift due to the pulse in
Fig. 5(b).

From Fig. 5(c) we observe that the amount of noncollinear-
ity enclosed in a relatively small radius around the apex atoms
does not significatively change in the two cases, suggesting
that the intrasite noncollinear component of the spin vector is
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already present in the ground-state configuration. What really
differs is the amount of intersite noncollinearity concentrated
in the out-of-plane region. In the E‖x case, if we examine
the angle between Bkin(r,t) and m(r,t) averaged in time
over the entire simulation along one particular cross-section
plane (vertical through the base diagonal of the cluster as
depicted in the inset), one can observe, in particular in the
out-of-plane interstitial regions, a significantly larger amount
of noncollinearity of the spin vector density, accumulating in
the case of faster demagnetization.

Notably, there is a change in the symmetry between
Figs. 5(c) and 5(e): In both cases no significant spin non-
collinearity arises in the plane parallel to the field connecting
the atomic centers. It is, however, important to notice that
the amount of intrasite spin noncollinearity for the in-plane
atoms is strongly dependent on the polarization direction of
the applied laser field. In fact, in the case of E‖x the temporally
averaged angle between s and Bkin appears much higher with
respect to the one computed in the E‖z case. Figure 5(d)
and 5(f) show that the non-collinear to Bkin spin density also
quickly decays in the interatomic regions where the charge
density is inherently lower.

Although Bkin is not the only torque generator and the
SO contribution is significant too, the former plays a role in
deflecting the spins in the system in a manner that correlates
with the rate of global demagnetization. Importantly, our
simulations clearly show that the demagnetization process
is very anisotropic and particular directions of the exciting
electric field may enhance the rate of demagnetization (this is
only a demonstration of principle and the study of these effects
is beyond the scope of this paper).

V. DEMAGNETIZATION OF bcc Fe

Finally, we present results of analogous simulations in bulk
materials, namely, in bcc Fe, with the aim of demonstrating
the qualitative universal role played by Bkin in the ultrafast
demagnetization process. We consider bcc Fe in its ferromag-
netic phase with total spin in the unit cell S = 4.85�/2 and
with two atoms in it.

We employ a lattice parameter a = 2.9 Å, with a 4 × 4 × 4
k-point grid. In Fig. 6(c) we show the demagnetization rate
of the single unit cell after it has been excited with the
electric-field pulse [Fig. 6(a)]. The green curve represents the
demagnetization computed inside the unit cell and resembles
in shape the sum of the magnetization variation

∑
I �Sz,I(t)

calculated in the vicinity of the two Fe atoms, even if it is
different in magnitude. This suggests that a large amount
of spin is driven outside from the atomic integration region
during the evolution. Similarly to the cluster, the dynamics
of the on-site magnetization can be described in terms of a
two-step process with an initial fast decay during the action of
the external pulse, followed by a slower and noisy decrease in
magnitude. The first fast decay may be attributed to the effect
of the SO enhanced by the collapse of the effective field Beff

following the action of the laser pulse. In Fig. 6(b) the collapse
after the first 5 fs of the z component of the effective field is
quite clear, even if it appears to be more pronounced for the
kinetic field BI

kin,z(t) with respect to the exchange field BI
X,z(t).

Similarly to the case of Fe6, the role played by ∇ · D(r,t) is

FIG. 6. Demagnetization of bcc Fe: (a) applied external elec-
tric field; (b) local value of �B I

kin,z and �B I
x,z around atom 1;

(c) comparison between the value of the local magnetization �Sz,I(t)
around atom 1 (black curve), the total magnetization integrated
around the two sites �Sz,I(t) (red curve), and the total magnetization
integrated inside the unit cell �Sz(t) (green curve); and (d) local
value of

∑
I �B I

kin,xy(t) (red curve) and of �SI
xy(t), the noncollinear

magnetization component for atom 1. All the local quantities are
calculated inside a sphere of radius R = 1 Å centered on site 1.

dominant during the action of the pulse, but after this initial
phase the dynamics is dominated by intraband transitions and
the interplay between the spin-orbit coupling and the effective
field Beff becomes dominant.

Figure 6(d) shows the evolution of the noncollinearity of
the spin vector

∑
I S

I
xy(t) and of the kinetic field

∑
I B

I
kin,xy(t).

The level of correlation among the two quantities confirms
the importance of the kinetic field in the evolution of the
spin noncollinearity. The long tail of spin dissipation may be
explained in terms of intraband spin-up/spin-down transitions
through an Elliott-Yafet type of mechanism triggered by the
scattering with the effective field Beff ,

Ai→f = 〈�n,k1 | σ̂ · Beff |�n,k2〉. (28)

Here Ai→f represents the transition amplitude between two
states with different k vector and in the presence of SO cou-
pling with different mixing of up- and down-spin components.

VI. CONCLUSION

In conclusion, we state the central result of our work,
namely, that the equation of motion for the spin dynamics
within the ALSDA of TDSDFT [see Eq. (8)] can be rewritten in
the form of Eq. (12), by using a formalism borrowed from mag-
netohydrodynamics. We have analyzed the properties of the
so-called kinetic magnetic field Bkin and its role in the ultrafast
demagnetization process in two different systems: a ferromag-
netic Fe6 cluster and bulk bcc Fe. The role of this field is par-
ticularly significant for processes far from equilibrium, such
as the ultrafast demagnetization observed in transition metals.

In both systems studied the spin dynamics is the result of
the interplay between the SO coupling and Bkin(r,t), which,
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in general, is strongly coupled to the external pulse and
highly nonuniform in space. We have shown that the spin
loss locally correlates with Bkin(r,t). Through the concept of
parallel transport and the definition of a connection tensor
field Ai , we have gained further insight into the evolution of
the spin texture. As Ai describes the degree of spin rotation
per infinitesimal spatial translation, it also provides a measure
for the misalignment between the kinetic field and the spin
texture. The regions with higher ‖A‖ correspond to stronger
local demagnetization.

Finally, the effect of the direction of the polarization vector
of the electric-field pulse has been studied for Fe6. We have
found that clusters will demagnetize about twice as fast if
the polarization vector is in the base plane and not vertical
(through the apex atoms). Our analysis has shown a significant
increase in the noncollinearity between Bkin(r,t) and the spin
density in the fast demagnetizing case. Such anisotropy, due to
the electric dipole matrix elements for the valence electrons,
is likely to occur in crystalline systems as well. During the
application of the laser pulse, the rise of spin noncollinearity
may be enhanced by the particular polarization direction of
the laser pulse through the spin-orbit coupling and this effect
combined with the collapse of the kinetic field may explain
the initial spin loss. However, in both Fe6 and bcc Fe the
magnetization loss is more prominent after the laser pulse
has been reduced to zero. During this second phase of spin
dissipation we anticipate microscopic differences between the
spin decay observed in bcc Fe due to intraband transitions
among states with different spin-up/spin-down mixture and
the spin dynamics observed particularly at the apex atoms in
Fe6 that is primarily driven by Bkin and directly related to the
on-site intrinsic spin noncollinearity near the atomic sites.
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APPENDIX: DERIVATION OF THE HYDRODYNAMIC
CONTINUITY EQUATION

In this Appendix we show in some detail how Eq. (12) can
be obtained by starting from the standard TDSDFT continuity
equation (8). Here we follow the hydrodynamical formalism
of quantum mechanics, where a single particle with spin is
considered equivalent to a nonlinear vector field. In this type of
hydrodynamics the quantum effects are separated as nonlinear
terms and are described through effective quantum potentials
(see Ref. [29]).

The formalism is based on the assumption that it is possible
to describe the dynamical evolution of a single particle
immersed in an external vector potential A(r,t) through the
so-called Madelung decomposition (see Ref. [38]) of the
system wave function, in which the amplitude is translated
into the probability density and the gradient of the phase
determines the velocity field. A hydrodynamical description
of the wave function was also obtained in Ref. [39] starting
from the ordinary interpretation of quantum mechanics and by
introducing an operator for the charge density and the current
density.

The formalism was also later extended to the semirelativis-
tic description (Pauli approximation) of a single particle in
an external electromagnetic field in Ref. [27]. However, while
in all the previous studies the main objective was to derive
the single-particle dynamics of the spin-1/2 plasma, only
recently has the study of the collective dynamical properties
of the quantum plasma started to attract some interest (see
Refs. [28,40]).

In deriving Eq. (12) for the spin density in the Kohn-Sham
system we introduce also of the electron density n(r,t) and the
velocity field v(r,t). The equation of motion for the velocity
field is not explicitly written here for the reasons explained in
Sec. III.

The electron density is written in terms of the Kohn-Sham
wave functions ψKS

j (r,t) as

n(r,t) =
∑
j∈O

ψKS
j (r,t)†ψKS

j (r,t), (A1)

while the spin density is

s(r,t) =
∑

j∈O ψKS
j (r,t)†σψKS

j (r,t)

n(r,t)
(A2)

and the covariant velocity field appears as

v(r,t) = �

2mi

∑
j∈O

[
ψKS

j (r,t)†∇ψKS
j − ψKS

j ∇ψKS
j (r,t)†

]
n(r,t)

− e

mc
A(r,t). (A3)

By making use of the Kohn-Sham equations (1) the charge continuity equation can be written straightforwardly as

d

dt
n(r,t) = − �

2mi
∇ ·

∑
j∈O

[
ψKS

j (r,t)†(
−→∇ − ←−∇ )ψKS

j (r,t)
] + e

mc
∇ · [nA(r,t)], (A4)

while for spin it is written in terms of n(r,t) and s(r,t) as

d

dt
(ns) = − �

2

4mi
∇ ·

∑
j∈O

[
ψKS

j (r,t)†σ̂∇ψKS
j − ∇ψKS

j (r,t)†σ̂ψKS
j

] + e

mc

∑
j

∂j [Ajns] + μBn(s × BXC) + TSO. (A5)
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By evaluating explicitly the spatial partial derivative of the spin vector and multiplying it with the component si we obtain the
equality

nsi∂lsk = si

∑
j∈O

[
∂lψ

KS
j (r,t)†σ̂kψ

KS
j + ψKS

j (r,t)†σ̂k∂lψ
KS
j

] − ∂lnsi · sk. (A6)

We now need to focus our attention on the first term on the right-hand side of Eq. (A6), by using the notation

Fik(r,t) = si

∑
j∈O

[∇ψKS
j (r,t)†σ̂ kψKS

j + ψKS
j (r,t)†σ̂ k∇ψKS

j

]
, (A7)

which leads to

Fik(r,t) = 1

n

∑
j,r∈O

[
ψKS†

r σ̂ iψKS
r ∇ψ

KS†
j σ̂ kψKS

j + ψKS†
r σ̂ iψKS

r ψ
KS†
j σ̂ k∇ψKS

j

]
. (A8)

The antisymmetric part Kik(r,t) of the tensor Fik(r,t), defined as Kik = Fik − (i ↔ k), may be written as

Kik(r,t) = 1

n

∑
j,r∈O

∑
α,β,α′,β ′

[
ψKS∗

r,α ψKS
r,β σ

[i,
α,βσ

k]
α′,β ′∇ψKS∗

j,α′ ψ
KS
j,β ′ + ψKS∗

r,α ψKS
r,β σ

[i,
α,βσ

k]
α′,β ′ψ

KS∗
j,α′ ∇ψKS

j,β ′
]
. (A9)

By making use of the relation between Pauli matrices (see Ref. [29])

σ
[i,
α,βσ

k]
α′,β ′ = i

∑
s

εiks

[
σ s

α,β ′δα′,β − δα,β ′σ s
α′,β

]
, (A10)

we obtain the final expression for Kik that can be split in two parts,

Kik(r,t) =
∑

j,r∈O
K(j,r)

ik (r,t)δj,r +
∑
j∈O

∑
r 	=j∈O

K(j,r)
ik (r,t), (A11)

where we have introduced the tensor

K(j,r)
ik (r,t) = i

n

∑
s

εiks

[
ψKS†

r ψKS
j

(
ψ

KS†
j σ̂ s∇ψKS

r − ∇ψ
KS†
j σ̂ sψKS

r

) + ψKS†
r σ̂ sψKS

j

(∇ψ
KS†
j ψKS

r − ψ
KS†
j ∇ψKS

r

)]
. (A12)

The procedure that we have followed up to now is formally exact. Then, in order to simplify the previous expression we substitute

the Kohn-Sham ratio Fj = ψ
KS†
j ψKS

j

n(r,t) with its average over the various occupied states Fj � F̄ = 〈ψKS†
j ψKS

j 〉j
n(r,t) . From the fact that, to

a good degree of approximation, F̄ � 1
N

with N total number of particles in the system, we will consider from now on F̄ to be
spatially homogeneous and constant in time. Then Eq. (A11) becomes

Kik(r,t) = iF̄
∑

s

εiks

∑
j∈O

[
ψ

KS†
j σ̂ s∇ψKS

j − ∇ψ
KS†
j σ̂ sψKS

j

] + 2mF̄
�

∑
s

εiks

∑
j∈O

ψ
KS†
j σ̂ sψKS

j

[
vj (r,t) + e

mc
A(r,t)

]

+
∑
j∈O

∑
r 	=j∈O

K(j,r)
ik (r,t). (A13)

In order to simplify the formalism we employ the notation Kik;l(r,t) = n(si∂lsk − sk∂lsi). Immediately from Eq. (A13) it follows
that

�

2F̄m
n(si∂lsk − sk∂lsi) = −

∑
s

εiksJsl
KS(r,t) +

∑
s

εiks

∑
j∈O

ms
j (r,t)

[
vl

j (r,t) + e

mc
Al(r,t)

]
+ �

2F̄m

∑
j ∈ O

r 	= j ∈ O

K(j,r)
ik;l (r,t),

(A14)
where mj and vj define, respectively, the single Kohn-Sham state magnetization and velocity field. By employing the properties
of the Levi-Cività tensor we have

�

2F̄m
(ns × ∂ls)n = −Jnl

KS(r,t) +
∑
j∈O

mn
j (r,t)

[
vl

j (r,t) + e

mc
Al(r,t)

]
+ Dnl(r,t), (A15)

where we have introduced the new tensor quantity

D(r,t) = −
∑
j∈O

∑
r 	=j∈O

[
FrjJ (j,r)(r,t) − Fjrm(r,j )(r,t) ⊗

(
v(j,r)(r,t) + e

mc
A(r,t)

)]
. (A16)
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Here Frj = ψ
KS†
r ψKS

j

n(r,t) and the other many-particle objects are defined as

J (j,r)(r,t) = − i�

2m

[
ψ

KS†
j σ̂∇ψKS

r − ∇ψ
KS†
j σ̂ψKS

r

]
, (A17)

v(j,r)(r,t) = �

2mi

ψ
KS†
j ∇ψKS

r − ∇ψ
KS†
j ψKS

r

ψ
KS†
j ψKS

r

− e

mc
A(r,t), (A18)

m(j,r)(r,t) = ψ
KS†
j σ̂ψKS

r . (A19)

Finally, from Eq. (A15) the divergence of the spin current tensor may be rewritten as

−∇ · JKS(r,t) = �

2F̄m
∇ · (ns × ∇s) −

∑
j∈O

∑
l

∂l

[
mj (r,t) · vl

j (r,t)
] − e

mc

∑
l

∂l[nsAl(r,t)] − ∇ · D(r,t). (A20)

Then, by substituting Eq. (A20) into Eq. (A5) we obtain

d

dt
m(r,t) = −∇ · D(r,t) −

∑
j∈O

∑
l

∂l

[
mj (r,t) · vl

j (r,t)
] + �

2F̄m
∇ · (ns × ∇s) + μBns × BXC(r,t) + TSO(r,t). (A21)

Finally, by decomposing the magnetization into its single-particle components mj we can define the magnetization material
derivative as

D

Dt
m(r,t) = d

dt

∑
j∈O

mj (r,t) +
∑
j∈O

(vj · ∇)mj (r,t), (A22)

with the spin continuity equation that becomes

D

Dt
m(r,t) = −∇ · D(r,t) −

∑
j∈O

∇ · vj (r,t)mj (r,t) + �

2F̄m
∇ · (ns × ∇s) + μBns × BXC(r,t) + TSO(r,t) (A23)

or
D

Dt
m(r,t) +

∑
j∈O

∇ · vj (r,t)mj (r,t) = −∇ · D(r,t) + μBm(r,t) × Beff(r,t) + TSO(r,t), (A24)

where we have introduced an effective magnetic field

Beff[n,s](r,t) = BXC[n,s](r,t) + 1

F̄e

[∇n · ∇s
n

+ ∇2s
]
. (A25)

The continuity equation for the electron density instead follows immediately from Eq. (A4) through the definition of velocity
field

Dn

Dt
= −n∇ · v. (A26)

It should be noted that the kinetic field 1
F̄e

[∇n·∇s
n

+ ∇2s] written in Eq. (A25) is expressed in terms of the density and spin density,
which are observables of the many-body system. This means that the kinetic field obtained within the Kohn-Sham formalism is
identical to its many-body counterpart.
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