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The electron spin resonance spectrum of the XXZ spin chain with finite length shows a double-peak structure
at high temperatures around the electron paramagnetic resonance (EPR) frequency. This fact has been pointed
out by direct numerical methods [S. El Shawish, O. Cépas, and S. Miyashita, Phys. Rev. B 81, 224421 (2010);
H. Ikeuchi, H. De Raedt, S. Bertaina, and S. Miyashita, ibid. 92, 214431 (2015)]. The question of whether the
double-peak structure survives in the thermodynamics is of particular interest. We study the size dependence of the
line shape, including the even-odd effect. It is found that the peaks forming the double-peak structure are assigned
to individual resonances, each of which is specified by the magnetizations of the resonating states (M,M − 1).
To understand dependences, we decompose the spectrum into contributions from transitions specified by the
magnetization, and we characterize the structure of the spectrum by individual contributions. We analyze the
size dependence of each contribution individually by extending the moment method introduced by M. Brockman
et al. to each component, and we find that the mean of each peak approaches the paramagnetic resonance point
with 1/N (where N is the length of the chain), which indicates that the separation of the peaks of the double-peak
structure also vanishes inversely with the system size. We also study the temperature dependence of the structure.
At low temperatures, the spectrum has a single peak with a finite width at a position with a finite shift from
the frequency of EPR, as pointed out by the analysis of field-theoretical works [M. Oshikawa and I. Affleck,
Phys. Rev. Lett. 82, 5136 (1999)]. The study of the temperature dependence of the spectrum shows how the
high-temperature spectrum changes to the low-temperature one with a drastic broadening of the spectrum.
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I. INTRODUCTION

Electron spin resonance (ESR) is one of the major tools
used to obtain information about spin ordering. To understand
the spectrum, the parameter dependence of a concrete ESR
spectrum for a specified system has to be clarified, including
the temperature dependence. To study these aspects theoreti-
cally, explicit forms of interactions of the magnetic structure
of the system, such as the spatial configuration of magnetic
ions in the lattice, must be taken into account. For example,
modeling the ESR spectra of intrinsic defects in spin chains
is an important problem for which data for finite but rather
long chains are necessary [1]. Thus, it is necessary to develop
a numerical method that can manage these long chains.

To study the temperature dependence, we may obtain the
response χ ′′(ω) by a direct numerical estimation of the Kubo
fomula [2,3] for small systems for which we can obtain
all the eigenvalues and eigenvectors of the system [4,5].
However, the method is inevitably limited to small systems.
As a result, time-domain methods have been introduced in
which the spectrum is obtained by Fourier transform of the
autocorrelation function of magnetization (the AC method). It
is known that the expectation value with the so-called random-
weighted state or pure-quantum-thermal state |�〉 yields an
estimate of the trace of A, that is, 〈�|A|�〉 � (TrA), which
becomes accurate for large-size Hilbert space D. Because
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of this fact, there is no need to compute the average over
the canonical distribution explicitly to obtain the thermal
equilibrium average [6–11]. This approach has been used
to study the temperature dependence of the total amplitude
of the ESR spectrum for the single molecular magnet V15,
consisting of 15 S = 1/2 spins [8]. It is also known that finite
observation time causes artificial modification of the spectrum
(say, the Gibbs oscillation). In our previous study [12], we
proposed a new method (the WK method) to make use
of the Wiener-Khinchin relation with spectral density of
magnetization fluctuation, in which the Gibbs oscillation is
suppressed. However, at the same time, we found that that
Gibbs oscillation is suppressed in a large system, and the
AC method works efficiently. Thus, in the present work
we obtained the spectrum using the AC method. With this
method, we can study the double system size of the case of
diagonalization theoretically. However, it is not the memory
but the CPU time that prevents us from treating large systems.
In the present paper, we calculated up to N = 28 in Sec. III.
The methods are explained in detail in Ref. [12].

In addition to the direct numerical approach, for the reso-
nance shift and the linewidth of the spectrum, which include
basic information on the system, a lot of theoretical research
has been conducted [13,14]. Oshikawa and Affleck developed
an approach based on (1+1)-dimensional field theory, where
they used the bosonization method and successfully derived
the shift and the linewidth of the resonance peak at low
temperatures in the thermodynamic limit [15]. This method
has also been used successfully to investigate the effects of the
edge state [16].
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In the present paper, we study the one-dimensional S = 1
2

XXZ model. It has been pointed out that the line shape of the
XXZ spin chain with an even number of spins has a double-peak
structure at high temperatures for lattices with finite length
N � 16 [5], and we were interested in how the double-peak
structure changes with the size of the system. The structure has
been confirmed in systems with sizes up to N = 26 [12]. How-
ever, its detailed dependence on temperature and size is not yet
known. Such information for finite sizes is important to study
diluted systems that are an ensemble of short chains [1], where
the temperature dependence of the spectrum is also important.

Thus, we study here the size dependence of the line shape
not only for systems with even N where the double-peak
structure appears, but also for systems with odd N where a
single central peak with protuberances beside it appears.

To characterize the line shape, the so-called moment
method has been introduced. In this method, we can obtain
the strength, mean, and variance of the spectrum using the
zeroth, first, and second moment of the spectrum. Maeda et al.
derived the formula for the resonance shift defined by the first
moment, which is exact up to first order in anisotropy, utilizing
the integrability of the XXZ model [17]. By applying the Bethe
ansatz technique, they obtained an analytic expression of the
resonance shift over the entire temperature region. Brockmann
et al. [18] also obtained consistent results, focusing on the
moments of the spectral shape. In this way, a lot of information
has been found with regard to the resonance shift and the
linewidth. However, for the present problem of the explicit
form of the shape of the spectrum, e.g., satellite peaks, long
tails, etc., we need more detailed information.

In the present paper, we apply the moment method for each
peak of the double peak or the protuberances. ESR takes place
between the states that have magnetizations M and M ± 1.
It is found that groups of resonances forming the peaks are
assigned to individual resonances, each of which is specified
by the magnetizations of the resonating states (M,M − 1).
By making use of this fact, we decompose the spectrum into
contributions from transitions specified by the magnetization,
and we study the size dependence of each group by applying
an extended moment method. With this analysis, we find that
the deviation of the mean of the distribution for each group
decreases as 1/N . This observation strongly suggests that the
structure would shrink to the center in the thermodynamic
limit. Indeed, the numerical study up to N = 28 supports this
dependence. On the other hand, we also find that its variance
converges to a certain finite value even when N becomes large.
Thus mathematically there is some possibility of a special
shape of the spectrum in which the double peak may persist.

We also study the temperature dependence of the structure.
As mentioned above, the high-temperature spectrum has a
double-peak structure, the center of which is at the position
of the electron paramagnetic resonance (EPR) frequency, i.e.,
�ωEPR = γH (where γ is the gyromagnetic ratio). On the
other hand, at low temperatures the spectrum has a single peak
with a finite width at a position with a finite shift from the
frequency of the EPR, as pointed out by the analysis of field-
theoretical works [15]. The temperature dependence of the
spectrum shows how the high-temperature spectrum changes
to the low-temperature one with a drastic broadening of the
spectrum.

The outline of this paper is as follows. In Sec. II, we
introduce the model and method. In Sec. III, we study the size
dependence of the structure of the spectra using numerical
methods. In Sec. IV, we analyze the structure of the spectrum,
decomposing it into contributions from transitions between
specified sets of magnetizations. In particular, the estimation of
the double peak’s separation is an interesting problem, which is
discussed in Sec. IV A. In Sec. V, the temperature dependence
of the spectra is given. A summary and a discussion of related
problems are presented in Sec. VI.

II. SYSTEM AND METHOD

We study a one-dimensional S = 1
2 XXZ model in a static

magnetic field H along the z axis,

H = J

N−1∑
i=1

Si · Si+1 + �

N−1∑
i=1

Sz
i S

z
i+1 − gμBH

N∑
i=1

Sz
i , (1)

where � represents the strength of the anisotropy. Hereafter,
we set gμB = 1 for the sake of simplicity of notation. In
this paper, we set J = 1 K, � = −0.08 K (i.e., the XY -like
anisotropy), and H = 5 K (i.e., a sufficiently strong field),
and we impose the open-boundary conditions. We study the
response, i.e., the complex susceptibility to an oscillating
magnetic field parallel to the x axis: Hext = λ0cosωt

∑N
i=1 Sx

i .

In the present study, we do not include the dipole-dipole
interaction, and thus the direction of the chain does not
affect the results, although the dipole-dipole interaction could
cause an interesting dependence of the spectrum on the angle
between the lattice direction and the fields, such as the
Nagata-Tazuke dependence [14].

Here let us recall important relations for the ESR spectrum.
According to the Kubo formula [2,3], the ESR spectrum,
i.e., the absorption rate I x(ω) of the oscillating field, can be
obtained with the dynamical susceptibility χ (ω) = χ ′(ω) +
iχ ′′(ω) as follows:

I x(ω) = ωλ2
0

2
χ ′′(ω), (2)

χ ′′(ω) = 1 − e−βω

2

∫ ∞

−∞
〈Mx(0)Mx(t)〉eqe

−iωtdt, (3)

where Mx(t) = eiH tMxe−iH t = eiH t
∑

i S
x
i e−iH t , and

〈· · · 〉eq denotes the thermal average with respect to H at
a temperature β−1. By using the set of eigenvalues and
eigenvectors {En,|n〉}Dn=1 of the Hamiltonian H (where D

is the dimension of the Hilbert space of the Hamiltonian),
χ ′′(ω) is readily given by

χ ′′(ω) =
∑
m,n

Dm,nδ(ω − ωm,n), (4)

where

Dm,n ≡ π (e−βEn − e−βEm )|〈m|Mx |n〉|2/Z,

ωm,n ≡ Em − En, Z =
D∑

n=1

e−βEn . (5)
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FIG. 1. The ESR spectra for (a) N = 28 and (b) N = 27 at β−1 = 100 K.

Hereafter, we use two types of numerical methods. For
small systems, we obtain spectra using Eq. (5) by numerical
diagonalization. For larger systems N � 20, we utilize the
AC method [12], i.e., according to Eq. (3), we calculate the
Fourier transform of the autocorrelation function in thermal
typical states.

III. SIZE DEPENDENCE OF SPECTRAL SHAPES

As a typical example of the ESR spectra for odd- and even-
number spins, we depict the spectra of N = 28 and 27 at a high
temperature (β−1 = 100) in Figs. 1(a) and 1(b), respectively.

Now, we examine the size dependence of the characteristic
shapes of the spectra, such as the double-peak structure. We
depicted spectra of various sizes N in Figs. 2(a) and 2(b) for
systems with even and odd numbers of spins, respectively.
There we see a systematic size dependence. In the systems
with even numbers of spins, the separation between double
peaks �ω decreases as the system size becomes large.

The nature of the shape in the thermodynamic limit is an
interesting problem that has already been examined in Ref. [5].

The size dependence of the separation �ω between the double
peak is given in Fig. 3 (left). The error bars in the figure
denote the mesh size of �ω given by the observation time T

as 2π/T . We find that in even systems, the separation roughly
decreases with the size as 1/N . In Fig. 3 (center), we plot the
size dependence of separations of two small protuberances of
both the even and odd cases. This shows that the separation
of protuberances decreases roughly proportionally to 1/N .
In Fig. 3 (right), we find that the heights of the peaks of
protuberances increase with the system size.

We may anticipate that in the thermodynamic limit, the
double peak may merge to become a single central peak.
In addition, the separation between two small protuberances
also seems to decrease with the increase of the system size,
and it shrinks to the center in the thermodynamic limit. In
fact, this problem has already been studied in Ref. [5] with
inconclusive results. Below, we will study the size dependence
by making use of the decomposition of the spectrum into
components specified by the group of resonances with the mag-
netizations (M,M − 1) between which the resonance takes
place.
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FIG. 2. (a) Spectra of systems with an even number of spins, N = 20, 22, 24, 26 and 28, depicted on the unified scale. (b) Spectra of
systems with an odd number of spins, N = 21, 23, 25 and 27, depicted on the unified scale.
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FIG. 3. (Left) Size dependence of the separation of the double peak in even systems. There seems to be a tendency for separation of the
double peak to decrease as N becomes large. But it might be saturated at some point. The green line denotes theoretical values calculated
by Eq. (21). (Center) Size dependences of the separation of two small protuberances. The red points denote odd-spin systems, and the blue
points denote even-spin systems. We can find that the small protuberances come close to the center ω = H as the system size N increases.
The error bars denote the mesh size of �ω determined by the observation time T . The green lines denote theoretical values calculated by
Eq. (21). (Right) Size dependences of the height of two small protuberances. The height is related to the the intensity of the absorption. The
protuberances become larger with N increasing.

IV. DECOMPOSITION OF THE SPECTRUM INTO
CONTRIBUTIONS FROM TRANSITIONS SPECIFIED

BY MAGNETIZATION

In general, the resonance peaks in the ESR spectrum
are given by the transition between states that have the
magnetizations

∑N
i=1 Sz

i = M and M ′ = M ± 1 because
〈M| ∑N

i=1 Sx
i |M ± 1〉 �= 0. Without the anisotropy (� = 1),

the system consists of an ensemble of multiplets of spin S each
of which has the (2S + 1) states with M = −S,−S + 1, . . . ,S.
Although the system exhibits various interesting states, e.g.,
dimer, Haldane, and the spin-liquid state, etc., the spectrum
has a single peak at the EPR position because the Zeeman
effects of the external field H give simply the energy difference
�E = gμBH between the states of M and M − 1. Therefore,
the structure of the high-temperature spectrum should be
attributed to the energy structure lifted from the degeneracy
by the anisotropy. The contributions from the transitions
(M → M + 1) correspond to the emission, and they give
the spectral weight at negative ω, which we do not consider
here.

In what follows, we will scrutinize the mechanisms of
the characteristic shapes observed in the previous section by
focusing on the energy diagrams of the systems. The most
dominant contribution comes from the transitions between
levels within the same multiplet in the case of � = 0. The
breakdown of SU(2) symmetry due to � allows contributions
from transitions between different multiplets, but the contri-
butions from them are found to be very small. Thus, we will
ignore those contributions in the interpretation of Fig. 5, even
though these contributions are included in spectra obtained by
the numerical method.

Since we are considering properties at high temperatures,
instead of the susceptibility χ (ω), which goes to zero as β = 0,
we study

Sxx(ω) =
∫ ∞

−∞
〈MxMx(t)〉eqe

−iωtdt. (6)

Now we decompose the spectrum into contributions from
transitions (M → M − 1) of various values of M . We denote

the group of resonances of (M → M − 1) by SM
xx :

SM
xx ≡

∫ ∞

−∞
〈P(Mz=M)M

xP(Mz=M−1)M
x(t)P(Mz=M)〉eqe

−iωtdt,

(7)

where P(Mz=M) is a projection operator that projects states
onto the subspace where Mz = M .

For the systems with even N , the multiplets are with integer
S. Each multiplet is separated into pairs of {M,−M} and M =
0. Here we demonstrate the decomposition for a system with
N = 12, because there are many states to form a continuous-
like line shape, although we can still calculate the eigenstates
by the exact diagonalization method.

In Fig. 4 (left), we show SM=1
xx (solid line) [i.e., the

contribution from the resonance of (M = 1 → M − 1 = 0)]
and SM=0

xx (dotted line) [i.e., that of (M = 0 → M − 1 = −1)].
We find that SM=1

xx gives the right peak of the double peak,
and SM=0

xx gives the left one. Here it should be noted that
the contribution from each value of SM=0

xx gives a rather
well-defined single peak.

We find that the double peak is given by the contribution
of SM=1

xx and SM=0
xx [Fig. 4 (left)], the protuberances by SM=2

xx

and SM=−1
xx [Fig. 4 (center)], and the others give the tail of

the spectrum [Fig. 4 (right)]. The separation of the peaks
according to M is attributed to the energy splitting due to
the anisotropy �. To illustrate this, we draw the structure of
the energy diagram as a function of static magnetic field. The
number of states of a system with N spins is D = 2N . For the
large systems, D is too large to draw the diagram in a figure,
and thus we draw the diagram for N = 6 in Fig. 5 (left) (green
lines), which has 26 = 64 lines. In the left panel, the detailed
structure due to � is hardly seen, and hence the magnified
structure is given in Fig. 5 (right). With the anisotropy � �= 0,
the (2S + 1) levels of a multiplet of spin S are split into a
single state with M = 0 and S pairs of states that have opposite
magnetization, i.e., {M,−M} = {1,−1}, {2,−2}, and {3,−3}
as shown by the red lines. The energy gap �E(M) between the
doublets with M = 1,−1 and the single state with M = 0 at
H = 0 is denoted by �E(1). �E(2) is the difference between
the state M = 2 and 1 (or between the state M = −2 and −1)
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FIG. 4. Spectra for N = 12 SM
xx classified by the magnetizations M of transitions at β−1 = 100 K. The left figure is for the spectrum by

transitions SM=1
xx (solid) and SM=0

xx (dotted). The center figure is for SM=2
xx and SM=−1

xx . In the right figure, SM
xx for larger M’s are given: blue,

(3 → 2), (−2 → −3); magenta, (4 → 3), (−3 → −4); cyan, (5 → 4), (−4 → −5); and black, (6 → 5), (−5 → −6).

and so on. Note that the amount of separation is given by
�E(M).

We discussed earlier the multiplet with maximum spin
S = N/2 = 6, but the pairs with M = 1 and 0 exist in all the
multiplets of S > 0. Thus the number of transitions between
M = 0 and ±1 is maximum, and SM=1

xx and SM=0
xx have

the largest contribution. At a finite temperature, the thermal
population of the state of M = 1 is larger than that of M = 0 in
the magnetic field, and thus SM=0

xx is larger than SM=−1
xx . But at

high temperatures, they are almost the same. The temperature
dependence will be discussed later. The energy gaps �E(M)
depend on the multiplet to which the states belong, and thus
the resonance frequency is distributed as we see in Fig. 4 (left).

For an odd number of spins, the multiplets consist of
half-odd spins S of M = −S,−S + 1, . . . ,−1/2,+1/2, . . . ,S.
The transitions between M = 1/2 and −1/2 are the most
populated, and the contribution of S

M=1/2
xx gives the central

peak. The contribution from others give protuberances and
tails, just as for the case of even N .

A. Estimation of the size dependence
of the spectrum for each M

Now, we examine the size dependence of the characteristic
shapes of the spectra by making use of the moment method.

The method of moments originated in van Vleck’s paper [19]
and has been used as a basic tool to investigate the spectral
shapes [2,20]. In a recent study [18], the moments of the whole
spectrum for the XXZ chain in a wide temperature range were
discussed in detail, the spectrum being regarded as a single
peak and at a shifted position with a moderate width. The
moment mn of Sxx(ω) (6) is defined as [18]

mn =
∫ ∞

−∞
dω ωn

∫ ∞

−∞
dt〈MxMx(t)〉eqe

−iωt (8)

= 2π〈Mx(adH )nMx〉eq, (9)

where adH · ≡ [H ,·]. The intensity (i.e., the area of the
spectrum), the mean position, and the linewidth are defined as

intensity: m0, (10)

mean position:
m1

m0
, (11)

linewidth:

√
m2

m0
−

(
m1

m0

)2

, (12)

respectively. Here we make some remarks about the definition
of a linewidth given in (12). Indeed, (12) may not exist for the
spectrum with an exact Lorentzian shape. But, as will be seen
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later, (12) always exists for the system we are considering,
and it is known that (12) could be regarded as a good
approximation to the width of the Lorentzian distribution
in some situations [2,21]. In this sense, we adopt (12) as
the definition of the linewidth, and other problems will be
discussed in the last part of this section.

So far, the method has been used to study the whole shape of
the spectrum. For our purposes, however, we need to improve
this method because moments of the total spectrum are not
very helpful in considering the detailed shape of the spectrum,
such as the double peak. In other words, even if we know the
moments with small values of n of the whole spectrum, we
cannot derive the structure of the double-peak splitting.

1. Moment method for SM
xx

Here, we make use of the property that we found in
the previous section. The spectrum can be decomposed in
contributions from transitions specified by the magnetization
M (i.e., SM

xx). Thus now we extend the method and investigate
the properties of each SM

xx to obtain information for the
structure of the spectrum, e.g., the double peak. For example,
if we know the mean positions of SM=1

xx and SM=0
xx given by

the solid and dotted lines in Fig. 4 (left), respectively, we can
estimated the separation of the double peak.

From now on, we set the external field H = 0, because the
external field brings about just a shift of the mean position of
the spectra, and it does not affect the shape (see Appendix).

The spectrum from the specified transition at T = ∞ is given
by

SM
xx:T =∞

≡
∫ ∞

−∞
〈P(Mz=M)M

xP(Mz=M−1)M
x(t)P(Mz=M)〉∞e−iωtdt

(13)

= 1

2N

∑
m

(Mz
m=M−1)

∑
n

(Mz
n=M)

|〈m|Mx |n〉|22πδ(ω − (Em − En)).

(14)

Its nth-order moment is given by

mM
n =

∫ ∞

−∞
ωnSM

xx(ω)dω (15)

= 1

2N

π

2

∑
σ

(Mz
σ =M)

〈σ |M+adn
H (M−)|σ 〉, (16)

where M± ≡ Mx ± iMy . As for the basis set {|σ 〉}, we may
use the up/down-spin representation, such as | ↑↓↓ · · · ↑↓↑〉.

In the infinite-temperature limit, the Boltzmann factor does
not appear. Thus Eq. (16) can be calculated by counting
the number of state (combinatorics). The zeroth-, first-, and
second-order moments are written explicitly as

mM
0 = 1

2N

πN

2

∑
σ

(Mz
σ =M)

〈σ |S+
1 S−

1 |σ 〉, (17)

mM
1 = − 1

2N
π (N − 1)�

∑
σ

(Mz
σ =M)

〈σ |S+
1 S−

1 Sz
2|σ 〉, (18)

mM
2 = 1

2N

π�2

4

⎡
⎢⎣(N − 1)

∑
σ

(Mz
σ =M)

〈σ |S+
1 S−

1 |σ 〉 + 4(N − 2)
∑

σ

(Mz
σ =M)

〈σ |S+
1 S−

1 Sz
2S

z
3|σ 〉

⎤
⎥⎦. (19)

From these quantities, we obtain the intensity (the area) of
the spectrum, the mean position, and the linewidth of partial
spectra from the transitions (M → M − 1) in the following:

mM
0 = 1

2N

πN

2

(
N − 1
N
2 − M

)
|M|�N∼

√
N

2π
, (20)

mM
1

mM
0

= (1 − 2M)
�

N
, (21)

√
mM

2

mM
0

−
(

mM
1

mM
0

)2

= |�|√
2

√(
1 − 2

N

)(
1 − (1 − 2M)2

N (N − 1)

)

|M|�N∼ |�|√
2

+ O

(
1

N

)
. (22)

Here we find the exact result that the center of the partial
spectrum given by SM

xx , which is located at a shifted position
from the center at finite systems (i.e., to the right for M � 1 and
to the left for M � 0), reduces to zero as 1/N . This new exact

property strongly suggests that the separation of the double
peak reduces with N , although the separation is defined by the
difference of the peak positions but not the difference of the
mean. It should also be noted that these results are valid for
any � and J .

2. Estimation of the separation of the double peak

Let us analyze the numerical results again from the
viewpoint of Eqs. (20)–(22). The heights plotted in Fig. 3
(right) correspond to the intensity of the spectrum, and
they relate to the quantity given by Eq. (20). Equation (20)
indicates that the area of the partial spectrum increases with
N , which supports the size dependence of the peak’s height.
Equation (21) is consistent with the observation of 1/N in the
numerical results shown in Fig. 3 (left and center). We added
the green lines represented as 2(1 − 2M)�/N in Fig. 3. There
are some differences between the numerical results and the
green theoretical lines because Eq. (21) gives just the mean
position, not the position of the maximum of the spectrum.
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FIG. 6. Spectra for N = 12 classified by the magnetizations of transitions at β−1 = 10 K. The notation is the same as in Fig. 4. Here the
asymmetry becomes significant because of the difference of the Boltzmann factors.

Nevertheless, the fact that the mean of the peak given by
SM=0

xx:T =∞ goes to zero in proportion to 1/N strongly suggests
that the peaks of the double peak shrink to the center together as
N → ∞. As for the central peak in odd-spin systems, its mean
position turns out to always be zero by substituting M = 1/2
into Eq. (21).

V. TEMPERATURE DEPENDENCE
OF SPECTRAL SHAPES

As we explained above, the spectrum at high temperatures
has a structure like the double peak around the EPR position.
On the other hand, the field-theoretical study [15] gives a single
peak at a shifted position from the EPR position with a width
at low temperatures. Thus, it is interesting to study how the
spectrum changes with the temperature. In this section, we
investigate the temperature dependence of the ESR spectrum.

In the intermediate-temperature regime, the Boltzmann fac-
tors exp (−βE(H,m)) for m = M and −M + 1 are gradually
getting different. Consequently, SM>0

xx becomes larger than
S−M+1�0

xx , although the matrix elements are the same in both
cases. Thus, the spectral shape is no longer symmetric around
ωEPR. We depict this change for partial spectra for specified
values of M = 1,2, . . . in Fig. 6 for β−1 = 10.

Now we study the temperature dependence of the whole
spectrum. Let us first study the case in which the number of
spins is even. The spectrum for N = 20 is depicted in Fig. 7.

In Fig. 7 (left), we find the spectrum at a high temperature
(β−1 = 100 K), showing a double-peak structure and two
small protuberances next to it, which were shown in the
previous sections. The intensity is small because the prefactor
of χ is proportional to β. As the temperature decreases, the
intensity increases, and also the high-frequency side of the
spectrum becomes dominant, as we explained above. Thus the
spectrum shows a significant change with the temperature. At
a low temperature (β−1 = 1 K), as shown in Fig. 7 (right), the
spectrum has a single peak at a shifted frequency, which corre-
sponds to the transition from the ground state with maximum
magnetization, which is denoted by the arrow in Fig. 5 (left).

Next we study the case of an odd number of spins. In Fig. 8,
the spectra for N = 21 are shown. The spectrum has a single
sharp peak at the EPR position with protuberances beside it
at the high temperature β−1 = 100 K. The central peak is a
characteristic of the odd-number case. As the temperature is
lowered, the spectrum changes to the high-frequency side. It
should be noted that the intermediate temperature spectrum is
very similar to the case of even spins (N = 20).

Here it should be noted that so far we have studied the case
H = 5J , which is much bigger than other parameters, i.e.,
H > �,J , because the spectrum shape does not depend on H

but only shifts by H at high temperatures, and thus the choice
of H is in a sense arbitrary and H = 5J is convenient for
the numerical calculation. In this field, the state with M = S

becomes the ground state, the excitation from which gives the
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FIG. 7. The static magnetic field is set to H = 5 K. (Left) The spectra for N = 20 at β−1 = 100, 50, 30, 10, 7, 5, and 3 K. (Right) The
spectra for N = 20 at β−1 = 1 and 0.1 K.
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FIG. 8. The static magnetic field is set to H = 5 K. (Left) The spectra for N = 21 at β−1 = 100, 50, 30, 10, 7, 5, and 3 K. (Right) The
spectra for N = 21 at β−1 = 1 and 0.1 K.

dominant contribution at low temperatures. However, for the
dependence of the spectrum on the temperature, the ratio of H

and J also plays an important role.
Indeed, the interaction J is often bigger than the field

H , and the situation that the field theory studied is the
case J > H > �. Also in this parameter regime, the field
theory predicts a single peak at a shifted position at low
temperatures [15]. But if J > H is imposed, the magnetization
is not fully polarized even at low temperatures, and therefore
the single peak obtained above may not correspond to that
obtained in the field theory.

Although the energy level distribution of our finite chain is
not the same as that of an infinite chain, we may expect that to
some extent it exhibits a qualitatively similar structure, because
the present model contains properties up to the length N = 20.
Thus, we study the temperature dependence for the case of
a small value of H , say, H = 0.5 K, which is smaller than
J = 1 K and still larger that |�| = 0.08 K. The temperature
dependence is depicted in Fig. 9. We find that qualitative
features are similar to those of Fig. 7, i.e., the high-temperature
structure moves to the high-frequency side similarly to that of
Fig. 7, and at low temperature it tends to converge to a single

peak. However, the position of the peak is different from that
of Fig. 7. We find that now the dominant peak is located at
ω � 0.511 K. It is interesting that this value is consistent with
the formula derived by field theory [15], i.e.,

�ω = − 2

π2

�

J
ln

[
J

max(T ,H )

]
� 0.011 K. (23)

From these observations, we would expect that the general
tendency of the temperature dependence of the spectrum, i.e.,
the high-temperature spectrum changing to the single peak at
a low temperature with a significant change at intermediate
temperatures, would hold, and also that the chain of length
of order N � 20 may capture even quantitatively the general
aspects of the temperature dependence.

VI. SUMMARY AND DISCUSSION

In the present paper, we studied the size and temperature
dependence of the ESR spectrum for the XXZ chain. First,
we investigated the size dependence of the separation of the
double peak. The double-peak structure obtained by the AC
method shows the tendency for the separation to shrink to zero
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FIG. 9. The static magnetic field is set to H = 0.5 K. (Left) The spectra for N = 20 at β−1 = 100, 10, 1, and 0.5 K. (Right) The spectra
for N = 20 at β−1 = 0.1, 0.05, and 0.01 K.
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FIG. 10. (Left) and (Right) Spectrum for N = 11 and β−1 = ∞. Note that the scales are different between (Left) and (Right). According
to Eq. (22), we consider 2 × �/

√
2 as the linewidth, which is denoted by the black arrow.

as N → ∞. The size dependence was analyzed by making
use of an extended moment method. We found that the whole
spectrum is decomposed into contributions of SM

xx with various
M and that each contribution of SM

xx forms a single peak. By
making use of these facts, we applied the moment method to
each contribution of SM

xx , and we found that the mean position
of each spectrum exactly approaches the center as �/N , and
becomes zero as N → ∞. Thus, the separation of the double
peak is expected to be estimated by the difference of means
of corresponding peaks, i.e., S1

xx and S0
xx , as shown in Fig. 2

(left). This fact strongly indicates that the separation of the
double peak vanishes.

Now, we point out a delicate problem with the interpretation
of Eq. (22), which stems from the fact that the variance of the
distribution is of the order of �, which is finite. Indeed, the
shape of the spectrum could be of any form within the range
of � as long as the mean is zero. With this observation, small
peaks away from the origin might give unexpected contribu-
tions, and we cannot exclude the possibility that in the thermo-
dynamic limit, the double-peak structure remains present. To
understand the role of the finite width, we study the single peak
of S

1/2
xx in odd-spin systems. In Fig. 10 (left), Sxx(ω)1/2 is shown

for N = 11 together with other Sxx(ω)M . The width of the peak
(red line) looks very small. The linewidth of the spectrum of
Sxx(ω)1/2 calculated from Eq. (22) is shown by the arrow that is
much larger, which seems contradictory to the data. To resolve
this problem, we plot the spectrum on a different scale [Fig. 10
(right)]. We find small peaks far from the central peak, which
cause the linewidth to be much broader than we expected.
Therefore, in this sense, the linewidth calculated from Eq. (22)
may not be appropriate to characterize the peak structure. For
example, if we define the width by the width at half-maximum,
the use of Eq. (22) is definitely an overestimation. Thus, when
we consider that the structure consists of peaks of SM

xx , the
behavior of the mean would be more informative.

In the present paper, we strongly indicated the merging
of the double peak in the thermodynamic limit. On the
other hand, we would like to note that the double-peak
structure is definitely present even for chains of consider-
able length (N < 30), and therefore the structure and its

temperature dependence may be accessible to experimental
observation.

We also studied the temperature dependence of the spec-
trum. A drastic change from the high-temperature spectrum
with a structure around the EPR position such as the double
peak to the low-temperature spectrum with a single peak at a
shifted position was observed. We found that the temperature
dependence of the spectrum depends on the parameters, e.g.,
the field H and the anisotropy �. In the present paper we
adopted H = 5J , which is much bigger than the anisotropy
� and the interaction J , because the shape of the spectrum
does not depend on H at high temperature, i.e., H simply
shifts the center of the spectrum. However, the temperature
dependence depends on H . In the situation that is treated in
the field-theoretical approach, the condition J � H > � is
imposed. To study the corresponding case, we studied the case
H = 0.5J . We found that the general aspect of the temperature
dependence is common, while the peak position at low temper-
ature is different. We find that the numerical estimation of the
shift of the system of N = 20 is rather close to that estimated by
the field theory. This may indicate that N = 20 would already
be a sufficient length to capture the general features of long
chains. The temperature dependence of the line shape has not
been studied in detail so far, and the drastic change with the
temperature has not been thoroughly studied yet in experiment.

Finally, we add some comments regarding future works.
In this paper, since we assumed the anisotropy to be small
(�/J = −0.08) and the transitions between different multi-
plets can be ignored, the decomposition of the spectrum into
a contribution specified by magnetization is valid. However,
the analytical results derived with the moment method in the
preceding section are valid for any J and �, and in addition,
according to our numerical simulation, the decomposition of
the spectrum specified by magnetization somehow works well
for the wide range of XY -like anisotropy (0 < �/J < 1). On
the other hand, for the Ising-like anisotropy (�/J > 1), our
method seems to be of limited use empirically.

The idea of the decomposition of the spectrum can also be
used for other systems with magnetization conserved, e.g.,
systems with the Dzyaloshinskii-Moriya interaction whose
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direction is parallel to the static field. These applications will
be studied elsewhere.
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APPENDIX: SPECTRAL SHIFT WITH
AN EXTERNAL FIELD H

In Sec. IV A, we investigated the spectral shapes by
calculating Sxx(ω) under no magnetic field, instead of the
susceptibility χ ′′(ω) under a finite static field H . This is valid
for a sufficiently strong field H � J (> 0) and a sufficiently
high temperature β ∼ 0. In this appendix, we illustrate this
fact.

First, we consider the spectrum under a strong field H .
Let the simultaneous eigenvectors of H0 + H ′ and Hz be
{|E0

n,Mn〉}Dn=1,

(H0 + H ′)
∣∣E0

n,Mn

〉 = E0
n

∣∣E0
n,Mn

〉
,

Hz

∣∣E0
n,Mn

〉 = −HMn

∣∣E0
n,Mn

〉
, (A1)

n = 1, . . . ,D.

Sxx(ω) is given by

Sxx(ω,H ) = 2π

Z

∑
m,n

∣
∣
〈
E0

n,Mn

∣∣Mx
∣∣E0

m,Mm

〉∣
∣2

× δ{ω − [(Em − En) − H (Mm − Mn)]}. (A2)

Let us divide Sxx(ω,H ) into two parts in the following:

Sxx(ω,H ) = S>
xx(ω,H ) + S<

xx(ω,H ), (A3)

where

S>
xx(ω,H ) ≡ 2π

Z

∑
m,n

1

4

∣
∣
〈
E0

n,Mn

∣∣M+∣∣E0
m,Mm

〉∣
∣2

× δ{ω − [(Em − En) − H (Mm − Mn)]}, (A4)

S<
xx(ω,H ) ≡ 2π

Z

∑
m,n

1

4

∣
∣
〈
E0

n,Mn

∣∣M−∣∣E0
m,Mm

〉∣
∣2

× δ{ω − [(Em − En) − H (Mm − Mn)]}, (A5)

and we find

S>
xx(−ω,H ) = S<

xx(ω,H ). (A6)

Noting that we are interested in the absorption, not the
emission, we may focus on the region ω > 0. The peaks in
this region need to satisfy the relation Em − En > H (Mm −
Mn). Then it follows that Mm = Mn − 1, because H � J >

0. Therefore, only S>
xx(ω,H ) contributes to the spectrum

Sxx(ω,H ) in the region ω > 0:

Sxx(ω,H ) = S>
xx(ω,H ), ω > 0, (A7)

Sxx(ω,H ) = S<
xx(ω,H ), ω < 0. (A8)

According to Eqs. (A7) and (A4), we have Sxx(ω,H ) =
S>

xx(ω − H,0). On the other hand, it is shown that

S>
xx(ω − H,0) = S>

xx(H − ω,0) = S<
xx(ω − H,0), (A9)

because of the symmetry of the shape of S>
xx as seen in

Sec. IV, and Eq. (A6). Then, by using Eq. (A3), we have
S>

xx(ω − H,0) = 1
2Sxx(ω − H,0). Therefore, it follows that

Sxx(ω,H )= 1
2Sxx(ω−H,0), which is what we wanted to show.

The difference between Sxx(ω) and χ ′′(ω) is just the
presence of the factor (1 − e−βω)/2 ∼ βω/2. χ ′′(ω) vanishes
at infinite temperature because of this factor, but we are
interested in the spectral shape, not in the exact value of the
peak. Therefore, we can ignore this factor and consider only
Sxx(ω). Strictly speaking, the ω dependence of the factor βω/2
could deform the spectral shape, but this effect is also ignorable
in the case in which H is very large.
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