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We report a comprehensive investigation of the crystal structure and magnetic behavior of the S = 1 compound
Ba2Ni(PO4)2 with a honeycomblike topology of the spin lattice. Magnetic susceptibility and specific-heat data
reveal two successive transitions at TN1 = 5 K and TN2 = 4.6 K. Additionally, these data demonstrate a broad
peak at Tmax ∼ 8 K, indicative of the short-range magnetic order above TN1, whereas below TN1 field-induced
transitions around 4 and 10 T are identified from the magnetization measurements. Neutron diffraction in zero
field establishes stripe antiferromagnetic order below TN2 with the ordered moment of 1.75(8)μB/Ni2+ at 1.5 K.
Density-functional band-structure calculations reveal the leading interaction J3 = 3.5 K running perpendicular
to the honeycomb planes, and weaker interactions J1 = 0.5 K and J4 = 1.8 K within the honeycomb planes,
whereas the stripe order is stabilized by the diagonal interlayer interaction J2 = 1.3 K that frustrates J1. This is
in contrast to the usually expected scenario where the competing second- and third-neighbor interactions on the
honeycomb lattice stabilize the stripe order. The Ni2+ ions feature a sizable easy-plane anisotropy A � 10.5 K,
but the position of the easy plane changes from one atom to another, thus amplifying magnetic frustration.
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I. INTRODUCTION

Two-dimensional honeycomb lattice is one of the most
interesting low-dimensional geometries of magnetic systems.
Its low bond connectivity gives rise to strong quantum effects.
For a spin- 1

2 antiferromagnet on the honeycomb lattice with
only nearest-neighbor interactions within the plane, the nearly
twofold reduction in the ordered moment is expected due
to quantum fluctuations, from 1.0μB in the classical case
to 0.55μB in the quantum regime [1,2]. Magnetic order on
the honeycomb lattice can be suppressed completely via
frustration by second- and third-neighbor interactions [3–7]
or via a combination of anisotropic exchange interactions in
the spirit of the Kitaev model [8], where a spin-liquid state is
stabilized for a wide range of parameters.

Several honeycomb-lattice antiferromagnets, including
Na2Cu2TeO6 [9], Na3Cu2SbO6 [10], and Cu5SbO6 [11],
indeed lack long-range magnetic order and reveal a spin-
singlet ground state. However, this ground state is rooted
in the dimerization arising from geometrical distortions of
the honeycomb planes [12–14]. In Ni2+-based honeycomb
systems, zigzag order prevails [15–19]. It features zigzag
chains of parallel spins and, alternatively, can be described
as a state where each spin is surrounded by two spins having
the same direction and one spin having the opposite direction.
Other types of collinear magnetic order have been observed
too [20,21]. In the Néel state, each spin is surrounded by three
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spins having the opposite direction (i.e., all nearest-neighbor
spins are antiparallel), whereas in the stripe state each spin
is surrounded by two antiparallel and one parallel spins. The
type of magnetic order is usually controlled by second- and
third-neighbor couplings on the honeycomb lattice [15,20].

Here, we report the magnetic ground state and magnetic
properties of the spin-1 antiferromagnet Ba2Ni(PO4)2 with a
honeycomblike spin lattice. This compound belongs to the
phosphate family A2M(PO4)2 (A = Ba and Sr; M = Cu,
Ni, Co, Mn) having monoclinic crystal structures [22–24].
Ba2Ni(PO4)2 was first prepared by Elbali et al. [22], who
presented its basic properties only. Here, we present a
comprehensive study of this compound. We demonstrate that
in zero field it undergoes two consecutive magnetic transitions
and at low temperatures forms stripe antiferromagnetic (AFM)
order, which is rarely seen in honeycomb systems. The origin
of this state is rationalized microscopically using the model
of a stacked honeycomb lattice with frustrating interactions
between the honeycomb planes. Additionally, we observe a
sequence of field-induced transitions and a competition of
single-ion anisotropies that amplifies magnetic frustration in
Ba2Ni(PO4)2.

II. METHODS

Polycrystalline samples of Ba2Ni(PO4)2 were synthe-
sized by a conventional solid-state reaction route using
Ba2CO3 (99.999%, Alfa Aesar), NiO (99.999%, Aldich), and
NH4H2PO4 (99.999%, Alfa Aesar) as starting materials. The
starting materials were mixed in acetone medium and ground
in an agate mortar, put into a high pure alumina (99.999%)
crucible, and heated at 450 ◦C for 6 h and at 650 ◦C for 24 h
in air in order to release H2O, NH3, and CO2. The resulting
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powder was then ground and heated at 1000 ◦C for 48 h with
several intermediate grindings and pelletizations. After each
heating, the sample was cooled down at the rate of 120 ◦C/h to
room temperature and reground to improve homogeneity. The
synthesized sample was light yellow in color. The progress of
the reaction was followed by powder x-ray diffraction (XRD),
and the final reaction rendered the phase-pure powder sample.

Magnetic susceptibility χ (T ) measurements were per-
formed using the SQUID magnetometer from Quantum
Design. Isothermal magnetization and heat-capacity Cp(T )
measurements were done using a commercial Physical Prop-
erty Measurement System (PPMS, Quantum Design).

Powder neutron diffraction patterns were recorded by using
the cold-neutron focusing diffractometer E6 (λ = 2.45 Å) at
HZB, Germany. The powdered sample was loaded into a cylin-
drical vanadium container. Low-temperature measurements
were performed in a standard Orange cryostat. The diffraction
data were analyzed by the Rietveld method using the program
FULLPROF [25].

Scalar-relativistic and full-relativistic density-functional
(DFT) band-structure calculations were performed in the
FPLO code [26] using local density approximation (LDA)
for the exchange-correlation potential [27]. Reciprocal space
was sampled by a k mesh with 104 and 32 k points in
the symmetry-irreducible part of the first Brillouin zone
for the crystallographic unit cell and for the supercell
doubled along the a direction, respectively. Strong correlation
effects in the Ni 3d shell were taken into account on
the mean-field LSDA+U level with the onsite Coulomb
repulsion Ud = 6 eV, Hund’s coupling Jd = 1 eV, and
fully-localized-limit double-counting correction [28,29].

Parameters of the spin Hamiltonian

Ĥ =
∑
〈ij〉

Jij SiSj −
∑

i

A S2
i�i

(1)

were derived from DFT calculations, as further explained in
Sec. III F. Here, the summation is over bonds 〈ij 〉, Jij are
isotropic exchange couplings, A stands for the single-ion
anisotropy, �i denotes the direction of the easy (A > 0) or hard
(A < 0) axis for site i, and Si�i

is the component of the local
spin Si along this direction. Additionally, orbital energies and
hopping parameters were extracted from tight-binding fits of
the LDA band structure using Wannier functions implemented
in FPLO.

III. RESULTS

A. X-ray diffraction and crystal structure

The crystal structure of Ba2Ni(PO4)2 has been investigated
by the room-temperature powder x-ray diffraction measure-
ment (Fig. 1). Rietveld analysis confirms that the compound
crystallizes in the monoclinic space group P 21/n (space group
No. 14). It also confirms the single-phase nature of the powder
sample. The values of the lattice parameters are found to be a =
5.32102(9) Å, b = 8.80268(16) Å, and c = 16.0958(3) Å, and
β = 90.704(9)◦. These values are in good agreement with the
earlier paper [22]. Refined atomic coordinates and isotropic
thermal displacement parameters are given in Table I. All the
crystallographic sites are fully occupied.
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FIG. 1. Rietveld refined x-ray (CuKα) powder diffraction pattern
for Ba2Ni(PO4)2 at room temperature. The observed and calculated
patterns are shown by the filled circles and solid black line,
respectively. The difference between the observed and calculated
patterns is shown by the thin line at the bottom. The vertical bars
represent the allowed Bragg peak positions.

The crystal structure of Ba2Ni(PO4)2 can be represented
by layers of NiO6 octahedra and (PO4)−3 groups. Within
a given layer, the NiO6 octahedra share corners with the
PO4 tetrahedra, producing a honeycomb arrangement of the
magnetic Ni2+ ions [Figs. 2(a) and 2(b)]. One such honeycomb
unit of the Ni2+ ions is marked by the dashed rounded line in
Fig. 2(a), and its details are shown in Fig. 2(b). The honeycomb
units of the NiO6 octahedra form buckled honeycomb planes
as shown in Fig. 2(c). The buckled honeycomb layers are
also connected along the crystallographic a axis by the PO4

tetrahedra resulting in a zigzag chain structure [Fig. 2(e)]. The
barium (Ba) atoms are situated between the honeycomb layers
[Fig. 2(a)]. All the magnetic Ni2+ ions are crystallographically
identical and located within the NiO6 octahedra. On the

TABLE I. Fractional atomic coordinates and isotropic thermal
parameters (Biso, in Å−2) obtained from the Rietveld refinement at
room temperature. The goodness of fit is χ 2 = 1.66. For atoms of
each type, thermal displacement parameters were refined as a single
parameter. All atoms occupy 4e crystallographic sites, and all the
atomic sites are found to be fully occupied. The numbers in the
parentheses are the respective error bars.

Atom x/a y/b z/c Biso

Ba1 0.2969(6) 0.2974(3) 0.9820(2) 0.76(4)
Ba2 0.7421(6) 0.8469(3) 0.2696(2) 0.76(4)
Ni 0.2763(18) 0.4873(8) 0.3640(5) 1.06(17)
P1 0.7270(2) 0.5846(17) 0.4190(8) 0.92(20)
P2 0.2400(2) 0.6075(16) 0.1639(9) 0.92(20)
O11 0.7910(4) 0.5890(2) 0.5168(17) 1.42(8)
O12 0.5110(5) 0.7040(3) 0.4044(15) 1.42(8)
O13 0.6550(5) 0.4410(3) 0.3875(14) 1.42(8)
O14 0.9640(5) 0.6430(3) 0.3764(15) 1.42(8)
O21 0.3570(4) 0.5230(3) 0.0881(15) 1.42(8)
O22 0.3560(5) 0.7570(3) 0.1725(14) 1.42(8)
O23 − 0.0330(4) 0.6150(3) 0.1652(13) 1.42(8)
O24 0.3190(5) 0.5340(3) 0.2375(16) 1.42(8)
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FIG. 2. (a) Overall view of the Ba2Ni(PO4)2 crystal structure. The dashed line shows a honeycomb unit formed by NiO6 octahedra and
two nonequivalent P(1)O4 and P(2)O4 tetrahedra. (b) Detailed view of the honeycomb unit with nearest-neighbor exchange interactions.
(c) Projection of the crystal structure on the ac plane, where buckled honeycomb planes of Ni2+ ions are shown by the dashed rectangular
boxes. (d) Projection of the crystal structure on the ac plane showing the zigzag chains along the a axis (perpendicular to the honeycomb
planes). (e) Detailed view of the zigzag chains along the a axis.

other hand, phosphorous atoms occupy two inequivalent
crystallographic sites, P(1) and P(2), which form nearly regular
P(1)O4 and P(2)O4 tetrahedra, respectively.

A schematic diagram of the magnetic interaction geometry
is shown in Fig. 3. The honeycomb layers of Ni2+ ions are
distorted, with two different interaction pathways J1 and J4

running via the P(1)O4 and P(2)O4 tetrahedra, respectively,
within the honeycomb planes. For each Ni2+ ion, there are
two interactions of type J4 and one interaction of type J1.
Additionally, there are two interactions of type J3 and one
interaction of type J2 between the honeycomb planes.

B. Magnetization

The temperature-dependent dc-magnetic susceptibility χ =
M/H curve measured under H = 1 T is presented in
Fig. 4(a). With decreasing temperature, the susceptibility
curve shows a broad maximum at Tmax ∼ 8 K corresponding
to the onset of short-range spin-spin correlations. At lower
temperatures, the χ (T ) curve exhibits a sharp drop followed

FIG. 3. A schematic diagram of exchange interactions between
the Ni2+ ions in Ba2Ni(PO4)2.

by an upturn. The [d(χT )/dT ] curve for the H = 0.1 T
shows two magnetic transitions at 5 and 4.6 K identified
as TN1 and TN2, respectively [Fig. 4(b)]. These transition
temperatures are in excellent agreement with the heat-capacity
data presented later. Figure 4(c) shows the χ (T ) curves
measured under different applied magnetic fields. In higher
fields, the low-temperature susceptibility increases, indicating
a gradual smearing out of the magnetic transitions.

The high-temperature χ (T ) data (T > 40 K) measured
under an applied field of 1 T follow Curie-Weiss–type behavior
[Fig. 4(a)]. To fit the susceptibility data, we used the expression

χ = χ0 + C

T − θCW
, (2)

where χ0 is the temperature-independent contribution that ac-
counts for core diamagnetism and Van Vleck paramagnetism.
The second term is the Curie-Weiss law with the Curie constant
C = NAμ2

eff/3kB , where NA is Avogadro’s number, μeff is
the effective magnetic moment, and kB is the Boltzmann’s
constant. The parameter θCW is the Curie-Weiss temperature.

The fit of Eq. (2) to the χ−1(T ) data in the temper-
ature range 40 K � T � 280 K gives χ0 = −2.192(4) ×
10−4 cm3/mol-Ni2+, C = 1.433(2) cm3 K/mol − Ni2+, and
θCW = −10.423(2) K. The negative value of θCW indicates
predominant AFM interactions in Ba2Ni(PO4)2. The effective
magnetic moment (μeff) is calculated to be 3.386(2)μB/Ni2+,
which is larger than the expected spin-only value of
2.83 μB/Ni2+ for the S = 1 and g = 2. The higher value of
μeff is in agreement with the previous report for BaNi2(PO4)2

[22] and SrNi2(PO4)2 [22,30]. For the studied compound
Ba2Ni(PO4)2, the derived μeff value corresponds to g = 2.33
indicating a sizable contribution of the orbital moment due to
spin-orbit coupling.

The isothermal magnetization M versus H curves measured
at 1.9 and 10 K are shown in the main panel of Fig. 5, the
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FIG. 4. (a) Temperature-dependent dc-magnetic susceptibility
(χ = M/H ) and inverse magnetic susceptibility χ−1 of Ba2Ni(PO4)2

measured under an applied magnetic field of H = 1 T. The straight
solid red line is the linear fit to the χ−1(T ) data (40 K � T � 280 K)
and we extrapolated the curve over −10.42 K � T � 300 K. The
χ (T ) curve in the low-T region (1 K � T � 20 K) is shown in the
inset. (b) The d(χT )/dT versus T curve, measured under H = 0.1 T
over the low-T region. (c) The χ (T ) curves measured under different
applied magnetic fields.

inset shows the isothermal magnetization curves measured at
various temperatures. At the lowest measured temperature of
1.9 K, the behavior of the magnetization without any hysteresis
suggests an AFM ground state. The magnetization does not
saturate up to 14 T and the value of M ∼ 1.3μB/Ni2+ at 14 T
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FIG. 5. Magnetization (M) as a function of the applied field (H )
measured at 1.9 and 10 K. The inset shows the M vs H curves at
various temperatures, and field-induced transitions are marked by
SF-1 and SF-2.

is much smaller than the expected saturated magnetic moment
of Ms = gSμB = 2.33μB/Ni2+, where we used S = 1 and
g = 2.33 from the Curie-Weiss fit. The magnetization curves
measured below 5 K demonstrate a clear upward curvature
corresponding to a field-induced spin-flop transition at H ∼
4 T. A careful inspection of the dM/dH curve (Fig. 6) confirms
the spin-flop transition around 4 T. Additionally, a change in
the slope seen around 10 T can be tentatively ascribed to
another field-induced phase transition in Ba2Ni(PO4)2.

C. Heat capacity

The results of the heat-capacity versus temperature mea-
surements under different magnetic field, performed on a
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FIG. 6. dM/dH vs H curve at 1.9 K showing two pronounced
kinks at around 4 and 10 T, respectively. These transitions are labeled
by the down arrow (SF-1) and up arrow (SF-2), respectively.
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FIG. 7. (a) Temperature dependence of the specific heat Cp of
Ba2Ni(PO4)2 measured at zero field. Open circles are the raw data,
the solid black line shows the phonon contribution Cph [according to
the fit with Eq. (3)], and the solid blue line indicates the magnetic
contribution. The inset shows the T 3 dependence of the heat capacity
below TN . (b) The heat capacity of Ba2Ni(PO4)2 measured at different
applied magnetic fields. The arrows denote TN1 and TN2. (c) The
Cmag as a function of temperature over the low-temperature range
(1.5–40 K). The calculated magnetic entropy (Smag) (solid orange
line) as a function of temperature. Inset shows the Cmag curve zoomed
over 4–9 K.

small pressed pellet of Ba2Ni(PO4)2 using the relaxation
technique, are shown in Fig. 7. In agreement with the magnetic

susceptibility results, zero-field heat-capacity curve reveals
two successive magnetic transitions at TN1 = 5 K and TN2 =
4.6 K, respectively.

Above TN1, a broad peak due to short-range magnetic
ordering is apparent around 8 K [inset of Fig. 7(c)]. This peak
is suppressed under the applied magnetic field. The transitions
at TN1 and TN2 are suppressed by the field too and shift
towards lower temperatures. Above 4 T, only one transition
is discernible, which indicates that the two transitions merge
around this point. At higher fields, this single transition is
suppressed further. This is consistent with the susceptibility
results depicted in Fig. 4(c).

In order to estimate the magnetic contribution to the specific
heat, we proceed as follows: first, we approximate the lattice
contribution Cph by fitting the data above 20 K with a
superposition of one Debye-type and three Einstein-type terms
according to [31,32]

Cph(T ) = fDCDeb(�Deb,T ) +
3∑

i=1

giCEin,i(�Ein,i ,T ). (3)

The Debye-type heat capacity is given by

CDeb(T ) = 9R

(
T

�Deb

)3 ∫ �Deb/T

0

x4ex

(ex − 1)2
dx. (4)

In order to simplify the fitting procedure, a Padé approximant
for the Debye-type heat capacity, proposed recently by
Goetsch et al. [33], was utilized. The Einstein-type heat
capacities CEin,i(T ) were calculated according to

CEin,i(T ) = 3R

(
�Ein,i

T

)2 exp(�Ein,i/T )

[exp(�Ein,i/T ) − 1]2
, (5)

where R is the universal gas constant, kB is the Boltzmann con-
stant, �Deb and �Ein are the Debye and Einstein temperatures,
respectively. In the Debye-Einstein model, the total number of
modes n is equal to the total number of atoms in the formula
unit. For Ba2Ni(PO4)2 this number is 13. We considered the
ratio of the relative weights of the Debye and Einstein modes
to be 1 : (n − 1). During the fitting of the specific-heat data
by the Einstein-Debye phonon model we have found that the
higher-order Einstein terms (beyond the third term) remain
close to zero and render the fitting procedure unstable. A model
with a combination of one Debye term and three Einstein terms
fits the observed data well in the temperature range 20–200 K,
as shown in Fig. 7(a). This model is empirical in nature. It
could be refined if further information on lattice dynamics of
Ba2Ni(PO4)2 were available. The fitting results are presented
in Table II.

TABLE II. Relative weights and characteristic temperatures �

used to approximate lattice contribution to the heat capacity of
Ba2Ni(PO4)2 according to Eq. (3).

Contribution Weight � (K)

Debye, i = 1 0.0769 714.5(5)
Einstein, i = 1 0.3159 323.1(2)
Einstein, i = 2 0.2229 113.5(8)
Einstein, i = 3 0.3843 1012(2)
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By subtracting Cph from the experimental heat capacity, we
obtain the magnetic contribution Cmag. A plot of Cmag(T )/T

versus T is shown in Fig. 7(c). The associated magnetic
entropy is calculated as follows:

Smag(T ) =
∫ T

0

Cmag(T ′)
T ′ dT ′. (6)

We obtain the overall magnetic entropy Smag =
11.45(1) J mol−1 K−1, which is in reasonable agreement
with the entropy of a S = 1 system, Smag = R ln(2S + 1) =
9.14 J mol−1 K−1. The remaining discrepancy may be due to
the uncertainties in estimating the lattice part Cph.

At low temperatures, magnetic specific heat follows the
power-law behavior

Cp(T ) ∝ T n (7)

with n ∼ 3, as expected for the linear spin-wave dispersion
relation in a three-dimensional antiferromagnet is shown in
inset of Fig. 7(a).

D. Magnetic ground state

Magnetic ground state of Ba2Ni(PO4)2 is investigated by
the low-temperature neutron powder diffraction. The measured
diffraction patterns at 7 K (paramagnetic state) and 1.5 K
(magnetically ordered state) are shown in Figs. 8(a) and
8(b), respectively. The room-temperature monoclinic crystal
structure with the space group P 21/n reproduces the nuclear
phase at low temperatures. At 7 K (paramagnetic state), all
peaks can be ascribed to the nuclear structure. The lattice
parameters at 7 K are found to be a = 5.2005(3) Å, b =
8.6116(5) Å, c = 15.7423(11) Å, and β = 90.72(5)◦ with the
unit-cell volume of V = 705.0(8) Å3.

Figure 8(b) depicts the observed pattern at 1.5 K along
with the calculated pattern, where only the nuclear phase of
Ba2Ni(PO4)2 was assumed. Weak additional peaks at Q ∼
0.64 Å−1 and 0.97 Å−1 have magnetic origin. The temperature
dependence of the magnetic peak at Q ∼ 0.97 Å−1 is shown
in the inset of Fig. 8(b). The pure magnetic pattern at 1.5 K is
estimated after subtraction of the nuclear background at 7 K
and depicted in Fig. 8(c). All magnetic peaks can be indexed
with the propagation vector k = ( 1

2 ,0, 1
2 ) with respect to the

monoclinic unit cell.
To determine magnetic structures compatible with the sym-

metry of Ba2Ni(PO4)2, we performed representation analysis
using the BASIREPS program available in the FULLPROF suite
[25]. Representational analysis determines those magnetic
structures that can be formed upon a second-order phase
transition. The crystal structure in the paramagnetic state and
the propagation vector of the magnetic ordering are used
as input. The analysis involves the determination of space-
group symmetry elements that leave the propagation vector k
invariant. These symmetry elements form a little group Gk.
The magnetic representation for a given magnetic site is then
decomposed in terms of the irreducible representations (IRs)
of the little group Gk as follows:

	mag =
∑

ν

nν	
μ
ν , (8)

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

0.5 1.0 1.5 2.0 2.5 3.0

0.90 0.95 1.00 1.05 1.10 1.15

Q ( -1)

Nuclear
(a) 7 KBa2Ni(PO4)2

N
eu

tro
n 

C
ou

nt
s 

 (a
rb

. u
ni

ts
)

Nuclear
1.5 K(b)

N
eu

tro
n 

C
ou

nt
s 

 (a
rb

. u
ni

ts
)

* *

Magnetic
+

(0
,2

,0
)+

k

(-
1,

3,
4)

+k
(1

,3
,0

)+
k

(0
,3

,3
)+

k
(1

,1
,4

)+
k

(-
2,

2,
2)

+k
(1

,2
,1

)+
k

(0
,3

,-1
)+

k

(-
2,

0,
2)

+k
(1

,1
,0

)+
k

(0
,2

,2
)+

k

(-
1,

2,
1)

+k

(0
,0

,2
)+

k
(0

,1
,1

)+
k

(0
,1

,-1
)+

k

(-
1,

0,
1)

+k

Magnetic
1.5 K - 7 K(c)

Q ( -1)

k = (1/2 0 1/2)

(0
,0

,0
)+

k

1.5 K
3.25 K

7 K

4 K

FIG. 8. Experimentally observed (circles) and calculated (solid
black lines) neutron diffraction patterns for Ba2Ni(PO4)2 at (a) 7 K
(paramagnetic state) and (b) 1.5 K (magnetically ordered state),
respectively. (c) Experimental magnetic pattern (red circles) at 1.5 K
(after subtraction of the nuclear background at 7 K). The magnetic
pattern is calculated (black solid line) as per the 	2. The inset of
(b) shows temperature dependence of the strongest magnetic Bragg
peak at Q ∼ 0.97 Å−1. The magnetic pattern in (c) is zoomed
vertically for clarity. The solid blue lines at the bottom of each panel
represent the difference between the observed and calculated patterns.
The vertical bars indicate the positions of the nuclear and magnetic
Bragg peaks allowed by symmetry.

where 	μ
ν is the IR of order μ, and nν shows how many times

it appears in the magnetic representation 	mag for a given
crystallographic site. The number of “symmetry-allowed”
magnetic structures possible for a given crystallographic site
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TABLE III. Irreducible representations of the group Gk of the
propagation vector k = ( 1

2 ,0, 1
2 ) for Ba2Ni(PO4)2.

Symmetry element of Gk

IRs {E|000} {C2y |0.50.50.5} {I |000} {σy |0.50.50.5}
	1

1 1 1 1 1
	1

2 1 1 −1 −1
	1

3 1 −1 1 −1
	1

4 1 −1 −1 1

is simply the number of nonzero IRs in the decomposition of
its magnetic representation.

The space group of Ba2Ni(PO4)2 involves four sym-
metry operations ({E|000}, {C2y |0.50.50.5}, {I |000}, and
{σy |0.50.50.5}). All of them leave the propagation vector k =
( 1

2 ,0, 1
2 ) invariant. For this propagation vector, the irreducible

representations (IRs) of the little group Gk are given in
Table III. There are four possible IRs, which are all one
dimensional. The reducible magnetic representation 	mag for
the Ni site can be decomposed as a direct sum of the IRs as
follows:

	Ni
mag = 3	1

1 + 3	1
2 + 3	1

3 + 3	1
4 . (9)

The basis vectors (the Fourier components of the magnetiza-
tion) for the magnetic Ni site are given in Table IV. These basis
vectors are calculated using the projection operator technique
implemented in BASIREPS.

For a second-order magnetic transition, only one repre-
sentation can be involved according to the Landau theory.
The number of degrees of freedom to be refined is reduced
to the number of basis vectors associated with the given IR.
For Ba2Ni(PO4)2, there are four possible magnetic structures:
	1, 	2, 	3, and 	4. Each of them is one dimensional

TABLE IV. Basis vectors of the magnetic Ni site with the propa-
gation vector k = ( 1

2 ,0, 1
2 ) for Ba2Ni(PO4)2. Only real components of

the basis vectors are presented. The atoms of the nonprimitive basis
are defined according to Ni1: (x,y,z), Ni2: (x̄ + 1

2 ,y + 1
2 ,z̄ + 1

2 ),
Ni3: (x̄,ȳ,z̄), and Ni4: (x + 1

2 ,ȳ + 1
2 ,z + 1

2 ), where x = 0.2763,
y = 0.4873, and z = 0.3640.

Basis vectors

IRs Ni1 Ni2 Ni3 Ni4

	1
1 �1 (100) (1̄00) (100) (1̄00)

�2 (010) (010) (010) (010)
�3 (001) (001̄) (001) (001̄)

	1
2 �1 (100) (1̄00) (1̄00) (100)

�2 (010) (010) (01̄0) (01̄0)
�3 (001) (001̄) (001̄) (001)

	1
3 �1 (100) (100) (100) (100)

�2 (010) (01̄0) (010) (01̄0)
�3 (001) (001) (001) (001)

	1
4 �1 (100) (100) (1̄00) (1̄00)

�2 (010) (01̄0) (01̄0) (010)
�3 (001) (001) (001̄) (001̄)

and repeated three times in Eq. (9). There are three basis
vectors corresponding to each of these representations and,
therefore, three refinable parameters. The magnetic structure
for Ba2Ni(PO4)2 can be represented by one of these IRs.

The refinement of the magnetic structure was attempted for
all the four 	’s. Only 	1 and 	2 reproduce the experimental
magnetic pattern at 1.5 K. Both 	1 and 	2 produce fits
of similar quality (Rmag = 11.8% and 11.7%, respectively)
[Fig. 8(c)]. The difference between these two magnetic
structures is the arrangement of the spin component mb along
the b axis. The mb spin components for 	1 arrange parallel to
each other, whereas the mb’s are antiparallel in the case of 	2

(Table IV). While the refined value of mb is within the error
bar for both 	1 and 	2, there is no symmetry argument that
would exclude mb entirely. Therefore, the magnetic structure
determined within 	1 should be weakly ferromagnetic at odds
with the experiment, where M(H ) is linear in low fields, and
no signatures of net magnetization or hysteresis are observed
(Fig. 5). We thus conclude that only 	2 provides the correct
solution. Moreover, the resulting magnetic structure according
to the 	2 is in agreement with our microscopic analysis
reported below (Sec. III F).

The basis vectors for 	2 (Table IV) indicate that all
three components of the magnetic moment are refinable.
Their simultaneous refinement yields ma = 0.22(6)μB , mb =
−0.11(8)μB , and mc = 1.73(3)μB with the total magnetic
moment m = 1.75(8)μB at 1.5 K. The obtained values indicate
that the spins are lying in the ac plane with a predominating
component along the c axis. This ordered moment is about
10 % smaller than the spin-only ordered moment of 2 μB

for S = 1 and 25% smaller than the full moment of gSμB =
2.33 μB expected for g = 2.33 when the contribution of the
orbital moment is included, for this sample.

The resulting magnetic structure (corresponding to the
magnetic ground state at T � TN2) is shown in Fig. 9. It
can be identified as stripe AFM order because each spin in
the honeycomb plane is surrounded by two spins having the
opposite directions and one spin having the same direction,
so that stripes along the b direction are formed. The order
along a is simple AFM. This magnetic structure is fairly rare

FIG. 9. The magnetic structure of Ba2Ni(PO4)2. The projections
of the magnetic structure in the (a) bc and (b) ac planes, respectively.
(Figures 2 and 9 were prepared using the VESTA software [43].)
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FIG. 10. Magnetic phase diagram of Ba2Ni(PO4)2 in the H -T
plane. The half-filled and open circles with central dot points
are obtained from magnetization and heat-capacity measurements,
respectively.

among Ni2+-based honeycomb systems. For example, NiPS3

[16], Na3Ni2BiO6 [18], and Cu3Ni2SbO6 [17] all show zigzag
antiferromagnetic order, and only KNiAsO4 [20] reveals a
stripe phase equivalent to the one in the studied compound
Ba2Ni(PO4)2.

E. Magnetic phase diagram

The susceptibility, magnetization, heat-capacity, and neu-
tron diffraction data were used to sketch a temperature-field
phase diagram of Ba2Ni(PO4)2 (Fig. 10). In zero field, two
consecutive magnetic transitions are observed. The values
of TN1 and TN2 are determined form the peak positions of
the Cp versus T curves [at the point where the derivative
curve d(Cp)/dT changes its sign] which are used for the
construction of the magnetic phase diagram. The error bars
are calculated from the temperature range over which a
change of ±3% of d(Cp)/dT value is observed. The ordered
state below TN2 is identified as stripe AFM order with spins
pointing approximately along the c direction, as revealed by
the neutron diffraction data. The AFM1 state, formed in the
narrow temperature range between TN1 and TN2, has not been
characterized in detail, and requires further investigation. In
this study, no neutron diffraction pattern was measured in the
AFM1 phase. We emphasize that the microscopic nature of
the AFM1 state could be resolved by neutron diffraction.

The horizontal line around 4 T is naturally ascribed to a
spin-flop transition, where spins align perpendicular to the
applied field. Therefore, AFM2 is likely the spin-flop version
of the stripe AFM phase. Another anomaly is evident around 10
T in the dM/dH curve (Fig. 6) which is tentatively assigned to
the second field-induced transition. Its origin requires further
investigation.

F. Microscopic magnetic model

Electronic structure of Ba2Ni(PO4)2 is typical for a mag-
netic insulator. LDA calculations produce metallic solution
caused by the underestimation of strong correlations in the

5
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FIG. 11. LDA band structure for Ba2Ni(PO4)2, the Fermi level
is at zero energy. Note the clear separation of the Ni 3d states into
the t2g and eg manifolds. The inset shows distinct easy planes of two
neighboring Ni atoms.

Ni 3d shell (Fig. 11). The anticipated insulating state is well
reproduced on the LSDA+U level, where we find the band
gap of 3.56 eV and magnetic moments of about 1.9μB . Ni
3d states are split into the t2g and eg manifolds, as expected
in the octahedral crystal field. In the LDA band structure, the
Fermi level crosses the eg bands, so that α = 3z2 − r2 and
β = x2 − y2 are magnetic orbitals (Fig. 11).

Exchange couplings in Ba2Ni(PO4)2 were computed using
total energies of collinear spin configurations obtained on
the LSDA+U level [34]. All calculations were performed in
the supercell doubled along the a direction, such that four
relevant couplings J1-J4 could be resolved. Additionally, we
consider the hoppings ti between the eg states in the LDA
band structure. These hoppings underlie the superexchange
process (Ji ∼ t2

i ) and allow for a qualitative assessment of the
magnetic couplings in Ba2Ni(PO4)2.

Exchange couplings in Ba2Ni(PO4)2 are listed in Table V.
The values of Ji correlate with individual hopping parameters.
For example, the smallest hopping probabilities for J1 (ti �
26 meV) result in the weaker coupling, whereas the largest
hopping t

βα

3 = −65 meV triggers the strongest exchange cou-
pling J3. Regarding the absolute scale, all exchange couplings
are relatively weak because NiO6 octahedra are separated
by PO4 tetrahedra, and the Ni-Ni distances are quite long.

TABLE V. Magnetic exchange couplings in Ba2Ni(PO4)2. The
interatomic distances dNi-Ni are given in Å. The hopping parameters
ti (in meV) are obtained from the LDA band structure, whereas
α = 3z2 − r2 and β = x2 − y2 denote orbital indices. Full exchange
couplings Ji (in K) are calculated on the LSDA+U level, as described
in the text. All exchange couplings Ji are antiferromagnetic in nature.

ti

dNi-Ni αα αβ βα ββ Ji

J1 4.896 15 26 26 21 0.5
J2 5.215 −6 −3 −3 44 1.3
J3 5.312 34 −15 −65 18 3.5
J4 5.777 38 6 45 1 1.8
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For interaction pathways beyond nearest neighbors, all
hopping parameters ti are below 4 meV, suggesting that
the respective exchange couplings are much weaker than
J1-J4 listed in Table V and can be safely neglected in the
microscopic analysis. Exchange couplings in Table V are also
consistent with the stripe AFM order observed experimentally.
Its formation is triggered by the coupling J2 that is oblique to
the honeycomb planes and overrides J1, which runs within the
honeycomb planes. The couplings J3 and J4 are compatible
with the stripe order. Our computed exchange couplings can
be juxtaposed with the experimental Curie-Weiss temperature
θCW = −10.4 K. We estimate it as follows:

θCW = −S(S + 1)

3

∑
i

ziJi, (10)

where the number of neighbors is zi = 1 for J1 and J2 and
zi = 2 for J3 and J4. We find θCW = −8.3 K.

In the following, we analyze the effects of magnetic
anisotropy. They are rooted in the structure of orbital levels of
Ni2+. In Ba2Ni(PO4)2, the NiO6 octahedra are distorted, with
five shorter Ni-O distances of 2.04–2.07 Å and one longer
distance of 2.31 Å. This longer Ni-O bond defines the direction
of the local z axis (same convention has been used for the
orbital indices α and β in Table V).1 The energies of the
eg orbitals are εx2−y2 = 0.003 eV and ε3z2−r2 = −0.030 eV,
in line with simple geometrical arguments suggesting that
the extended Ni-O distance along the local z direction will
stabilize the 3z2 − r2 orbital and destabilize the x2 − y2

orbital. However, an opposite trend is seen for the t2g states,
where εxy = −0.895 eV is lower than εxz = −0.816 eV and
εyz = −0.814 eV. This discrepancy can be ascribed to a rather
complex distortion of the NiO6 octahedron, where the xy plane
is deformed, and one of the out-of-plane Ni-O bonds forms an
angle of 70◦ with this plane instead of 90◦ expected in a regular
octahedron.

For Ni2+ ions, single-ion anisotropy can be estimated using
second-order perturbation theory for the spin-orbit coupling
[35,36]:

Ax =
(

λ

2

)2( 1

εx2−y2 − εyz

+ 3

ε3z2−r2 − εyz

)
,

Ay =
(

λ

2

)2( 1

εx2−y2 − εxz

+ 3

ε3z2−r2 − εxz

)
, (11)

Az =
(

λ

2

)2( 4

εx2−y2 − εxy

)
,

where λ = 0.078 eV is the spin-orbit coupling constant for
Ni2+ [37]. This way, we obtain Ax = 89.6 K, Ay = 89.4 K,
and Az = 79.0 K corresponding to an effective easy-plane
anisotropy A = Az − (Ax + Ay)/2 = −10.5 K [see Eq. (1)]
with xy as the magnetic easy plane. The easy-plane type of
magnetic anisotropy is rooted in the distortion of the NiO6

octahedron that renders the nearly degenerate xz and yz states
and the xy state with a distinctly different energy.

1More precisely, we define x = [0.1707, ± 0.0479,0.0018] and
z = [−0.0691, ± 0.1022, − 0.0153], where + and − stand for the
Ni1/Ni3 and Ni2/Ni4 sites, respectively (see also Table IV).

The orientation of the easy plane with respect to the global
crystallographic axes changes upon going from Ni1 and Ni3
to Ni2 and Ni4 following the symmetry of the Ba2Ni(PO4)2

structure. By a simple energy minimization, we find that such
noncoplanar easy-plane anisotropies should produce preferred
spin direction approximately along [1̄01], whereas the a and
b directions of the structure are least favorable. This result
is compatible with the experimental spin direction along c

(i.e., [001]), although there remains a discrepancy that can
be remedied by full-relativistic (LSDA+U+SO) calculations.
These calculations yield the lowest energy when spins are
along c, an intermediate energy for spins along a, and the
highest energy for spins along b. The departure of the preferred
spin direction from [1̄01] toward [001] is likely due to effects
such as Dzyaloshinsky-Moriya interactions that were not
included in our model analysis. A detailed anisotropic physical
property measurement on a single crystal could shed more light
on anisotropic magnetic behavior of Ba2Ni(PO4)2.

IV. DISCUSSION AND SUMMARY

Ba2Ni(PO4)2 features a honeycomblike geometry of the
spin lattice and reveals stripe AFM order, which is rarely seen
in honeycomb antiferromagnets. In an isotropic (Heisenberg)
honeycomb magnet, stabilization of the stripe order requires
that third-neighbor couplings are ferromagnetic [3,20,38], but
long-range ferromagnetic couplings are very uncommon in
insulators. In Ba2Ni(PO4)2, the formation of the stripe order is
due to interplane couplings. Our microscopic analysis shows
that J1, one of the nearest-neighbor couplings within the
honeycomb plane, is overridden by the interplane coupling
J2. Another coupling between the honeycomb planes J3 is
even stronger than all couplings within the plane, and leads
the hierarchy of the Ji values (Table V). Ba2Ni(PO4)2 could
be viewed as a system of spin-1 Haldane chains stacked on
a honeycomb lattice. However, magnetic behavior of this
compound is much more involved than in standard spin-chain
systems.

Our thermodynamic measurements identify two consec-
utive phase transitions in zero field at TN1 = 5.0 K and
TN2 = 4.6 K. A broad maximum around 8 K in the magnetic
susceptibility and magnetic specific heat indicates that short-
range order precedes long-range magnetic order, and transition
toward the long-range-ordered state is impeded, as seen from
the ratio θ/TN1 = 2.08. In antiferromagnets, long-range order
can be impeded because of the competition between isotropic
exchange couplings or as a result of the proximity to the
dimerized gapped state, which would be formed when spin-1
(Haldane) chains are isolated or weakly coupled (i.e., J3 	
J1,J2,J4). Neither of these scenarios applies to Ba2Ni(PO4)2,
though.

Frustration is restricted to the weak coupling J1 � 0.5 K
that is several times weaker than the couplings stabilizing
the stripe order. Even a stronger frustrating coupling would
have little effect on the Néel temperature. For example, in
Li2NiW2O8, where spin-1 chains are stacked on the frus-
trated triangular lattice, θ/TN1 = 1.1, and the magnetic order
sets in already at a temperature TN1 � S(S + 1)J1D = 2J1D,
where J1D is the coupling along the spin-1 chains [36]. In
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contrast, Ba2Ni(PO4)2 is characterized by a lower value of
TN1/J1D � 1.4.

Regarding the proximity to the gapped phase, the ratio
J⊥/J1D = J4/J3 � 0.5 should place Ba2Ni(PO4)2 very far
away from the limit of isolated spin chains. In coupled spin-1
chains, long-range magnetic order sets in already at a very low
J⊥/J1D [39–41], and, for example, even CsNiCl3 with its very
small ratio J⊥/J1D � 0.017 develops long-range magnetic
ordering [42].

We suggest that the magnetic frustration in Ba2Ni(PO4)2

is enhanced by the complex single-ion anisotropies, which
impede long-range magnetic ordering in this compound. When
taken on their own, two distinct easy planes of the Ni2+

ions would favor a noncollinear magnetic order that is not
compatible with the isotropic couplings Ji . Similar energy
scales of the isotropic exchange couplings and noncoplanar
single-ion anisotropies imply that both these effects are
integral to the physics of Ba2Ni(PO4)2. Their remarkable com-
bination awaits detailed theoretical investigation. Additionally,
Ba2Ni(PO4)2 exhibits several interesting features, including
the intermediate AFM1 phase between TN1 and TN2 and the
field-induced phases above 4 T, that would be interesting for
future experimental investigation.

In summary, we have shown that Ba2Ni(PO4)2 reveals
stripe AFM order at low temperatures in zero field and several
magnetic transitions along with clear signatures of short-range
magnetic order around 8 K. This feature is reminiscent
of quantum and frustrated antiferromagnets and contrasts
with the three-dimensional interaction topology that can be
represented by spin-1 chains stacked on the honeycomblike
lattice. While isotropic exchange couplings feature only a
weak magnetic frustration, the sizable single-ion anisotropy
of easy-plane type competes with collinear magnetic order
favored by the isotropic exchange couplings. This peculiar
frustration mechanism may be responsible for the intricate
physics of Ba2Ni(PO4)2.
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Uchinokura, P. Böni, and S.-H. Lee, Magnetic excitations in
coupled Haldane spin chains near the quantum critical point,
Phys. Rev. B 62, 8921 (2000).

[41] A. K. Bera, B. Lake, A. T. M. N. Islam, O. Janson, H.
Rosner, A. Schneidewind, J. T. Park, E. Wheeler, and S. Zander,
Consequences of critical interchain couplings and anisotropy on
a Haldane chain, Phys. Rev. B 91, 144414 (2015).

[42] R. M. Morra, W. J. L. Buyers, R. L. Armstrong, and K. Hirakawa,
Spin dynamics and the Haldane gap in the spin-1 quasi-one-
dimensional antiferromagnet CsNiCl3, Phys. Rev. B 38, 543
(1988).

[43] K. Momma and F. Izumi, VESTA 3 for three-dimensional
visualization of crystal, volumetric and morphology data,
J. Appl. Crystallogr. 44, 1272 (2011).

024401-11

https://doi.org/10.1006/jssc.1994.1197
https://doi.org/10.1006/jssc.1994.1197
https://doi.org/10.1006/jssc.1994.1197
https://doi.org/10.1006/jssc.1994.1197
https://doi.org/10.1103/PhysRevB.65.144443
https://doi.org/10.1103/PhysRevB.65.144443
https://doi.org/10.1103/PhysRevB.65.144443
https://doi.org/10.1103/PhysRevB.65.144443
https://doi.org/10.1002/1521-3749(200104)627:4%3C687::AID-ZAAC687%3E3.0.CO;2-5
https://doi.org/10.1002/1521-3749(200104)627:4%3C687::AID-ZAAC687%3E3.0.CO;2-5
https://doi.org/10.1002/1521-3749(200104)627:4%3C687::AID-ZAAC687%3E3.0.CO;2-5
https://doi.org/10.1002/1521-3749(200104)627:4%3C687::AID-ZAAC687%3E3.0.CO;2-5
https://doi.org/10.1039/c3dt00030c
https://doi.org/10.1039/c3dt00030c
https://doi.org/10.1039/c3dt00030c
https://doi.org/10.1039/c3dt00030c
http://www.ill.eu/sites/fullprof/
https://doi.org/10.1103/PhysRevB.59.1743
https://doi.org/10.1103/PhysRevB.59.1743
https://doi.org/10.1103/PhysRevB.59.1743
https://doi.org/10.1103/PhysRevB.59.1743
https://doi.org/10.1103/PhysRevB.45.13244
https://doi.org/10.1103/PhysRevB.45.13244
https://doi.org/10.1103/PhysRevB.45.13244
https://doi.org/10.1103/PhysRevB.45.13244
https://doi.org/10.1103/PhysRevB.92.144401
https://doi.org/10.1103/PhysRevB.92.144401
https://doi.org/10.1103/PhysRevB.92.144401
https://doi.org/10.1103/PhysRevB.92.144401
https://doi.org/10.1039/C5CP05954B
https://doi.org/10.1039/C5CP05954B
https://doi.org/10.1039/C5CP05954B
https://doi.org/10.1039/C5CP05954B
https://doi.org/10.1103/PhysRevB.78.212410
https://doi.org/10.1103/PhysRevB.78.212410
https://doi.org/10.1103/PhysRevB.78.212410
https://doi.org/10.1103/PhysRevB.78.212410
https://doi.org/10.1103/PhysRevB.90.035141
https://doi.org/10.1103/PhysRevB.90.035141
https://doi.org/10.1103/PhysRevB.90.035141
https://doi.org/10.1103/PhysRevB.90.035141
https://doi.org/10.1103/PhysRevB.91.024413
https://doi.org/10.1103/PhysRevB.91.024413
https://doi.org/10.1103/PhysRevB.91.024413
https://doi.org/10.1103/PhysRevB.91.024413
https://doi.org/10.1103/PhysRevB.85.054517
https://doi.org/10.1103/PhysRevB.85.054517
https://doi.org/10.1103/PhysRevB.85.054517
https://doi.org/10.1103/PhysRevB.85.054517
https://doi.org/10.1039/C2DT31662E
https://doi.org/10.1039/C2DT31662E
https://doi.org/10.1039/C2DT31662E
https://doi.org/10.1039/C2DT31662E
https://doi.org/10.1103/PhysRevB.94.014415
https://doi.org/10.1103/PhysRevB.94.014415
https://doi.org/10.1103/PhysRevB.94.014415
https://doi.org/10.1103/PhysRevB.94.014415
https://doi.org/10.1103/PhysRevB.86.144404
https://doi.org/10.1103/PhysRevB.86.144404
https://doi.org/10.1103/PhysRevB.86.144404
https://doi.org/10.1103/PhysRevB.86.144404
https://doi.org/10.1103/PhysRevB.42.4537
https://doi.org/10.1103/PhysRevB.42.4537
https://doi.org/10.1103/PhysRevB.42.4537
https://doi.org/10.1103/PhysRevB.42.4537
https://doi.org/10.1103/PhysRevB.62.8921
https://doi.org/10.1103/PhysRevB.62.8921
https://doi.org/10.1103/PhysRevB.62.8921
https://doi.org/10.1103/PhysRevB.62.8921
https://doi.org/10.1103/PhysRevB.91.144414
https://doi.org/10.1103/PhysRevB.91.144414
https://doi.org/10.1103/PhysRevB.91.144414
https://doi.org/10.1103/PhysRevB.91.144414
https://doi.org/10.1103/PhysRevB.38.543
https://doi.org/10.1103/PhysRevB.38.543
https://doi.org/10.1103/PhysRevB.38.543
https://doi.org/10.1103/PhysRevB.38.543
https://doi.org/10.1107/S0021889811038970
https://doi.org/10.1107/S0021889811038970
https://doi.org/10.1107/S0021889811038970
https://doi.org/10.1107/S0021889811038970



