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Post-quench dynamics and suppression of thermalization in an open half-filled Hubbard layer
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We study the time evolution of a half-filled Hubbard layer coupled to a magnon bath after a quench of the
Hubbard interaction. Qualitatively different regimes, regarding the asymptotic long-time dynamics, are identified
and characterized within the mean-field approximation. In the absence of the bath, the dynamics of the closed
system is similar to that of a quenched BCS condensate. Though the presence of the bath introduces an additional
relaxation mechanism, our numerical results and analytical arguments show that equilibration with the bath
is not necessarily attained within the approximations used. Instead, nonequilibrium states, similar to the ones
observed in the closed system, can emerge at long times as a consequence of the competition between the intrinsic
relaxation mechanism (Landau damping, for example), and the bath-induced dissipation.
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I. INTRODUCTION

Most thermodynamic systems, if taken away from equilib-
rium, evolve back to an equilibrium state. The initial stage
of the equilibration process often includes energy transfer
from macroscopic collective excitations to the individual,
microscopic degrees of freedom. The overall equilibration
dynamics is thus governed by the coupling between the
collective and individual modes.

Modern quantum technologies aim to store information
via controlled excitation of collective states in engineered
solid structures, such as various types of superconducting
qubits. In order to improve quantum coherence, significant
attention, both at experimental and theoretical levels, has been
paid to the optimization of the decoupling between collective
modes and the rest of the degrees of freedom. In certain
cases, undamped collective excitations completely decoupled
from the microscopic degrees of freedom were predicted
theoretically. Such decoupling arises due to the existence
of conservation laws present in some particular system [1].
Although the optimal degree of decoupling is model specific
and the excitation lifetime is, in practice, always finite, one
expects those systems to show considerable improvements in
experimentally observed decoherence times.

The energy transfer from the collective to individual
degrees of freedom can, in many cases, be studied using the
concept of Landau damping, which does not require a detailed
knowledge of the decoherence process. Landau damping
appears in collisionless models and its only precondition is
the causality principle. First formulated for Langmuir waves
in a collisionless electron plasma [2], Landau damping is
nowadays known to be a generic feature of the mean-field
perturbative description of collective excitation. In particular,
it appears in the BCS description of superconductors [3,4]. In
this case, the collective mode is associated with deformations
of the superconducting order parameter � and the individual
degrees of freedom are Cooper pairs.
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Sufficiently far away from equilibrium, regimes beyond the
Landau-damping scenario may arise, such as the ones found in
recent studies [5,6] of the BCS model. Here, a perturbation of
the initial ground state is realized as an abrupt change (quench)
of the BCS coupling parameter g from its initial value gi to a
final one gf . For a small perturbation gi ≈ gf , the dynamics
can be well described by a Landau-damping scenario [4]. For
gi � gf , as in the case of the quench from normal metal to
BCS [7], a synchronization between Cooper pairs through the
collective mode yields to persistent oscillations of the order
parameter (phase-locked regime).

In the opposite case, gi � gf , the gap vanishes expo-
nentially fast [5] (overdamped regime) since the system
is effectively heated above the superconducting transition
temperature.

The interplay between microscopic and collective modes
has been studied in other setups [8–14], including the
nonequilibrium dynamics of the half-filled Hubbard model
supporting antiferromagnetic collective modes. Within the
Gutzwiller approach, the after-quench dynamics of this model
was shown [15] to be similar to that of the BCS model
featuring all three regimes. However, because of electron-
electron collisions, oscillations were found to be weakly
damped in the phase-locked regime. The transition between the
antiferromagnetic and paramagnetic states was also explored
[16] within dynamical mean-field theory (DMFT).

The examples given below refer to closed systems. Under
which conditions the asymptotic long-time state equilibrates
has recently been an active topic of research [17–19]. Clearly,
some of the above regimes cannot be considered as equilibrium
states. Nonetheless, if equilibrium is attained, the extensive
injection of energy implies that properties of the effective
equilibrium state correspond to those of a finite-temperature
Gibbs-like ensemble [20,21].

The presence of a weakly coupled zero-temperature reser-
voir is expected to radically change the physical picture
[22,23]: if energy is dissipated to the bath, the system’s degrees
of freedom should acquire properties of the post-quench
zero-temperature state. However, a competition between the
system’s own dissipative processes and those of the bath may
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allow for other scenarios. Understanding the robustness of
different dynamical regimes to the presence of an environment
is a natural question as in realistic experimental situations some
degree of environmental coupling is expected. The competition
between dissipative effects induced by the microscopic degrees
of freedom of the system or of the bath can help to shed
light on the collective mode dynamics observed in recent
pump-probe-like experiments.

In this work, we study the fate of nonequilibrium regimes,
found in the post-quench dynamics of closed system, in
the presence of a bath. In particular, we consider interac-
tion quenches in the half-filled Hubbard model on a two-
dimensional (2D) square lattice, coupled at each site to a
magnetic ohmic bath. The bath degrees of freedom consist of a
collection of vector bosons that couple isotropically to the local
magnetization and are taken to be independent on each lattice
site. The system models an antiferromagnetically ordered 2D
layer in the presence of a magnon environment. Such spatially
independent environment models a superparamagnetic bath
medium present, for example, in disordered nanomagnets. In
addition, though for a homogeneous ordered substrate spatial
correlations of the bath modes may become important, our
results are still relevant if the order of low-lying bath modes
is incommensurate with that of the Hubbard layer. In this
case, although the spatially coherent states still couple to the
magnetic modes of the Hubbard layer, their ordering is not
transferred to the layer.

The paper is organized as follows: Sec. II introduces the
model, Sec. III describes the dynamics in the absence of any
environmental coupling and identifies the different dynamical
regimes in correspondence with the one in the BCS model, and
Sec. IV presents the bulk of our work identifying the different
dynamic regimes in the presence of the bath. A discussion and
conclusions are given in Sec. V. The Appendix is devoted to
study the specificities of the overdamped regime in the 2D
square lattice.

II. MODEL

To study the post-quench dynamics, we consider a joint
Hamiltonian of the antiferromagnetically ordered layer cou-
pled to a magnon bath given by

H = HHub + HBath + HC, (1)

where

HHub = J
∑
〈r,r ′〉

c†σ rcσ r + U
∑

r

c
†
↑,rc↑rc

†
↓rc↓r (2)

is the two-dimensional Hubbard Hamiltonian describing the
electronic system. c

†
σ r and cσ r are, respectively, the fermion

creation and annihilation operators of an electron on site r
with spin σ . The coupling to the bosonic bath is given by

HC = g
∑

r

Sr ·
[∫

q

(b†qr + bqr )

]
, (3)

where Si
r = 1

2c
†
αrτ

i
αβcβr is the spin operator of the electrons

at the rth site and τ
i=x,y,z

αβ denote the Pauli matrices. b
i†
qr ,

bi
qr are creation and annihilation operators of the vector

bosons. The magnon environment is assumed to be spatially

incoherent; therefore the summation over bosonic momentum
index q is performed independently for each site index r . The
Hamiltonian of the bath is

HBath =
∑

r

∫
q

�q b†qr · bqr . (4)

The two-dimensional antiferromagnet magnon bath has an
ohmic density of states of the form ρ(ε) = ∫

q
δ(ε − �q) =

ε
C2 e− ε

� , where � is a high-energy cutoff and C is a constant
with dimension of energy. In the following, we set C = 1
and measure all other energies in units of C. In all numerical
results, we set � = 20, J = 2. No qualitative changes arise by
changing the cutoff � as long as it is taken to be much larger
than all other energies scales.

We study the dynamics of the magnetization after an
interaction quench where the value of U is switched from
U = Ui to U = Uf at t = 0. We treat the system within a
mean-field approximation assuming the spin fluctuations are
small compared with the average magnetization. For all of the
analyzed cases, the initial state is the ground state of the system
for U = Ui obtained within the mean-field approach.

III. CLOSED SYSTEM

In this section, we study quenches of the closed system,
i.e., when the coupling to the bath, g, is set to zero. First,
we derive the set of mean-field equations governing the post-
quench dynamics. We then analyze the long-time asymptotic
dynamics, establishing the parallels and differences to previous
studies of the BCS model.

For the isolated electronic system described by Eq. (2), the
mean-field approximation is valid for time scales less than τq ∼
EF /�2, after which interactions between quasiparticles can no
longer be neglected [7]. The mean-field Hamiltonian can be
obtained from Eq. (2) by neglecting second-order magnetic
fluctuation terms (Sr − 〈Sr〉)2 and assuming a spin ordered
state 〈Sr〉 = M cos( Q · r) with ordering wave vector Q [24].

A systematic approach for the construction of a mean-field
approximation can be obtained within the functional integral
formalism and amounts to a decoupling of fermionic fields
using the Hubbard-Stratonovich transformation [25]. The
latter step, while mathematically exact, induces an ambiguity
(sometimes alluded to as Fierz ambiguity [26]) related to
the choice of the decoupling channel that conditions further
approximations. In this work, we deal exclusively with a
half-filled Hubbard layer known to have a magnetic instability
towards the formation of an antiferromagnetic state. Therefore,
on physical grounds, we have chosen a decoupling in the mag-
netic exchange channel as this gives the leading contribution
to free energy. We thus consider an antiferromagnetic state,
i.e., Q = {π,π}, magnetized along the z axes, M = Mez,
corresponding to a mean-field Hamiltonian of the form

HMF =
∫

k

εkc
†
σ kcσ k + 2U

3
M2 − 4U

3
Sz

QM, (5)

with k labeling the two-dimensional momentum and
∫
k

=∫
d2k

(2π)2 the Brillouin-zone integration. εk = 2J (cos kx +
cos ky) is the dispersion relation and Sz

Q = 1
2

∫
k
c
†
σ kτ

z
σσ ′cσ ′k+ Q

is the staggered spin operator in the z direction.
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The dynamics can most easily be described in terms of pseu-
dospins, which are similar to Anderson representation [27]:

τ̂ x
σ k = 1

2 (c†σ kcσ k+ Q + c
†
σ k+ Qcσ k), (6)

τ̂
y

σ k = i
2 (c†σ kcσ k+ Q − c

†
σ k+ Qcσ k), (7)

τ̂ z
σ k = 1

2 (c†σ kcσ k − c
†
σ k+ Qcσ k+ Q), (8)

defined for each spin projection σ . Assuming that the initial
state respects the symmetries of HMF, the expectation values
for the two spin projections are simply related by

〈
τ̂ x
↑k

〉 = −〈
τ̂ x
↓k

〉
, (9)

〈
τ̂

y

↑k

〉 = −〈
τ̂

y

↓k

〉
, (10)

〈
τ̂ z
↑k

〉 = 〈
τ̂ z
↓k

〉
. (11)

Therefore, in the following, we set τ̂ α
k = τ̂ α

↑k in order to
simplify the notation. In terms of the pseudospin variables τ ,
the equations of motion can be written in a closed form,

d

dt
〈τ̂ k(t)〉 = 2Bk(t) × 〈τ̂ k(t)〉, (12)

where Bk(t) = {hc(t),0,εk}, with hc(t) = −4U (t)M(t)/3
and the self-consistent condition

M(t) =
∫

k

〈
τ̂ x

k (t)
〉
. (13)

For the quench protocol studied here, U (t > 0) = Uf . The
initial conditions, obtained by starting from the ground state
of HMF with U (t = 0) = Ui , are given by

〈τ̂ k(t = 0)〉 = − Bk(t = 0)

2
√

ε2
k + hc(t = 0)2

. (14)

This result can be derived by minimizing the mean-field
energy, which in terms of the pseudospin τ is given by
EMF = 〈HMF〉 = 2

∫
k

Bk · 〈τ̂ k〉 with respect to the order
parameter M(t = 0).

The mean-field dynamics obtained by this procedure is
closely related to that of the BCS model [5,15,16]. In fact, the
equations of motion (12) and those of the BCS Hamiltonian can
be mapped to each other by a suitable identification of physical
quantities. The main difference between the two models comes
from the dispersion relation εk that in the BCS model is usually
taken to be that of a free-electron gas, yielding in 2D to a
constant density of states within the Debye window. Here,
the fact that εk admits the nesting wave vector Q at half
filling is crucial for the establishment of the antiferromagnetic
instability and therefore has to be explicitly taken into account.

In the reminder of this section, we study the different
dynamical regimes of the asymptotically large time dynamics
of the post-quench evolution governed by Eq. (12). The
different regimes are similar to those of the BCS model [16],
but crucial differences arise nonetheless in the approach to the
long-time limit due to the particular features of the dispersion
relation.

The upper panel of Fig. 1 shows the phase diagram in the
Uf − Ui parameter space. As in the BCS case, there are three
different regimes, shown in the lower panels of Fig. 1:

FIG. 1. Upper panel: Sketch of the phase diagram as a function
of Uf and Ui . Lower panels (left to right): Examples of the different
dynamical regimes, i.e., phase locked, Ui = 0.8, Uf = 12; Landau
damping, Ui = 4, Uf = 5; and overdamped, Ui = 3, Uf = 0.5.

(i) The phase-locked regime, arising for Ui/Uf � 1,
is characterized by nonvanishing oscillations of the order
parameter. This behavior is similar to the one described in
[7]: the collective mode synchronizes the different momentum
pseudospin precessions.

(ii) The Landau-damping regime, for Ui/Uf ≈ 1, where
the order parameter attains a nonvanishing constant value.
Here, oscillations decay as ∝ 1√

t
as in the BCS case [28]. The

mechanism behind this kind of damping is similar to the one
first found in plasma [2]: as in the BCS case [3,5], a collective
mode interacts with quasiparticles with energies around 2�,
where � is an antiferromagnetic gap.

(iii) The overdamped regime, when Ui/Uf � 1, where the
order parameter vanishes at large times. As in the BCS case
[28], the order parameter drops to zero. However, instead of
the exponential decay observed for BCS, the decay is algebraic
in 1/t and a crossover is observed as a function of Ui from
damped-oscillatory to purely damped behavior in the dynamics
of M(t). This behavior, overlooked in similar setups [15,16],
is due to the nonanalyticities of the density of states in two
dimensions: a logarithmic divergence near the Fermi surface
and a sharp cutoff at the band edges. A detailed analysis of the
crossover is given in the Appendix.

IV. OPEN SYSTEM

We now address the changes in the dynamics of the system
in the presence of the environment. In the following, we
generalize the equations of motion to account for the magnetic
bath and analyze the different dynamical regimes.
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Following the same steps as before, the mean-field Hamil-
tonian is given by

HMF =
∫

k

εkc
†
σ kcσ k + 2U

3
M2 − 4U

3
Sz

QM

+ gM

∫
q

(
bz†

q + bz
q

) +
∫

q

�qb
z†
q bz

q . (15)

In addition to the pseudospin degrees of freedom, the dynamics
of the bosonic fields has to be considered. At the mean-field
level, this can be done by explicitly solving the equation of
motion for the bosonic fields, d

dt
bz

q = i[HMF,b
z
q]. Similarly to

the case of the closed system, the initial state is taken to be the
ground state of the whole system. Substituting in the equations
of motion of pseudospins, we get a closed system of equations
that has the same form (12) as in the isolated case, but with a
different “pseudo magnetic field” Bk(t) = {hd (t),0,εk} where

hd (t) = −2U (t)M(t)

3
− g2 �M(0)

1 + �2t2

−2g2
∫ t

0
dτ

�3M(τ )(t − τ )

[1 + �2(t − τ )2]2
. (16)

As before, M(t) respects the self-consistency condition (13)
and M(0) is the initial value of the staggered magnetization.

Before studying the effects of the environment in different
dynamic regimes, let us analyze the stationary solutions
M(t) ≡ M in the presence of the environment. In this case,
hd simplifies to

hd = −2

(
2U

3
+ g2�

)
M. (17)

This stationary condition is equivalent to that of the closed
system with a renormalization of the value of the coupling
U → UR = U + 3g2�

2 . Therefore, the only effect of environ-
ment on the equilibrium properties of the electronic subsystem
is a renormalization of the coupling constant. Since the
renormalization of U is always positive, the presence of the
environment always enhances the antiferromagnetic order.

It is worth noting that in case the system approaches such
stationary solution (not necessary an equilibrium one), the
equations of motion of the open system reduce to those of the
closed one with a renormalized U . This can be most easily
shown by introducing a time scale Tstat after which M(t) is
close to the stationary value Mstat. For times 1/� � Tstat � t ,
up to terms of order t/Tstat and 1/(�t)2, one has

hd (t) ≈ hstat − 2g2�[M(0) − Mstat]

(�t)2

− 4g2

(�t)3

∫ Tstat

0
dτM(τ ), (18)

which when t → ∞ tends to hstat = − 4Uf Mstat

3 − 2g2�Mstat.
Thus, for sufficiently large times, in the approach to Mstat

the individual degrees of freedom τ x
k are governed by the

renormalized electronic dynamics. Consequently, we may con-
clude that whenever configuration with stationary Mstat (not
necessarily equilibrium) has been reached, the environment’s
role is reduced to renormalization of U . This argument is
essential for understanding the absence of thermalization in

FIG. 2. Sketch of the phase diagram for an open system for g =
0.25. With increasing of g, the damped regime expands, pushing its
boundaries in both directions. This arises due to the renormalization
of U (see text) that decreases the effective amplitude of the quench.

overdamped and damped regimes, which will be described
below.

In the following, it is important to distinguish between two
kinds of stationary solution: equilibrium states where Mstat

minimizes the mean-field energy and yields no dynamics to the
pseudospins d〈τ̂ k〉/dt = 0, and nonequilibrium states where
d〈τ̂ k〉/dt �= 0. In the case of a closed system, conservation of
energy implies that only nonequilibrium stationary states can
be attained as is the case of the final state of the Landau damped
regime. In the presence of a bath, even if the total energy is still
conserved, a change of energy of the system can be absorbed
by the bath with no macroscopic changes in any intensive
bath observable. It is naively expectable that by absorbing the
excess energy, the environment renders the system observables
to their equilibrium values. Nonetheless, as shown below, both
equilibrium and nonequilibrium solutions may arise for the
open system.

Figure 2 shows a sketch of the phase diagram of the
open system for different values of the coupling g. Ap-
proximate boundaries between phases were estimated using
N = 150. In particular, the boundary between the regime with
slowly decaying oscillations and the Landau-like damped case
was estimated by plotting the order parameter �M(TN ) =
[M(TN ) − Meq]/Meq, where TN ∝ N is the largest time for
which the evolution does not depict any finite-size effects (see
Sec. IV and Fig. 5 for details). With the present numerical
data, one cannot determine boundaries precisely; therefore
the sketch in Fig. 2 provides only a qualitative understanding
of their mutual arrangement. The nonmonotonic behavior of
the left boundary can be an artifact of the method. The three
phases found are reminiscent of those described for the closed
system. In the following sections, we present our numerical
results obtained by solving the equations of motion and give
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FIG. 3. Impact of the bath on the post-quench dynamics. Damped
regime described in Sec. IV A, for Ui = 4.5 to Uf = 5, � = 20.
(a) Time evolution of staggered magnetization for several values
of g and N = 200. (b) Time evolution of individual mode τ x

k for
several values of g and N = 200 computed for a generic value
of the momentum k = {2π/(N − 1),π/(N − 1)}. (c) Dimensionless
parameter �M(TN ) as a function of g for two values of N . The
finite-size times were taken to be TN=100 = 23, TN=200 = 45.

analytical arguments in order to characterise the nature of each
phase.

The equation of motion (12), with the memory kernel de-
fined in Eq. (16), was solved numerically using a fourth-order
Runge-Kutta method. The integral in Eq. (16) was calculated
at each step by employing Simpson’s rule. Calculations were
performed on a discrete momentum grid corresponding to a
finite system with periodic boundary conditions and linear
size N . Accordingly, k-space integrals were substituted by
discrete sums:

∫
k

→ 1
N2

∑
k . All of the numerics were done

using J = 2.

A. Damped regime

As argued before, in the mean-field description of the open
system, the presence of the dissipative bath only seems to
qualitatively affect the evolution as long as M(t) is time
dependent; for M(t) = M , its effect simply amounts to a
renormalization of the interaction constant. This helps to
understand Uf � Ui quenches, corresponding to the Landau-
damping regime in the closed system. Figure 3(a) shows the
time evolution of the order parameter for different values of the
environment coupling g. As in the closed case, one observes a
decay of the persistent oscillations and the establishment of an
asymptotic stationary state that differs from the equilibrium
one. Figure 5(b) further corroborates that Mstat �= Meq as
the dynamics of the pseudospins seems to be nontrivial,
d〈τ̂ k〉/dt �= 0, in the long-time limit.

Figure 3(c) shows the rescaled deviation from equilibrium
of the order parameter �M(TN ) = [M(TN ) − Meq]/Meq as
a function of g for different system sizes. TN ∝ N is the

largest time for which the evolution does not depict any finite-
size effects. Defined in this way, �M∞ = limN→∞ �M(TN )
vanishes in the equilibrated phase and is nonzero for nonequi-
librium stationary solutions. We observe that �M(TN ) appears
to be converged to �M∞ for the considered sizes. The
decreasing of �M∞ with the coupling to the bath is due to
the fact that for larger g, both the initial and the final values
of the renormalized U increase with g2; therefore, the relative
quench magnitude decreases and thus, in the large-g limit, the
quenched system is asymptotically close to the equilibrium
one.

In order to understand this behavior, we proceed as in the
closed case and consider the quench to be a small perturbation
δM/M(∞) � 1, with δM = M(∞) − Meq, where Meq is
the equilibrium value of the magnetization at U = Uf . The
solution of the equations of motion (12) is assumed to be
of the form 〈τ̂k(t)〉 = 〈τ̂k〉eq + sk(t) and M(t) = Meq − δ(t),
where 〈τ̂k〉eq is the equilibrium value of the pseudospin for
U = Uf . Expanding Eq. (12) to first order for sx

k , δ(t), and
δM , one obtains

d

dt
sk(t) ≈ 2

⎛
⎝bx(t)

x0
εk

⎞
⎠ × sk(t), (19)

with bx(t) = − 4UMeq

3 + 2g2 �δM
1+�2t2 − 2g2�Meq. Further sim-

plifying the equation by assuming t → ∞, one gets, explicitly,

d

dt
sx

k (t) ≈ −2εks
y

k ,

d

dt
s
y

k (t) ≈ 2εks
x
k + 2bxs

z
k, (20)

d

dt
sz

k(t) ≈ −2bxs
y

k ,

with bx = limt→∞ bx(t) = − 4UMeq

3 − 2g2�Meq. The solution
for sx is thus of the form

sx
k (t) ≈ Ck

εk cos
[
2
√

ε2
k + ( 4URMeq

3

)2
t
]

√
ε2

k + ( 4URMeq

3

)2
, (21)

where the constants Ck are determined by the initial condition
and the previous evolution of the system for times smaller
than t � �−1. The form of Eq. (21) is the same as the one for
the closed system [28] with Uf substituted by UR. Besides
this renormalization factor, the only impact of the bath is
accounted for in the coefficients Ck. Thus, in this regime,
the dynamics of the individual degrees of freedom of the
open system are qualitatively similar to that of the closed
one. Nonetheless, the dependence of Ck on the bath makes the
exponent ν, governing the approach to the asymptotic value
M(t) � M(∞) + O(t−ν), different from the Landau-damping
result ν = 1/2. Figure 4 shows a log-log plot of the staggered
magnetization as a function of time. In order to estimate ν,
we fit the local maxima to the function −νN (g) ln(t) + a.
The exponent ν is found to have a substantial dependence on
g: it varies from ν200(g = 0.0) ≈ 0.5 to ν200(g = 0.25) ≈ 0.9
smoothly. Finite-size effects were found to be negligible for
N = 150 and N = 200.
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FIG. 4. Influence of bath on exponents νN (g) in the damped
regime (Ui = 4.5 to Uf = 5, � = 20) for different values of coupling
g and different system sizes (solid line for N = 150 and dotted
for N = 100, coincide for all g’s). Exponents were computed by
fitting maximums of staggered magnetization to linear function
−νN (g) ln(t) + a (solid line).

B. Equilibrating regime

For quenches with Uf � Ui , roughly corresponding to the
phase-locked regime in a closed system, the presence of the
dissipative bath leads to the decay of the persistent oscillations
and the establishment of an asymptotic equilibrium state.
Figure 5(a) shows the evolution of the order parameter for
different values of the environment coupling g. For the
smaller values of g, the long time M(t → ∞) attains the

FIG. 5. Impact of the bath on the post-quench dynamics. Equi-
librated and damped regimes (Ui = 0.8 to Uf = 12, � = 20).
(a) Time evolution of staggered magnetization for several values
of g and N = 100. (b) Time evolution of individual mode τ x

k for
several values of g and N = 100 computed for a generic value
of the momentum k = {2π/(N − 1),π/(N − 1)}. (c) Dimensionless
parameter �M(TN ) as a function of g for three values of N . The
finite-size times were taken to be TN=80 = 23, TN=100 = 45, and
TN=200 = 250.

equilibrium value. For the larger values of g, this is no
longer the case. Figure 5(b) shows that these two asymptotic
regimes correspond to the trivial d〈τ̂ k〉/dt = 0 and nontrivial
d〈τ̂ k〉/dt �= 0 dynamics of the pseudospins. Figure 5(c) shows
the rescaled deviation from equilibrium of the order parameter
�M(TN ) as a function of g for different system sizes. The
finite-size scaling with N shows that in the equilibrated phase,
�M(TN ) vanishes with increasing N , while for larger g, it
attains a finite value. The presence of a fixed point around
g ≈ 0.2 indicates a dynamical phase transition between the
two regimes.

The fact that the system does not equilibrate for large
system-bath coupling seems rather counterintuitive. This can,
however, be explained by the fact that besides dissipation,
i.e., the appearance of a memory kernel in the evolution, the
presence of the environment also renormalizes the coupling
constant U and thus the system moves into a Landau-like
damping regime where equilibration with the environment
does not happen.

The fact that the amplitude of oscillations that were
persistent in the closed system now decreases with time can be
understood in the following way: without bath, a phase-locked
collective mode cannot transfer energy to individual modes
due to the presence of the energy gap, while in the open
system, there are always bath modes to which energy may be
transferred. As a result, the excited state decays. Moreover,
since the energy exchange between the collective and the
individual quasiparticle modes is suppressed, there is no
electronic relaxation mechanism available other than the bath.
Therefore, the only possibility for the system is to equilibrate
with it.

FIG. 6. Impact of the bath on the post-quench dynamics. Over-
damped and damped regimes (Ui = 3.0 to Uf = 0.5, � = 20). (a)
Time evolution of staggered magnetization for several values of
g and N = 150. (b) Time evolution of individual mode τ x

k for
several values of g and N = 150 computed for a generic value
of the momentum k = {2π/(N − 1),π/(N − 1)}. (c) Dimensionless
parameter M(TN )/Meq as a function of g for two values of N . The
finite-size times were taken to be TN=100 = 23, TN=150 = 35.
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FIG. 7. Exponents ν(g) in the overdamped (Ui = 3.0 to Uf =
0.5, � = 20) regime for different values of coupling g and different
system sizes. Exponents were computed by fitting (solid line for
linear size N = 200, dashed line for N = 150, dotted line for
N = 100) of the averages of the time dependence of the logarithm
of staggered magnetization (plotted only for N = 200) by linear
function −νN (g) ln(t) + a.

C. Overdamped regime

In the overdamped regime arising for Uf � Ui ,
the interaction with the bath does not qualitatively change
the dynamics with respect to the g = 0 case apart from the
renormalization of U . A fast decay of the order parameter to
M(∞) = 0 can be observed for the small values of g depicted
in Fig. 6(a). For larger values of g, the damped regime sets
in and M(∞) is nonvanishing. Figure 6(b) shows that even if
M(∞) = 0, the microscopic dynamics 〈τ̂ k〉 is nontrivial. In
this regime, the bath effectively decouples from the system
since M ≈ 0 and coupling to the bath is proportional to g2M .
As a consequence, the system does not equilibrate and the
order parameter vanishes as a power law, M(t) ∝ tν .

As in the damped regime, the algebraic decay in the
overdamped case is also g dependent, thus differing from the
ν = 1 results obtained for a closed system. This is shown in
Fig. 7, where we have plotted the staggered magnetization
averaged over a period in log-log scale. The numerical results
are fitted to a linear function νN (g)y + a, with y = ln(t). ν

is observed to vary with g: ν200(g = 0.1) ≈ 0.96 to ν200(g =
0.18) ≈ 0.70. Notice that the result slightly varies with system
size. This is because the equilibrium staggered magnetization
is very sensitive to the size of the system for these values
of U . Nonetheless, it is clear that νN (g) is converging to a
g-dependent exponent ν(g).

The transition between the overdamped and the damped
regimes upon increasing g can be seen in the finite-size scaling
of M(TN )/M(Teq) shown in Fig. 6(c). In the small-g region,
M(TN ) vanishes for increasing N , whereas for large g, it seems
to attain a finite value. The crossing of the finite-size data is
compatible with the transition arising for 0.2 < gc < 0.24 for
the parameter values of Fig. 6(c).

V. DISCUSSION

We studied the dynamics ensuing after an interaction
quench in a model consisting of a Hubbard layer coupled

to an antiferromagnetic magnon bath. For vanishing system-
bath coupling, within a mean-field approximation, the post-
quench dynamics can be mapped to that of well-studied BCS
quenches. We identify the three known asymptotic long-time
regimes: persistent oscillations of the order parameter, Landau
damping and overdamped. In the overdamped regime, we
found that specificities of the 2D electronic density of states—a
discontinuity at the band edges and a logarithmic divergence
near the Fermi energy—result in a power-law decay of the
order parameter rather than the exponential one reported for
the BCS case that assumes a smooth density of states.

For a finite system-bath coupling, we show that the system
does not always equilibrate as one would expect. Instead, three
different regimes are observed at large times: an equilibrating
regime, where the system attains an asymptotic equilibrium
state; a damped regime, where the magnetization attains a
static finite value that differs from the equilibrium one; and
an overdamped regime, characterized by an asymptotically
vanishing magnetization.

Each regime can be seen as a reminiscence of one of the
different dynamical phases of the closed system. The persistent
oscillations found in the phase-locked regime of the closed
system do not survive in the presence of the bath and slowly
decay to the equilibrium solution. The presence of nonequi-
librium states is possible as the dissipative environment is
only sensitive to time changes of the magnetization. For a
static magnetization, it acts simply as a renormalization of the
Hubbard interaction. Therefore, nonequilibrium phases with a
static magnetization are stable. These static phases include the
zero magnetized phase of the overdamped regime and a phase
similar to the one obtained in the Landau-damped regime of
the closed system.

We show that although the bath does not qualitatively
change the dynamics in the overdamped and damped regimes,
there is a difference in how the staggered magnetization
approaches its asymptotic value, M � M(∞) + O(t−ν). For
finite g, the exponent ν no longer takes the discrete values 1
or 1/2. Instead, it seems to vary continuously in the range from
1/2 to 1 as a function of g.

Our results are based on mean-field theory and therefore
qualitatively correct only on time scales smaller than the
quasiparticle lifetime τq . The presence of the bosonic bath
introduces an additional time scale τg . Thus our treatment
is relevant for parameter sets such that τg � τq . Moreover,
the mean-field approximation discards quantum fluctuations
of the order parameter both perpendicular and parallel to the
magnetization vector. It would be interesting to investigate the
effect of these fluctuations in the asymptotic long-time regime,
in particular to study the survival of the nonequilibrium states
found here at the mean-field level.

Nonetheless, even if all of the dynamic mean-field regimes
do not survive the inclusion of quantum fluctuation, traces
of these regimes should be found at time scales for which
fluctuation effects can be disregarded.
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APPENDIX: CLOSED SYSTEM: CROSSOVER IN
OVERDAMPED REGIME

Here we derive the asymptotic long-time behavior in
the overdamped regime. Figure 1 (lower-right panel) shows
examples of the time evolution for hc(t = 0) � 8J and hc(t =
0) � 8J . Though the temporal behavior for hc(t = 0) � 8J

looks different from the one for hc(t = 0) � 8J , both regimes
can be described by a smooth function of hc(t = 0).

In the overdamped regime which arises for Ui/Uf � 1, it
is therefore natural to consider an expansion around small Uf .
At Uf = 0, one has that Bk(t > 0) = {0,0,εk} and thus the
evolution of the different momenta decouples. Starting from
initial conditions (14), the evolution of the order parameter
becomes

M(t) = 1

2

∫
dε

�(ε)√
1 + ε2

hc(t=0)2

e2iεt , (A1)

where �(ε) = ∫
k
δ(ε − εk) is the bare density of states of the

electronic system.
In two spatial dimensions, �(ε) has two distinctive features

that may contribute to the asymptotic long-time behavior of

M(t): �(ε) ∝ − ln(|ε|) for ε � 0, and �(ε) has sharp cutoffs at
ε = ±4J . The damped-oscillatory or purely damped behavior
of M(t) depends on the respective contribution of each of these
features: the denominator in the right-hand side of Eq. (A1)
defines a window of characteristic size hc(t = 0) within which
the integrand is non-negligible; if this window is much smaller
than the bandwidth, the only singularity that contributes to
the long-time behavior is the one at ε � 0 that leads to an
asymptotic behavior in 1/t . On the contrary, if the hc(t = 0) is
much larger than the bandwidth, there are additional oscillatory
contributions coming from the nonanalyticities at the band
edges that behave as sin(8J t)/t .

A more quantitative way to obtain the oscillatory-damped
crossover of M(t) as a function of hc(t = 0) is to develop
Eq. (A1) around hc(t = 0) � 4J . Defining δ = hc(t = 0) −
4J , we obtain

M(t) ≈ 1

8Jπt
+ sin(8J t)

8Jπ
√

2t
− δ

2(4J )2tπ (2)3/2
sin(8J t)

− 3δ2

4(4J )3π25/2t
sin(8J t)

− 3δ3

4(4J )4π27/2t
sin(8J t) + O(δ4). (A2)

Even if the region of applicability of this expression is limited,
it reproduces well the numerical results and captures the
crossover behavior observed in the overdamped regime.
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