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Dynamical control of electron-phonon interactions with high-frequency light
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This work addresses the one-dimensional problem of Bloch electrons when they are rapidly driven by a
homogeneous time-periodic light and linearly coupled to vibrational modes. Starting from a generic time-periodic
electron-phonon Hamiltonian, we derive a time-independent effective Hamiltonian that describes the stroboscopic
dynamics up to the third order in the high-frequency limit. This yields nonequilibrium corrections to the electron-
phonon coupling that are controllable dynamically via the driving strength. This shows in particular that local
Holstein interactions in equilibrium are corrected by antisymmetric Peierls interactions out of equilibrium, as well
as by phonon-assisted hopping processes that make the dynamical Wannier-Stark localization of Bloch electrons
impossible. Subsequently, we revisit the Holstein polaron problem out of equilibrium in terms of effective Green’s
functions, and specify explicitly how the binding energy and effective mass of the polaron can be controlled
dynamically. These tunable properties are reported within the weak- and strong-coupling regimes since both can
be visited within the same material when varying the driving strength. This work provides some insight into
controllable microscopic mechanisms that may be involved during the multicycle laser irradiations of organic
molecular crystals in ultrafast pump-probe experiments, although it should also be suitable for realizations in
shaken optical lattices of ultracold atoms.
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I. INTRODUCTION

A polaron is a fermionic quasiparticle that was introduced
by Landau in a 1933 seminal paper to describe the trapping of
an electron by the ionic distortion it induces in a crystal [1].
The self-trapping of such an electron was subsequently studied
in the case of weak electron-phonon coupling by Pekar and
Fröhlich [2,3]. They showed that, within a continuum dielectric
medium, a single electron can drag a phonon cloud along a slow
motion without being trapped, thus resulting in a large polaron
that propagates freely with an effective mass. By opposition,
the polaron size becomes small—of the order of the lattice
constant—in the regime of a strong electron-phonon coupling
compared to the electron bandwidth. This situation depicted by
Holstein, Lang, and Firsov refers to a quasitrapped polaron that
propagates with an exponentially heavier effective mass [4,5].
Importantly, all these polaron features were finally unified
within a path-integral-based variational approach that allowed
Feynman to characterize the binding energy and effective mass
of Fröhlich’s polaron for all coupling strengths [6,7].

From the experimental perspective these quasiparticles
were first identified in uranium dioxide as small polarons [8].
Later, localized lattice distortions were pointed out to affect
the Curie temperature of the ferromagnetic transition in
perovskites, and to be involved in the colossal magnetore-
sistance of manganites [9–14]. Whereas the phonons turn
out to be crucial in the context of symmetry-breaking phase
transitions with for example structural Peierls dimerization and
conventional BCS superconductivity [15,16], their coupling to
the charge carriers would also play a significant role in high-
temperature superconductors [17–24], although the underlying
microscopic pairing mechanism has not been clearly identified
yet. Polaron physics was also seriously discussed in connection
with organic molecular crystals with possible applications
as field-effect transistors [25–27]. It was first thought that
local electron-phonon interactions of the Holstein type were
sufficient to explain the physics of organic semiconductors.
Nevertheless, experiments achieved in aromatic hydrocarbon

crystals showed that nonlocal electron-phonon interactions are
also involved in transport properties [28], resulting in many
studies that aimed to highlight the interplay between local
and nonlocal electron-phonon interactions in these organic
materials [29–39].

On the other hand, the last years witnessed a growing
interest inside the condensed matter community in out-of-
equilibrium physics [40]. With the development of ultrafast
pump-probe spectroscopy, it became possible to study ex-
citation and relation processes, as well as steady regimes
in many-body systems [41–45], leading to phenomena such
as ultrafast time scale induced superconductivity [46] and
symmetry-protected topological transitions [47–50]. It is quite
natural then that the polaron problem was revisited in this
nonequilibrium context. For example, the electron-phonon
coupling offers a dominant relaxation channel to the photoex-
cited quasiparticles of Mott insulators [51]. It was also reported
that quenching the Holstein coupling reduces the Coulomb
interaction and enhances the production of doublons in the
Mott-insulating phase [52]. In order to get some insight into
the nonequilibrium dynamics of such many-body phases, the
real-time dynamics of a single electron in the Holstein model
has recently been studied [53,54]. This highlights for instance
what the electron transient dynamics is, from the time at which
a dc electric field is turned on until the electron reaches a
steady state with constant velocity thanks to energy dissipation
through optical phonons [55], as predicted by Thornber
and Feynman in 1970 [56]. Interestingly, it has also been
proposed that driving infrared active phonons by ultrafast laser
irradiation could induce superconductivity at temperatures
much higher than the equilibrium critical one [57].

Here, we revisit the polaron problem out of equilibrium
when the electrons are periodically driven and show through
explicit expressions how the binding energy and effective mass
of the polaron can be controlled from the driving strength.
To this purpose, we address the problem of noninteracting
electrons that are rapidly driven and linearly coupled to

2469-9950/2017/95(2)/024306(18) 024306-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevB.95.024306


C. DUTREIX AND M. I. KATSNELSON PHYSICAL REVIEW B 95, 024306 (2017)

vibrational modes in a one-dimensional crystal. Contrary to
most of the nonequilibrium papers that we have mentioned
so far and that deal with the real-time dynamics of an
electron-phonon system, we rather focus on its stroboscopic
dynamics, which is apprehended up to the third order in the
high-frequency expansion. This analytical approach provides
a time-independent description of the problem in terms of an
effective Hamiltonian. In the absence of vibrational modes,
it is well known that the Bloch band structure is simply
renormalized by the time-periodic driving, which can result
in the dynamical Wannier-Stark localization of electrons [58].
To our knowledge, this effect was first considered in Ref. [59].
In the presence of vibrational modes, we show that the
driving actually modifies the electron-phonon interaction
which becomes dynamically controllable when varying the
driving strength. In order to be more specific, we focus on
organic molecular crystals with electron-phonon interaction
of the Holstein type in equilibrium. Out of equilibrium, the
driving additionally generates tunable antisymmetric Peierls
interactions and phonon-assisted hopping between distant
neighbors. It turns out that both the phonon-assisted distant
hopping and the renormalized nearest-neighbor tunneling can
be dynamically suppressed when varying the driving strength.
However, they cannot be suppressed simultaneously, meaning
that the dynamical Wannier-Stark localization can no longer
occur when the electrons are allowed to dissipate their energy
on the vibrational modes of the crystal. Besides, we report
the controllable nonequilibrium binding energy and effective
mass of the polaron that the local and nonlocal electron-phonon
interactions induce. This is achieved within both the weak- and
strong-coupling regimes, since varying the driving strength
enables the system to visit these two regimes dynamically.

While the high-frequency limit and simulations of lattice
vibrations are already relevant in optical lattices of cold atomic
gases [60–65], the explicit knowledge of the electron-phonon
mechanisms we derive here in the third-order expansion
allows the description of slower frequencies that become
reasonable for solid state physics too, for example during
multicycle laser irradiations in pump-probe experiments. The
dynamical control allowed by the driving strength offers
several opportunities, among which is the possibility to test
weak- and strong-coupling polaron theories within a single
material, or to understand a bit more the interplay between
local and nonlocal electron-phonon interactions in organic
crystals.

II. DYNAMICAL ELECTRON-PHONON COUPLING

A. Time-periodic Hamiltonian

When a homogeneous time-periodic electric field with
magnitude E0 and frequency � is driving noninteracting
electrons in a one-dimensional crystal, it yields a vector
potential that can be written as A(t) = −E0 sin(�t)/�. The
scalar potential is not relevant here for we consider the
temporal gauge. Moreover the Planck constant and the light
celerity are set to unity, i.e., � = c = 1, and we chose the
interatomic distance as unit of length. If the charge carriers
are additionally coupled to vibrational modes, the system can
generically be described by a time-periodic Hamiltonian of the

form H (t) = He(t) + Hp + Hep, with

He(t) =
∑

k

εk(t) c
†
kck, Hp =

∑
q

ωq b†qbq,

Hep =
∑
k,q

gq c
†
k+qckBq. (1)

According to Peierls substitution, the electronic dispersion
relation is given by εk(t) = 2ν cos(k + z sin �t), where ν

refers to the nearest-neighbor hopping amplitude, z = eE0/�,
and e denotes the electron charge. In the model we are
concerned with, the electrons are assumed to be linearly
coupled to the atomic displacement operator Bq = b

†
−q + bq

through the coupling constant gq , while ωq defines the
dispersion relation of phonons. No assumptions are made on
these q-dependent functions for the moment.

B. Third-order high-frequency description

The dynamics of a quantum state φ(t) is then ruled by the
time-dependent Schrödinger equation

i ∂τφ(τ ) = λ H (τ ) φ(τ ), (2)

where τ = �t and λ = δE/�. Here δE denotes a certain
energy scale involved in the Hamiltonians of Eq. (1). Conse-
quently, τ and H (τ ) are dimensionless, though we still refer
to them as time and the Hamiltonian, respectively.

The high-frequency limit corresponds to λ � 1 or equiva-
lently to δE � �. If δE is chosen as the largest characteristic
energy scale met in Eq. (1), then there are no resonances
with the driving which is said to be off-resonant. This limit
can be apprehended through several analytical approaches,
among which are Floquet-Magnus expansion and van Vleck
and Brillouin-Wigner perturbation theories [66–68]. Here we
use a method which has been reported in Refs. [69,70]. It
relies on the gauge transformation φ̃(τ ) = exp{−i�(τ )} φ(τ ),
where �(τ ) = ∑+∞

n=1 �n(τ )λn. Starting from the lowest order
in λ, we iteratively build up operator �(τ ) under the constraint
that �n(τ ) is 2π -periodic and averages at zero. The latter
boundary condition ensures, similarly to van Vleck and
Brillouin-Wigner approaches, that the perturbation theory does
not depend on the arbitrary phase of the periodic driving [68].
By construction, this transformation is also required to remove
the time dependence of H (τ ) in all orders in λ. So we end up
with the effective Hamiltonian

H̃ = λei�(t)H (t)e−i�(t) − iei�(t)∂te
−i�(t) (3)

that is time independent and also satisfies a Schrödinger-like
equation:

i∂τ φ̃(τ ) = H̃ φ̃(τ ). (4)

When assuming H̃ = ∑+∞
n=1 H̃nλ

n and restricting the high-
frequency analysis to the third order in λ, Eq. (3) leads to

H̃1 = H (τ ) − ∂τ�1(τ ),

H̃2 = i

2
[�1(τ ),H (τ )] + i

2
[�1(τ ),H̃1] − ∂τ�2(τ ),

H̃3 = i

2
[�2(τ ),H (τ )] + i

2
[�1(τ ),H̃2] + i

2
[�2(τ ),H̃1]

+ 1

12
[[�1(τ ),∂t�1(τ )],�1(τ )] − ∂τ�3(τ ), (5)
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where the brackets refer to standard commutators. Since H̃1,
H̃2, and H̃3 have to be static by construction, they must be
equal to their time average. Then taking the time average of
the right-hand side terms in Eq. (5) results in

H̃1 = H0, H̃2 = −1

2

∑
m�=0

[Hm,H−m]

m
,

H̃3 = 1

2

∑
m�=0

[[Hm,H0],H−m]
m2

+ 1

3

∑
m�=0

∑
n�=0,m

[[Hm,Hn−m],H−n]
mn

, (6)

where Hm = ∫ +π

−π
dτ
2π

eimτH (τ ). The first order simply refers
to the time-averaged Hamiltonian because the electrons can-
not follow the dynamics of the driving. Higher orders are
commutation-based corrections that describe emissions and
absorptions of virtual photons. As a result, the averaging
method introduced above leads to time-independent effec-
tive Hamiltonians that describe the stroboscopic dynamics,
whereas the evolution between two nonstroboscopic times is
encoded into the operators �n(τ ). Note that this operator is
related to the kick operator as introduced in Ref. [64], where
the authors show that it does not lead to drastic changes in
the long-time dynamics provided the off-resonant driving is
turned on adiabatically.

Importantly, the first and second orders of the high-
frequency expansion are already realistic in systems such
as ultracold atomic gases, for example when shaking optical
lattices with frequencies of a few kHz [60–63]. So the third-
order description we address here may also be interesting for
observing the effects of sub-kHz frequencies in these systems.
In solid state physics, however, rapidly driving electrons in the
high-frequency limit face several issues. On the one hand, the
interesting effects predicted for noninteracting electrons such
as dynamical localization and symmetry-protected topological
phase transitions are based on the condition J0(z) = 0. For
the first root of the 0th-order Bessel function this condition
already requires a driving strength satisfying eE0 ∼ 2.4 �. As
we shall see later on, the high-frequency expansion usually
relies on 2ν � � and is basically valid for laser frequencies
of a few eV. Therefore, the condition eE0 ∼ 2.4 � involves
even more energetic intensities that, additionally to be already
challenging technically, are very likely to burn the crystal
where the typical atomic binding energy is of the order
of a few eV per angstrom too for covalent bonds. This
issue is no longer a problem when dealing with interactions
because the interesting physics due to corrections arises with
Jm(z), meaning with nonzeroth-order Bessel functions. So
they start playing a role as soon as the driving is turned on
and there are already interesting effects for eE0 < 2.4 �.
Moreover we provide a high-frequency description up to the
third-order, which is also expected to describe effects of slower
driving frequencies and is a priori more reasonable for solid
state physics. As far as we shall be concerned, the hopping
amplitude is about 0.1 eV in organic molecular crystals
such as pentacene [38,39], so the high-frequency effects
we address further should be relevant for eE0 ∼ � ∼ 1 eV,
namely infrared light of 241.8 THz. On the other hand, even

if one can describe how electronic states are changed out of
equilibrium, the question of how to reach a steady regime and
populate the states in order to probe observables in solid states
physics experiments is still under investigation [71–73]. Here,
we do not regard this latter issue. Instead, we rather address
what kinds of electron-phonon interactions are induced by the
off-resonant driving and how these interactions modify the
equilibrium polaronic states.

C. Time-independent effective Hamiltonian

Now we are ready to apply the high-frequency approach
introduced above to Hamiltonian H (t) defined in Eq. (1). Its
time Fourier transform consists of

Hm =
∑

k

εk,m c
†
kck + (Hp + Hep)δm,0, (7)

where εk,m = ∫ +π

−π
dτ
2π

eimτ εk(τ ). In the absence of phonons,

Hm is a quadratic scalar operator, and [c†kck,c
†
k′ck′] = 0 is

responsible for the cancellation of all commutators in Eq. (6).
In this case, the stroboscopic dynamics is only described by
the time-averaged Hamiltonian

H̃1 =
∑

k

εk,0(z) c
†
kck, (8)

where εk,m(z) = 2νJm(z) cos(k)/δE and Jm is the mth-order
Bessel function of the first kind. Thus, the off-resonant driving
renormalizes the hopping amplitudes and is likely to localize
the electrons for driving strengths that satisfy J0(z) = 0, which
yields the so-called dynamical Wannier-Stark ladder in the
density of states [58].

Such a renormalization of the electronic band structure
suggests that, in the presence of interactions, the system may
dynamically visit weak-, intermediate-, and strong-coupling
regimes, as well as the one of strictly localized electrons. More-
over the interactions are time independent, so they only appear
through Fourier component H0. As the latter is not involved
in the definition of H̃2 in Eq. (6), there is no contribution at
the second order of the high-frequency limit and H̃2 = 0. The
third order in λ, however, does depend on H0 and leads to

H̃3 = 1

2

∑
m�=0

∑
k,k′

εk,mεk′,−m

m2
[[c†kck,Hep],c†k′ck′]. (9)

Consequently, the electron-phonon interaction, though time
independent, is responsible for additional corrections to the
effective Hamiltonian. In the case of the electron-phonon
interaction, the effective Hamiltonian can by rewritten as
H̃ = H̃e + H̃p + H̃ep + o(λ3), where

H̃e =
∑

k

2t̃1(z) cos(k) c
†
kck, H̃p =

∑
q

ω̃qb
†
qbq,

H̃ep =
∑
k,q

γk,q(z)c†k+qckBq, (10)

while t̃1(z) = ν̃J0(z), ν̃ = ν/�, and ω̃q = ωq/�. The
effective electron-phonon coupling γk,q is specified in the
next section. The reader may also find a detailed discussion
about the role played by generic kinds of interactions in the
high-frequency description in Ref. [67].
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FIG. 1. Third-order correction ηk,q (left) and effective electron-
phonon coupling γk,q in units of gq (right) for � = 5ν and z = 1.8.

D. Dynamical control of the electron-phonon coupling

Whereas the phononic dispersion relation remains un-
changed, the off-resonant driving renormalizes the electron-
phonon interactions which, a priori, becomes k-dependent
out of equilibrium. This is characterized by the effective
electron-phonon coupling

γk,q(z) = g̃q(1 − ηk,q(z) λ2), (11)

where ηk,q arises from Eq. (9) and appears as a second-order
correction in λ to the equilibrium electron-phonon coupling
g̃q = gq/�. It is given by

ηk,q(z) =
∑
m>0

(
ε̄k+q,m(z) − ε̄k,m(z)

m

)2

, (12)

where ε̄k,2n = εk,2n or ε̄k,2n+1 = 2νJ2n+1(z) sin(k)/δE for any
integer n. This correction turns out to be positive for all
strengths of the driving. As a result, the minus sign in Eq. (11)
suggests that it can only reduce the equilibrium electron-
phonon coupling. The reader may find more details about the
derivation of ηk,q in Appendix A. It is also straightforward to
show that the maxima of ηk,q lie along the line (k,0) in the kq

plane, whereas minima are located at ±(±π
2 ,π ), in agreement

with the map in Fig. 1. Thus, the effective electron-phonon
coupling |γk,q |2 favors the interactions between electrons and
long-wavelength phonons q � 0, as well as interactions with
phonons of wave vectors q � −2k ± π . In this sense, the
off-resonant driving acts as an interaction selector and can
be regarded as a way to control the electron-phonon coupling
in a dynamical and reversible way.

It is also instructive to rephrase the effective electron-
phonon Hamiltonian in terms of real-space coordinates. In
order to clearly highlight the microscopic processes generated
by the off-resonant driving, we now focus on a Hamiltonian
that describes local electron-phonon interactions in equilib-
rium, meaning gq = g0. This kind of interaction is for example
relevant in the context of polarons in organic molecular
crystals, as reported by Hostein [4]. As detailed in Appendix B,
the effective electron-phonon Hamiltonian can be written in
real space as

H̃ep = g̃0

∑
n

c†ncn Bn + g̃1(z)
∑

n

c†ncn(Bn−1 − 2Bn + Bn+1)

+ g̃2(z)
∑

n

c†ncn+2(Bn − 2Bn+1 + Bn+2) + H.c.,

(13)

FIG. 2. Field-renormalized hopping and nonequilibrium correc-
tions to the electron-phonon interaction as a function of the driving
strength for � = 5ν and g0 = ν.

where the different electron-phonon couplings are defined by

g̃0 = g0

�
, g̃1(z) = 1

2

g0

�

(
2ν

�

)2 ∑
m>0

J 2
m(z)

m2
,

g̃2(z) = 1

4

g0

�

(
2ν

�

)2 ∑
m>0

(
J 2

2m−1(z)

(2m − 1)2
− J 2

2m(z)

(2m)2

)
. (14)

Coupling g̃0 comes from the time-averaged Hamiltonian H̃1

and refers to Holstein local interactions as defined in equilib-
rium. Coupling g̃1 is a nonequilibrium correction that simulates
antisymmetric Peierls interactions [29], as introduced in the
so-called SSH model to explain the formation of topological
solitons in polyacetylene [74]. Coupling g̃2 is a nonequilibrium
correction too but nonlocal. It describes phonon-assisted
next-nearest-neighbor hopping processes. Both g̃1 and g̃2

refer to antisymmetric interactions, which could already be
known from the map γk,q in Fig. 1, accordingly to the
study of the symmetry effects of nonlocal electron-phonon
interactions in Ref. [38]. Besides, g̃1 and g̃2 can both be
controlled dynamically via the driving strength, as illustrated
in Fig. 2. Importantly, the phonon-assisted hopping processes
can be turned off for some specific driving strengths. However,
it cannot vanish simultaneously with the field-renormalized
hopping t̃1, which means that the noninteracting electrons
can no longer experience the dynamical Wannier-Stark lo-
calization in the presence of lattice vibrations. It is worth
mentioning that a similar conclusion holds when the electrons
are driven by an electric field constant in time (instead of
time-periodic). Indeed, the dc field leads to the Wannier-Stark
localization (instead of dynamical Wannier-Stark localization)
of the noninteracting electrons, but they get delocalized when
they are coupled to lattice vibrations [75].

Besides, third-order corrections g̃1 and g̃2 scale with the
factor (2ν/�)2, regardless of the energy scale δE that we
chose to define the small parameter λ in the high-frequency
expansion. As shown by Eq. (9), this is so because these
corrections are defined from the square of harmonics of the
electronic dispersion relation, whose characteristic energy
scale corresponds to half the equilibrium bandwidth, namely
2ν. Of course, these corrections always remain small compared
to Holstein coupling g̃0. Nevertheless, they may compete the
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k-q kk

q

t1 t2 t

C

FIG. 3. Diagrammatic representation of the electron-phonon in-
teraction in a second-order perturbation theory (left) which is regarded
here along Schwinger-Keldysh contour C (right).

renormalized hopping processes when varying the driving
strength z. Such a dynamical control, which should be
suitable for multicycle laser pulse experiments and shaken
optical lattices, may be useful for example to understand
the role played by the nonlocal electron-phonon interactions
in organic molecular semiconductors, where local Holstein
interactions alone would not be sufficient to explain electronic
transport [31,37–39].

III. EFFECTIVE GREEN’S FUNCTIONS

A. Perturbation theory along Schwinger-Keldysh contour

Since the system is supposed to be in a nonequilibrium
steady state, one can consider the time-dependent problem
along the Schwinger-Keldysh contour C, as illustrated in
Fig. 3. In the interaction picture, the full Green’s function
of the system can be written as a thermal average

iG(k,t,t ′) = 〈
TCe−i

∫
C

dτ
∑

k V (k,τ )ck(t)c†k(t ′)
〉
0, (15)

where TC denotes the time-ordering operator associated to
the oriented contour C. The time evolution of operator ck(t)
is ruled by the equation of motion based on time-dependent
Hamiltonian He(t) introduced in Eq. (1). Importantly the
bracket index refers to the noninteracting density matrix
of the system in equilibrium. This means that, first, we
explicitly know the density matrix which is then given by
ρ0 = e−βH0(−∞)

Tr[e−βH0(−∞)]
and, second, we can take advantage of Wick

theorem. The electron-phonon interaction is introduced as

V (k,τ ) =
∑

q

gqc
†
k+q(τ )ck(τ )Bq(τ ). (16)

In the framework of a perturbation theory, the first-order
expansion in the electron-phonon coupling yields the thermal
average of a single bosonic operator Bq and therefore vanishes.
Then the lowest-order contribution arises from the second
order, which leads to the following Green’s function:

G(2)(k,t,t ′)

= i

2

∫
C

dt1dt2
∑
k1,k2

〈TCV (k1,t1)V (k2,t2)ck(t)c†k(t ′)〉0

=
∫

C

dt1dt2G
(0)(k,t,t1)�(2)(k,t1,t2)G(0)(k,t2,t

′). (17)

The bare electron and phonon Green’s functions are
respectively defined as G(0)(k,t,t ′) = 〈TCck(t)c†k(t ′)〉0 and

D(0)(q,t,t ′) = 〈TCBq(t)B†
q(t ′)〉0. This corresponds to the

Fock-like diagram illustrated in Fig. 3. This is the single nonva-
nishing second-order contribution. It describes the emission of
a phonon with momentum q at t2 and its subsequent absorption

at t1. The self-energy associated with this single-phonon
process is

�(2)(k,t1,t2) = i

∫
BZ

dqg2
qG

(0)(k + q,t1,t2)D(0)(q,t1,t2).

(18)

Considering that any time variable can be located either along
the forward branch or along the backward one of contour
C, it is then possible to rephrase this equation in terms of
2 × 2 matrices. In the Keldysh basis, the second-order Green’s
function can be rewritten as

G(2)(t,t ′) =
∫∫

dt1dt2G
(0)(t,t1) �(2)(t1,t2) G(0)(t2,t

′), (19)

where momentum k has been omitted for more clearness,
integral

∫
runs from t = −∞ up to t = +∞, and

G(0) =
(

G
(0)
R G

(0)
K

0 G
(0)
A

)
, D(0) =

(
D

(0)
R D

(0)
K

0 D
(0)
A

)
,

�(2) =
(

�
(2)
R �

(2)
K

0 �
(2)
A

)
. (20)

The indices R, K , and A respectively label the retarded,
Keldysh, and advanced Green’s functions.

The retarded component of the self-energy in the Keldysh
formalism is

�
(2)
R (k) = i

2

∫
BZ

dq
[
G0

R(k+q) D0
K (q)+G0

K (k + q) D0
R(q)

]
,

(21)

where the two time variables have been omitted for more
clearness. Because the system is out of equilibrium, the two
time variables of Green’s functions are independent. Then
it is convenient to rephrase them in terms of the relative
time t = t1 − t2 and the averaged time T = (t1 + t2)/2 [76].
This can be compared to the equilibrium situation, where
Green’s functions only depend on the relative time, whose
conjugate variable is the frequency ω. The Fourier transform
of the retarded and Keldysh Green’s functions, with respect
to the relative time, leads to the following expression for the
self-energy:

�
(2)
R (k,ω,T ) =

∫
BZ

dqg2
q

{
[Nq + nk+q]G0

R(k + q,ω + ωq,T )

+ [Nq + 1 − nk+q]G0
R(k + q,ω − ωq,T )

}
.

(22)

The functions Nq and nk+q respectively denote the Bose-
Einstein and Fermi-Dirac distributions, meaning the distribu-
tions for identical particles when the system was in equilibrium
at time t = −∞.

B. Perturbation theory for effective Green’s functions

The nonequilibrium perturbation theory along Schwinger-
Keldysh contour refers to Green’s functions based on time-
periodic Hamiltonian (1). At present we show that we can
equivalently define effective Green’s functions based on time-
independent effective Hamiltonian (10) that describes the
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system in the high-frequency limit. We can start from the
equation of motion

[i∂τ − λH (τ )]G(τ,τ ′) = δ(τ,τ ′) (23)

and straightforwardly show that the gauge transformation
introduced earlier to define the effective Hamiltonian leads
to

[i∂τ + H̃ ]G̃(τ ′ − τ ) = δ(τ,τ ′), (24)

where we refer to G̃(τ ′ − τ ) = ei�(τ ) G(τ,τ ′) e−i�(τ ′) as effec-
tive Green’s function. This is a one-time-argument function
that describes a system invariant by time translation. Conse-
quently, two stroboscopic times characterized by an integer
n such that τ ′ − τ = n 2π , along with the 2π periodicity of
�(τ ), result in

Tr G̃(τ ′ − τ ) = Tr G(τ,τ ′). (25)

Observables such as the density of states are then equal in both
descriptions. As far as we are concerned, the single-orbital
electronic Green’s functions are scalars and then equal each
other for stroboscopic times.

Now that we have introduced the notion of the effective
Green’s function in the high-frequency limit, we are ready to
revisit the perturbation theory. The multiplicative structure of
the Dyson equation is responsible for

G(τ,τ ′) = G0(τ,τ ′)

+
∫∫

dτ1dτ2G
0(τ,τ1) �(τ1,τ2) G0(τ2,τ

′) + · · ·

= e−i�(τ ) G̃0(τ ′ − τ ) ei�(τ ′)

+ e−i�(τ )
∫∫

dτ1dτ2G̃
0(τ1−τ ) �̃(τ2−τ1) G̃0(τ ′

− τ2) ei�(τ ′) + · · · , (26)

where �̃(τ ′ − τ ) = ei�(τ ) �(τ ′,τ ) e−i�(τ ′) defines the effective
self-energy. As a result, there is a one-to-one correspondence
at all orders in the perturbation theory between the nth
order of the time-periodic problem and the nth order of the
time-independent effective problem. However, the interaction
vertex g the self-energy �(τ1,τ2) relies on is renormalized
in the effective description, meaning that �̃(τ2 − τ1) refers
to an effective interaction vertex g̃. In other words, the
local-in-time gauge transformation ei�(τ ) enables us to regard
the time-evolution of the initial time-periodic system in terms
of the evolution of an effective time-independent one with
a renormalized band structure and renormalized interactions.
This greatly simplifies the problem since we can simply use
the standard rules for equilibrium Green’s functions.

For example, the second-order perturbation theory leads to
the following retarded component for the effective self-energy:

�̃
(2)
R (k,ω̃) =

∫
BZ

dq γk,qγk+q,−q

(
N0 + nq+k

ω̃ + ω̃0 − εk+q,0 + iδ

+ N0 + 1 − nq+k

ω̃ − ω̃0 − εk+q,0 + iδ

)
, (27)

where N0 denotes the equilibrium distribution function of
dispersionless phonons and δ is the inverse of the quasiparticle
lifetime which is introduced in the definition of the bare

Green’s function. The first term proportional to N0 describes
the absorbtion of a phonon, whereas the second term, which
is proportional to N0 + 1 and does not vanish even at zero
temperature, corresponds to the emission of phonons by the
electrons. Besides, the renormalized coupling preserves the
Hermitian structure of the effective electron-phonon Hamilto-
nian and satisfies

γk,qγk+q,−q = |γk,q |2 = g̃2
0(1 − 2ηk,qλ

2) + o(λ3). (28)

We remind the reader of the map |γk,q |2 that has already been
introduced in Fig. 1.

IV. WEAK-COUPLING REGIME

A. Single-electron properties

Because the off-resonant driving renormalizes the elec-
tronic bandwidth, it enables the system to visit weak- and
strong-coupling regimes in a dynamical way. Here, we begin
with the description of the weak-coupling regime, which
corresponds to driving strengths z that satisfy g̃0 � |t̃1(z)|.
Moreover, we consider that Eq. (27) does not depend on the
fermionic statistic because we consider a single electron in the
band, as assumed in the Fröhlich polaron problem [7,77,78].
Within the Holstein description of organic molecular crys-
tals [4], an electron that hops onto a molecule excites a
vibrational mode which subsequently relaxes after the electron
moves away. The molecular displacement the electron induces
along its motion results in a surrounding phonon cloud, which
changes the electron energy and effective mass. This electron
dressed by the lattice polarization is referred to as polaron.
In the presence of off-resonant driving, one naturally expects
third-order corrections g̃1 and g̃2 in Hamiltonian (13) to modify
the equilibrium polaronic properties. This is the purpose of the
subsequent lines.

1. Generic case

First of all, it can be noticed that the retarded component
of the effective self-energy in Eq. (27) is a complex function
whose real and imaginary part can be known analytically and
exactly for arbitrary parameters. Its expression is derived in
Appendix C but, because it is rather cumbersome, we do not
present it in the main text. Instead, we present its real and
imaginary parts in Fig. 4, when there is a single electron in
the band that is linearly coupled to vibrational modes at room
temperature, i.e., kBT = 25 meV. In this case, the electron is
allowed to emit and absorb phonons. This yields two emission
and two absorption peaks that are located at |ω̃ − ω̃0| = 2|t̃1|
and |ω̃ + ω̃0| = 2|t̃1|, respectively. Figure 4 also compares
our analytical evaluation of the effective self-energy to its
numerical computation obtained from Eq. (27). They both
exhibit the same behavior, the little error in between the full
and dashed lines being due to the finite quasiparticle lifetime
1/δ that is required to perform integral (27) numerically.

In order to get some more physical insight into this self-
energy, we now focus on two peculiar situations, namely the
adiabatic and nonadiabatic cases.

024306-6



DYNAMICAL CONTROL OF ELECTRON-PHONON . . . PHYSICAL REVIEW B 95, 024306 (2017)

FIG. 4. Real and imaginary parts of the retarded component of
the effective self-energy for a single electron at room temperature.
Analytics (full lines) are compared to numerics (dashed lines) for
� = 5ν, ω0 = 0.1ν, g0 = 0.2ν, z = 1.8, δ = 0.01, and k = 0.

2. Nonadiabatic limit | t̃1| � ω̃0

The nonadiabatic limit |t̃1| � ω̃0 refers to a situation in
which the electron tunneling is much slower than the vibrations
of molecules. In the limit of small k, the retarded component
of the effective self-energy introduced in Eq. (27) leads to the
following polaronic dispersion relation:

ξ̃k = εk,0 + Re �̃
(2)
R (k,ξ̃k) � −�̃ + 1

1 + (2N0 + 1) �̃
ω̃0

k2

2m̃
.

(29)

This expression, which is derived in Appendix C, looks like
the one obtained at zero temperature in equilibrium [79,80].
However, the electron mass m̃ takes into account the flattening
of the noninteracting electron band due to the time-periodic
driving. So it is a function of the driving strength that is defined
as

m̃(z) = 1

t̃1(z)
. (30)

Moreover, the polaron binding energy is corrected by the
electron-phonon couplings induced out of equilibrium. It is
also a function of the driving strength and satisfies

�̃(z) = g̃2
0 − 4g̃0g̃1(z) + 4g̃0g̃2(z)

ω̃0
. (31)

Finally the polaron mass m̃∗ depends on the phonon tempera-
ture and driving strength as

m̃∗(z) =
[

1 + (2N0 + 1)
�̃(z)

ω̃0

]
m̃(z). (32)

When the off-resonant driving is turned off, the binding energy
reduces to �̃(0) = g̃2

0/ω̃0 and the expressions above are in
agreement with the polaron behavior in equilibrium [79,80].

3. Adiabatic limit ω̃0 � | t̃1|
The adiabatic limit ω̃0 � |t̃1| corresponds to the case of an

electron hopping that is much faster than the vibrations of the
lattice. This limit is for instance relevant when the electron-
phonon coupling is weak (g̃0 � |t̃1|) in organic molecular
crystals such as pentacene where g̃0 ∼ ω̃0 [38,39].

When −2|t̃1|+ω̃0 <ω̃<2|t̃1|−ω̃0, we obtain from Eq. (27)
a simple expression for the polaronic dispersion relation,
namely

ξ̃k = �̃ + m̃

m̃∗ εk,0. (33)

Note that this expression holds for all values of k within the
Brillouin zone, so it characterizes a whole polaron band. The
on-site energy felt by the polaron is

�̃(z) = 2
g̃0g̃2(z)

t̃2
1 (z)

ω̃0 (34)

and its effective mass is defined by

m̃∗(z) =
[

1 + (2N0 + 1)
g̃0g̃1(z)

t̃2
1

]
m̃(z). (35)

Contrary to the nonadiabatic case, the on-site energy �̃ can
dynamically change signs as a function of the driving strength.
Therefore, it does not necessarily refer to a binding energy
since, when �̃ > 0, the polaron feels a repulsive potential
on each lattice site. The effective mass, however, is always
heavier than it is in equilibrium because, first, the driving
flattens the curvature of the electronic band and, second, the
electron drags the phonon cloud along its motion. It is also
worth mentioning that the on-site energy felt by the polaron
and its effective mass both vanish in equilibrium and consist
of purely out-of-equilibrium polaronic effects.

Moreover, the polaron energy ξ̃k is larger than the phonon
frequency ω̃0. Thus, the polaron can also emit a phonon, even
at zero temperature when N0 = 0, which yields a nonzero
imaginary part to the self-energy. The zeroth order in the
adiabatic limit ω̃0 � |t̃1| leads to a scattering time τ̃ that
satisfies

1

τ̃ (k,ω̃)
= − Im �̃

(2)
R (k,ω̃)

= 2N0 + 1√
4t̃2

1 − ω̃2

[
g̃2

0 − g̃0g̃1

(
4 − εk,0

t̃1

ω̃

t̃1

)

− g̃0g̃2

(
4 − 2

ε2k,0

t̃1
+ 2

εk,0

t̃1

ω̃

t̃1
− 2

ω̃2

t̃2
1

)]
. (36)

The polaron lifetime is already finite in equilibrium but the
nonequilibrium corrections make it k-dependent.

When −2t̃1 − ω̃0 < ω̃ < −2t̃1 + ω̃0, we can also determine
the polaron properties for energies in the vicinity of −2t̃1. The
reader may refer to Appendix C for more details. Such energies
are associated with the bottom of the equilibrium electron
band, for we consider, without loss of generality, that t̃1(z)>0.
Then Eq. (27) leads to the following polaronic dispersion
relation in the limit of small k:

ξ̃k � −�̃ + 1

1 + �̃
2ω̃0

k2

2m̃
. (37)

The on-site energy felt by the polaron is now negative and
again defines a binding energy with

�̃(z) = (N0 + 1)
g̃2

0 − 8g̃0g̃1(z)√
4ω̃0 t̃1(z)

. (38)
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FIG. 5. Effective and Floquet spectral functions for � = 5ν

(left) and � = ν (right), respectively. Both spectral functions have
been computed for zero temperature with the following parameters:
ω0 = 0.1ν, g0 = 0.2ν, z = 1.8, and δ = 0.01.

Note that this is a function of the phonon temperature too.
Besides the effective mass of the polaron is given by

m̃∗(z) =
[

1 + �̃(z)

2ω̃0

]
m̃(z). (39)

Again we can check that, when the off-resonant driving is
turned off, the binding energy reduces to �̃ = g̃2

0/
√

4ν̃ω̃0,
so that the expressions above yield the same results as the
equilibrium ones [79,80].

B. Effective and Floquet spectral functions

The retarded component of the effective self-energy intro-
duced in Eq. (27) leads to the effective spectral function

Ã(k,ω̃) � − 1

π
Im

[
G̃0

R(k,ω̃) − �̃
(2)
R (k,ω̃)

]−1
. (40)

Importantly, the effective spectral function is a gauge-invariant
quantity, since it has been introduced in the context of the
stroboscopic dynamics and, therefore, it is not affected by the
momentum shift required to make Green’s functions gauge
invariant out of equilibrium [40,81,82]. Note moreover that
Keldysh approach relies on the equilibrium Fermi-Dirac dis-
tribution, since it assumes that the system was in equilibrium
at time τ = −∞. This is the reason why the equilibrium
distribution function appears in the expression of the effective
self-energy in Eq. (27). Figure 5 depicts an effective spectral
function that takes into account the effect of a Fermi sea at half
filling in the adiabatic limit. It can be noticed that the bottom of
the band reveals two parabolic bands in this limit, in agreement
with the two bands reported earlier in the single-electron case.

Besides, the high-frequency results presented here are
equivalent to the ones obtained in the framework of Flo-
quet Green’s functions [42], whose definition relies on the
time-dependent Hamiltonian in Eq. (1). Nevertheless, the
Floquet Green’s functions are not based on the high-frequency
assumption and enables us to numerically describe the effect
of a slower driving frequency. The spectral function it leads to
is illustrated in Fig. 5 for a frequency that satisfies � = ν. Out
of equilibrium the energy is no longer a conserved quantity but,
in the case of a time-periodic driving, Floquet’s theory ensures
that it is conserved up to a multiple of the frequency. This is the
reason why the Floquet spectral function in Fig. 5 is similar to
the effective one, but there are also replicas that are centered
on m� for all values of the relative integer m. Actually, these

FIG. 6. Effective and Floquet local spectral functions for � = 5ν

(left) and � = ν (right), respectively. Both plots corresponds to the
case of zero temperature with ω0 = 0.1ν, z = 1.8, δ = 0.01, and
g0 = 0.0ν (dashed line) or g0 = 0.2ν (full line).

replicas do exist in the high-frequency description too, but they
can be neglected when the driving is off-resonant.

The density of states, which is obviously a gauge-invariant
quantity too, can finally be obtained from the momentum
integral of the spectral function over the Brillouin zone. It is
depicted in Fig. 6 in the adiabatic limit at zero temperature from
both the high-frequency limit and Floquet Green’s functions.
Whereas it shows a single band with polaronic peaks in the
hight-frequency limit, there are additional replicas that overlap
each other when reducing the driving frequency, in agreement
with the Floquet spectral function in Fig. 5.

V. STRONG-COUPLING REGIME

A. Lang-Firsov canonical transformation

In equilibrium, the electron-phonon interaction may already
be too large to be regarded as a perturbation with respect to the
electron bandwidth. But regardless of the equilibrium interac-
tion strength, we have also stressed that the system can always
be dynamically driven toward such a strong-coupling regime
defined by |t̃1(z)| � g̃0. This problem can be solved within a
perturbation theory, whose zeroth order is given by t̃1(z) = 0
and usually describes localized electrons. This provides an
exact analytical solution when the system lies in equilibrium,
which is traditionally obtained from Lang-Firsov canonical
transformation [5]. In our case, this transformation, which is
detailed in Appendix D, turns effective Hamiltonian (10) into

H̃ ′ = ω̃0

∑
q

b†qbq − �̃
∑

n

c†ncn

+ t̃1
∑

n

(c†n+1cnX
†
n+1Xn + H.c.)

+ t̃2
∑

n

(c†n+2cnX
†
n+2Xn + H.c.)

+ g̃2

∑
n,q

(2 cos q − 1) e−iqn(c†n+2cnX
†
n+2Xn + H.c.)Bq,

(41)

where the polaron-polaron interactions are neglected and

X
†
n′Xn = exp

(∑
q

uq (e−iqn − e−iqn′
)(bq − b

†
−q)

)
(42)

with uq = [g̃0 + (2 cos q − 1)g̃1]/ω̃0.
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FIG. 7. Variations of the polaron binding energy (left) and of
its nearest- and next-nearest-neighbor hopping amplitudes (right) for
� = 5ν, g0 = ν, ω0 = 0.1 ν, and zero temperature.

Whereas the phonon frequency is not changed by the
canonical transformation, the polaron binding energy

�̃(z) = g̃2
0 − 4g̃0g̃1(z)

ω̃0
(43)

is reduced by Peierls coupling g̃1 when the driving is turned
on, which is illustrated in Fig. 7. This defines a potential well
that aims to localize the electron onto a molecular site, so
that the characteristic size of the polaron becomes comparable
to the lattice scale, hence the name of “small polaron” that
may be encountered sometimes in the literature. Note that �̃

does not change signs because g̃1 comes as a second-order
correction to g̃0 in the high-frequency limit, according to
Eq. (14). Of course, one naturally recovers the equilibrium
binding energy when the driving is turned off (z = 0). In this
case, the binding energies introduced in the strong-coupling
regime and in the nonadiabatic limit of the weak-coupling
regime equal each other [79,80]. Interestingly, this is no longer
the case out of equilibrium, as can be seen from Eqs. (31)
and (43). The extra term 4g̃0g̃2(z) in Eq. (31) comes from
the phonon-assisted next-nearest-neighbor hopping process
which leads to 4g̃0g̃2(z) cos(2k) in momentum space (cf. the
nonadiabatic limit in Appendix C) and whose expansion for
small k yields an energy offset.

Contrary to the equilibrium situation, the canonical trans-
formation does not diagonalize the effective Hamiltonian
when the off-resonant driving turns off the nearest-neighbor
hopping, i.e., when t1(z) = 0. This is due to nonequilibrium
coupling g̃2 that is responsible for the two last terms on the
right-hand side of Eq. (41). The first one, which scales with

t̃2(z) = 2
g̃0g̃2(z)

ω̃0
, (44)

describes the next-nearest-neighbor hopping of the polaron,
namely the electron dressed by the phonon cloud whose
annihilation operator is cnXn. This hopping process tends
to delocalize the polaron and competes the nearest-neighbor
hopping when t̃1 ∼ t̃2, which roughly occurs when

ν

ω0
∼

(
�

g0

)2

. (45)

Such a condition is for example accessible in the adiabatic
situation where ω0 � ν. The second term generated by
nonequilibrium coupling g̃2 in Eq. (41) describes phonon-
assisted polaron hopping between next-nearest-neighbor sites.

B. Peierls-Feynman-Bogoliubov variational principle

In order to get rid of the phonon-assisted polaron hopping
term in Hamiltonian (41), we aim to map it onto

H ∗ = ω̃0

∑
q

b†qbq − �̃
∑

n

c†ncn + t∗1
∑

n

(c†n+1cn + H.c.)

+ t∗2
∑

n

(c†n+2cn + H.c.). (46)

This Hamiltonian is quadratic in momentum space, so that
we know its partition function Z∗ = Tr e−βH ∗

. Parameters t∗1
and t∗2 are then determined under the constraint that ρ∗ =
Tr e−βH ∗

/Z∗ is the best approximation of the exact density
operator defined from Hamiltonian H̃ ′. This leads to the
Peierls-Feynman-Bogoliubov variational principle [83–85],
which consists of minimizing, with respect to t∗1 and t∗2 , the
following functional:

F ∗ + 〈H̃ ′ − H ∗〉∗, (47)

where F ∗ = −(1/β) ln Z∗. This results in

t∗1 = t̃1〈X†
m+1Xm〉∗, t∗2 = t̃2〈X†

m+2Xm〉∗. (48)

The reader may find more details about the derivation of these
expressions in Appendix E.

C. Holstein polaron band

It is worth mentioning that the variational principle simply
relies on the averages of bosonic operators, meaning that
it describes hopping processes that conserve the number of
phonons. If this elastic process is dominant, then the electron
remains coherent and can still be described in terms of Bloch
band theory. The average of bosonic operators can be evaluated
from the Feynman disentangling method, which is detailed in
Appendix E. The result is

〈X†
m+nXm〉∗ = exp

(
−(2N0 + 1)

g̃2
0 − 4g̃0g̃1 − 2g̃0g̃1δn,1

ω̃2
0

)
,

(49)

so that the nearest- and next-nearest-neighbor hopping ampli-
tudes are functions of the phonon temperature and the driving
strength. They are respectively given by

t∗1 (z) = t̃1(z) exp

(
−(2N0 + 1)

g̃2
0 − 6g̃0g̃1(z)

ω̃2
0

)
(50)

and

t∗2 (z) = t̃2(z) exp

(
−(2N0 + 1)

g̃2
0 − 4g̃0g̃1(z)

ω̃0

)
. (51)

These hopping processes both tend to delocalize the
electron and thus compete the potential well �̃ to enhance the
polaron size. The largest polaron it characterizes is expected
to be found at low temperatures where phonon occupation
number N0 vanishes. When increasing the temperature, the
electron bandwidth becomes flatter and flatter so that its effec-
tive mass becomes heavier and heavier. Therefore, the inelastic
processes, which do not conserve the number of phonons,
become more and more important. The electron loses its
coherence and gets a diffusive motion. However, these effects
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are only due to the existence of polarons in the sense that they
already occur in equilibrium without time-periodic driving.

The nonequilibirum effects due to the off-resonant driving
are actually double. On the one hand, it yields next-nearest-
neighbor hopping processes which cannot be switched off
dynamically together with the nearest-neighbor ones; i.e., the
conditions t̃1(z) = 0 and t̃2(z) = 0 cannot be satisfied simul-
taneously. This is what Fig. 7 illustrates. As a consequence,
the dynamical localization of electrons predicted in Ref. [58]
no longer arises in the presence of lattice vibrations. On the
other hand, nonequilibrium Peierls coupling g̃1 enhances the
exponential arguments in Eqs. (50) and (51). This is the reason
why t1(z) first becomes larger when turning on the driving
strength in Fig. 7. The driving-renormalized polaron band it
leads to finally satisfies

ξ ∗
k (z) = 2t∗1 (z) cos(k) + 2t∗2 (z) cos(2k) − �̃(z). (52)

Thus, contrary to the equilibrium case, the polaron is also
allowed to dynamically enhance the electronic bandwidth and
reduce the effective mass of the electron.

VI. CONCLUSION

Here we have addressed the problem of rapidly driven
electrons that are linearly coupled to vibrational modes in
a one-dimensional crystal. The stroboscopic dynamics has
been apprehended up to the third-order expansion in the
high-frequency limit. This approach provides an effective
description of the problem in terms of a time-independent
effective Hamiltonian. It has enabled us to show that any kind
of electron-phonon interaction is responsible for corrections
to the effective Hamiltonian which reduces the interaction
strength between electrons and phonons of specific momenta.
In this sense, the off-resonant driving can be regarded as a way
to tune the electron-phonon coupling and to chose specific
interaction channels in a dynamical and reversible fashion.

Finally, we have discussed the specific case of Holstein
interaction in equilibrium. Such a local interaction is responsi-
ble for nonlocal interactions when the electrons are rapidly
driven, such as antisymmetric interactions of Peierls type
and phonon-assisted electron tunneling, which suppresses the
dynamical Wannier-Stark localization. The polaronic effects
these nonequilibrium corrections induce have been reported
in the weak- and strong-coupling regimes, since these two
regimes can both be visited dynamically when varying the
driving strength. In particular, we have described how the
binding energy, the mass, and the size of the polaron may be
controlled by the off-resonant driving. These high-frequency
results have also been compared to the ones obtained in the
formalism of Floquet Green’s functions, which allows the
description of driving with arbitrary (low) frequencies.

Although the high-frequency limit is already relevant
for systems such as shaken optical lattices, the explicit
knowledge of the electron-phonon mechanisms we derive
here in the third-order expansion allows the description of
slower frequencies that become reasonable for solid state
physics too, for example during multicycle laser irradiations
in pump-probe experiments. The dynamical control allowed
by the driving strength offers the possibility to test weak-
and strong-coupling polaron theories within a single material

and may also be helpful to understand the crucial interplay
between local and nonlocal electron-phonon interactions in
systems such as organic molecular crystals.
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APPENDIX A: THIRD-ORDER CORRECTION
TO THE EFFECTIVE HAMILTONIAN

The third-order correction in the high-frequency limit is
given by

H̃3 = 1

2

∑
m�=0

∑
k,k′

εk,mεk′,−m

m2
[[c†kck,Hep],c†k′ck′]. (A1)

It relies on the following commutations:

[c†kck,c
†
k′′+qck′′ ] = c

†
k′′+qck′′(δk,k′′+q − δk,k′′) (A2)

and

[[c†kck,c
†
k′′+qck′′],c†k′ck′]

= [c†k′′+qck′′ ,c
†
k′ck′](δk,k′′+q − δk,k′′)

= c
†
k′′+qck′′ (δk,k′′+q − δk,k′′)(δk′,k′′ − δk′,k′′+q)

= c
†
k′′+qck′′ (δk,k′′+qδk′,k′′ + δk,k′′δk′,k′′+q

− δk,k′′+qδk′,k′′+q − δk,k′′δk′,k′′ ), (A3)

which subsequently leads to

H̃3 = −
∑
k,q

gq

δE
ηk,q(z)c†k+qckBq. (A4)

Thus the third-order correction yields an additional electron-
phonon coupling whose momentum dependence is character-
ized by

ηk,q = 1

2

∑
m�=0

1

m2
(εk+q,mεk+q,−m + εk,mεk,−m

− εk+q,mεk,−m − εk,mεk+q,−m)

=
∑
m>0

1

m2
(εk+q,mεk+q,−m + εk,mεk,−m

− εk+q,mεk,−m − εk,mεk+q,−m). (A5)

Because it involves products of two opposite harmonics of the
electronic dispersion relation, the electron-phonon coupling
becomes k-dependent. Besides, these harmonics are defined
as

εk,m(z) =
∫ +π

−π

dt

2π
eimtεk(τ )

= −1

2
Jm(z)(eik + (−1)me−ik) = Jm(z)

∣∣∣∣∣ εk

iε̄k

, (A6)
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where εk = 2ν
δE

cos(k) and ε̄k = 2ν
δE

sin(k) refer to even and odd values of m, respectively. As a result

εk,m(z)εk+q,−m(z) = εk+q,m(z)εk,−m(z) = J 2
m(z)

∣∣∣∣∣ εkεk+q

ε̄kε̄k+q

(A7)

and finally

ηk,q(z) =
∑
m>0

J 2
2m(z)

(2m)2
(εk+q − εk)2 +

∑
m>0

J 2
2m−1(z)

(2m − 1)2
(ε̄k+q − ε̄k)2. (A8)

Since this function is strictly positive for nonvanishing fields, the off-resonant driving of electrons essentially reduces the
electron-phonon interaction for some specific values of k and q, so that it can be used to dynamically couple specific electrons
and phonons.

APPENDIX B: ELECTRON-PHONON INTERACTIONS IN REAL SPACE

Within the third-order description of the high-frequency limit, the renormalized electron-phonon coupling is

γk,q(z) = gq

δE
(1 − ηk,q(z)λ2). (B1)

In order to highlight what kinds of electron-phonon interactions the off-resonant driving generates, it is quite instructive to
rephrase this coupling in terms of real-space coordinates. To do so, it is convenient to first linearize the following terms:

(εk − εk+q)2 = (εk − εqεk + ε̄q ε̄k)2

= (1 − εq)2ε2
k + 2(1 − εq)ε̄qεkε̄k + ε̄2

q ε̄
2
k

= (
1 − 2εq + ε2

q

)(
1
2 + 1

2ε2k

) + (1 − εq)ε̄q ε̄2k + ε̄2
q

(
1
2 − 1

2ε2k

)
= (1 − εq) + 1

2

(
1 − 2εq + ε2

q − ε̄2
q

)
ε2k + (

ε̄q − 1
2 ε̄2q

)
ε̄2k

= (1 − εq) + 1
2 (1 − 2εq + ε2q)ε2k + (

ε̄q − 1
2 ε̄2q

)
ε̄2k (B2)

and

(ε̄k − ε̄k+q)2 = (εk−π/2 − εk+q−π/2)2

= (1 − εq) + 1
2 (1 − 2εq + ε2q)ε2k−π + (

ε̄q − 1
2 ε̄2q

)
ε̄2k−π

= (1 − εq) − 1
2 (1 − 2εq + ε2q)ε2k − (

ε̄q − 1
2 ε̄2q

)
ε̄2k. (B3)

It is now assumed that εx = cos x and ε̄x = sin x for more convenience. Then, the renormalized electron-phonon coupling can
be rewritten as

γk,q(z) = gq

δE

[
1 − σ (z)λ2

(
2ν

δE

)2

(1 − εq) + δ(z)

2
λ2

(
2ν

δE

)2

[(1 − 2εq + ε2q)ε2k + (2ε̄q − ε̄2q)ε̄2k]

]
(B4)

with

σ (z) =
∑
m>0

J 2
m(z)

m2
, δ(z) =

∑
m>0

(
J 2

2m−1(z)

(2m − 1)2
− J 2

2m(z)

(2m)2

)
. (B5)

Regardless of the energy scale involved in the definition of the small parameter λ, only λ2(2ν)2/δE2 = (2ν/�)2 is relevant for the
renormalized electron-phonon interaction. This is understandable because the third-order corrections only arise from harmonics
of the electronic dispersion relation, whose characteristic energy scale is 2ν. The effective electron-phonon Hamiltonian is then
defined as

H̃e−p = λ
∑
k,q

γk,qc
†
k+qckBq = λ

∑
l,m,n

∑
k,q

γl,qc
†
mcnBqe

ik(l−m+n)e−iqm

= λ
∑
m,n

∑
q

γm−n,qc
†
mcnBqe

−iqm = λ
∑
m,n

∑
μ,ν

∑
q

γm−n,νc
†
mcnBμeiq(μ−m+ν)

= λ
∑
l,m,n

γm−n,m−lc
†
mcnBl. (B6)
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For a local electron-phonon coupling g0 in equilibrium, the renormalized coupling out of equilibrium satisfies

γm−n,m−l(z) = g0

δE
δm,n δl,m + g0

δE

(
2ν

�

)2
σ (z)

2
δm,n(δl,m−1−2δl,m+δl,m+1)

+ g0

δE

(
2ν

�

)2
δ(z)

4
[δm−2,n(δl,m − 2δl,m−1 + δl,m−2) + δm+2,n(δl,m − 2δl,m+1 + δl,m+2)]. (B7)

The effective electron-phonon Hamiltonian in real space is finally rewritten as

H̃e−ph = g̃0

∑
m

c†mcmBm + g̃1(z)
∑
m

c†mcm(Bm+1 − 2Bm + Bm−1) + g̃2(z)
∑
m

c
†
m+2cm(Bm+2 − 2Bm+1 + Bm) + H.c., (B8)

where the dimensionless electron-phonon couplings are defined as

g̃0 = g0

�
, g̃1(z) = g0

�

(
2ν

�

)2
σ (z)

2
, g̃2(z) = g0

�

(
2ν

�

)2
δ(z)

4
. (B9)

APPENDIX C: RETARDED COMPONENT OF THE EFFECTIVE SELF-ENERGY

From the second-order perturbation theory introduced in the main text, the retarded component of the effective self-energy is

�̃
(2)
R (k,ω̃) =

∫
BZ

dq γk,qγk+q,−q

(
N0 + nk+q

ω̃ − 2t̃1εk+q + ω̃0 + i0+ + N0 + 1 − nk+q

ω̃ − 2t̃1εk+q − ω̃0 + i0+

)
, (C1)

where N0 is the equilibrium distribution function of dispersionless phonons, nk = 1/(1 + eβ2t̃1εk ), and

γk,qγk+q,−q = |γk,q |2 = g̃2
0(1 − 2ηk,qλ

2) + o(λ3). (C2)

The imaginary part of the self-energy relies on the following integral:

I = − Im
∫

BZ

dq
|γk,q |2nk+q

ω̃ ± ω̃0 + i0+ − 2t̃1εk+q

= − g̃2
0 Im

∫
BZ

dq
nk+q

ω̃ ± ω̃0 + i0+ − 2t̃1εk+q

− 4g̃0g̃1 Im
∫

BZ

dq
nk+q(εq − 1)

ω̃ ± ω̃0 + i0+ − 2t̃1εk+q

− 4g̃0g̃2 ε2k Im
∫

BZ

dq
nk+q(1 − 2εq + ε2q)

ω̃ ± ω̃0 + i0+ − 2t̃1εk+q

− 4g̃0g̃2 ε̄2k Im
∫

BZ

dq
nk+q(2ε̄q − ε̄2q)

ω̃ ± ω̃0 + i0+ − 2t̃1εk+q

= g̃2
0

∫ 1

−1

dεq√
1 − ε2

q

nq δ(ω̃ ± ω̃0 − 2t̃1εq) + 4g̃0g̃1

∫ 1

−1

dεq√
1 − ε2

q

nq (εkεq − 1) δ(ω̃ ± ω̃0 − 2t̃1εq)

+ 4g̃0g̃2 ε2k

∫ 1

−1

dεq√
1 − ε2

q

nq

(
1 − 2εkεq + ε2k

(
2ε2

q − 1
))

δ(ω̃ ± ω̃0 − 2t̃1εq)

+ 4g̃0g̃2 ε̄2k

∫ 1

−1

dεq√
1 − ε2

q

nq

(−2ε̄kεq + ε̄2k

(
2ε2

q − 1
))

δ(ω̃ ± ω̃0 − 2t̃1εq)

= nX±
(
g̃2

0 − 4g̃0g̃1 − 4g̃0g̃2 + 4g̃0g̃2ε2k + 4g̃0(g̃1 − 2g̃2) εk X± + 8g̃0g̃2 X2
±
) �(1 − |X±|)√

1 − X2±
, (C3)

where nX = 1/(1 + eβ2t̃1X), X± = (ω̃ ± ω̃0)/2t̃1, and � denotes the Heaviside step function. This leads to the imaginary part of
the self-energy, namely

Im �̃
(2)
R (k,ω̃) = − [N0 + nX+]

[
g̃2

0 − 4g̃0g̃1 − 4g̃0g̃2 + 4g̃0g̃2ε2k + 4g̃0(g̃1 − 2g̃2) εk X+ + 8g̃0g̃2 X2
+
] �(1 − |X+|)√

1 − X2+

− [N0 + 1 − nX−]
[
g̃2

0 − 4g̃0g̃1 − 4g̃0g̃2 + 4g̃0g̃2ε2k + 4g̃0(g̃1 − 2g̃2) εk X− + 8g̃0g̃2 X2
−
] �(1 − |X−|)√

1 − X2−
.

(C4)
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The real part of the self-energy can then be obtained from the Kramers-Kronig relation

Re �̃
(2)
R (k,ω̃)

=
∫ +∞

−∞

dX′
+

X′+ − X+
[N0 + nX′+ ]

[
g̃2

0−4g̃0g̃1−4g̃0g̃2+4g̃0g̃2ε2k+4g̃0(g̃1 − 2g̃2) εk X′
+ + 8g̃0g̃2 X′2

+
] �(1 − |X′

+|)√
1 − X′2+

+
∫ +∞

−∞

dX′
−

X′− − X−
[N0 + 1 − nX′−]

[
g̃2

0 − 4g̃0g̃1 − 4g̃0g̃2 + 4g̃0g̃2ε2k + 4g̃0(g̃1 − 2g̃2) εk X′
− + 8g̃0g̃2 X′2

−
] �(1 − |X′

−|)√
1 − X′2−

.

For a single electron in the band, it reduces to

Re �̃
(2)
R (k,ω̃) = − N0

2|t̃1|
[

4g̃0(g̃1 − 2g̃2) εk + 8g̃0g̃2 X+

− P (k,X+)√
X2+ − 1

�(|X+| − 1)

]

− N0 + 1

2|t̃1|
[

4g̃0(g̃1 − 2g̃2) εk + 8g̃0g̃2 X−

− P (k,X−)√
X2− − 1

�(|X−| − 1)

]
, (C5)

where

P (k,X) = (
g̃2

0 − 4g̃0g̃1 − 4g̃0g̃2 + 4g̃0g̃2ε2k

)
sgn(X − 1)

+ 4g̃0(g̃1 − 2g̃2) εk sgn(X + 1) X

+ 8g̃0g̃2 sgn(X − 1) X2.

The analytical expression of the self-energy is depicted in
Fig. 8 and compared to the numerical evaluation.

1. Nonadiabatic limit | t̃1| � ω̃0

In the nonadiabatic limit |t̃1| � ω̃0, it is possible to
analytically determine the binding energy and the effective
mass of the polaron. In particular, we aim to discuss the
vibrational mode change modifying the dispersion relation
of the electron. So we consider the case ω̃, |t̃1| � ω̃0 (and

FIG. 8. Real and imaginary parts of the retarded component of
the effective self-energy for a single electron at room temperature.
Analytics (full lines) are compared to numerics (dashed lines) for
� = 5ν, ω0 = 0.1ν, g0 = 0.2ν, z = 1.8, δ = 0.01, and k = 0.

g̃0 � |t̃1| because we consider the weak-coupling regime),
which implies |X±| � 1 and

a ± b|X±| ∓ c ± a|X±| + b|X±|2√
|X±|2 − 1

� ∓c + b/2

|X±| . (C6)

This relation can be used to evaluate Re �̃
(2)
R in Eq. (C5) and

it leads to

Re �̃
(2)
R (k,ω̃) = − �̃(k) − (2N0 + 1)

˜�(k)

ω̃0
ω̃, (C7)

where

�̃(k) = g̃2
0 − 4g̃0g̃1 + 4g̃0g̃2ε2k

ω̃0
. (C8)

In order to determine the effective mass of the polaron, we
assume that the single electron is associated with the following
parabolic dispersion relation:

εk,0 � k2

2m̃
, (C9)

where it is implied that the electron mass already takes into
account the band flattening induced by the time-periodic
driving. So it depends on the driving strength in the following
way:

m̃(z) = 1

t̃1(z)
= 1

ν̃J0(z)
. (C10)

In the limit of small k, the polaron dispersion relation ξk is
well described by

ξ̃k = εk,0 + Re �̃
(2)
R (k,ξ̃k)

� −�̃ + 1

1 + (2N0 + 1) �̃
ω̃0

k2

2m̃
, (C11)

where the polaron binding energy is

�̃ = g̃2
0 − 4g̃0g̃1 + 4g̃0g̃2

ω̃0
, (C12)

and the effective mass of the polaron satisfies

m̃∗

m̃
= 1 + (2N0 + 1)

�̃

ω̃0
. (C13)

When the off-resonant driving is turned off; i.e., when
z = 0, the binding energy reduces to �̃ = g̃2

0/ω̃0 and the
expressions above provide the well-known results obtained in
equilibrium.
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2. Adiabatic limit ω̃0 � | t̃1|
In the adiabatic limit ω̃0 � |t̃1|, it is also possible to analytically characterize the binding energy and the effective mass of the

polaron. We consider two cases:
(1) −2t̃1 − ω̃0 < ω̃ < −2t̃1 + ω̃0, which corresponds to |X+| < 1 and |X−| > 1. This allows us to study polaron properties

for energies in the vicinity of −2t̃1, which corresponds to the bottom (top) of the band when t̃1(z) > 0(< 0). To do so, we assume
ω̃ = −2t̃1 + h with t̃1 > 0 and h � ω̃0 � t̃1 such that

Re �̃
(2)
R (k,ω̃) � − N0

2|t̃1|
[
a − b + b

h + ω̃0

2t̃1

]
− N0 + 1

2|t̃1|
[
a − b + b

h − ω̃0

2t̃1
+

√
2|t̃1|

2(ω̃0 − h)

(
c − a − b − (a − 2b)

ω̃0 − h

2t̃1

)]

(C14)

� −(N0 + 1)
c − a − b√

4|t̃1|ω̃0

(
1 + h

2ω̃0

)
. (C15)

The explicit expressions of coefficients a, b, and c can be found
from Eq. (C5). Again we assume that the single electron is
characterized by the parabolic dispersion relation

εk,0 � k2

2m̃
. (C16)

The definition of the driving-renormalized electron mass has
already been introduced above. This results in

ξ̃k � −�̃ + 1

1 + �̃
2ω̃0

k2

2m̃
, (C17)

where the polaron binding energy is

�̃ = (N0 + 1)
g̃2

0 − 8g̃0g̃1√
4t̃1ω̃0

, (C18)

and the effective mass of the polaron satisfies

m̃∗

m̃
= 1 + �̃

2ω̃0
. (C19)

When the off-resonant driving is turned off the binding energy
also reduces to �̃ = g̃2

0/ω̃0 and the expressions above provide
the well-known results obtained in equilibrium.

(2) −t̃1 + ω̃0 < ω̃ < t̃1 − ω̃0, which corresponds to |X+| <

1 and |X−| < 1. This describes almost all energies within the
electron band (remember that ω̃0 � t̃1), except the vicinities
of top and bottom which are described in the previous case.
Then Eq. (C5) directly leads to

Re �̃
(2)
R (k,ω̃) = − 2N0 + 1

|t̃1|2 [g̃0(g̃1 − 2g̃2) εk,0 + 2g̃0g̃2 ω̃]

+ 2
g̃0g̃2

t̃2
1

ω̃0. (C20)

The polaronic band is given by

ξ̃k = �̃ + 1

2m̃∗ εk, (C21)

where the binding energy is

�̃ = 2
g̃0g̃2

t̃2
1

ω̃0 (C22)

and the effective mass satisfies
m̃∗

m̃
= 1 + (2N0 + 1)

g̃0g̃1

t̃2
1

. (C23)

Note that we have not made any assumptions upon ω̃. Thus
the expressions above describe all energies smaller than
|t̃1 − ω̃0|. In other words, it has been possible to obtain the
exact expression of the polaron band for all values of k

in the nonadiabatic limit. Moreover, the electron has more
energy than the phonon frequency, so it is also allowed to
emit a phonon, even at zero temperature when N0 = 0. This
yields a nonzero imaginary part to the self-energy. The zeroth
order in the limit ω̃0 � ỹ1 leads to a polaron lifetime τ that
satisfies

1

τ (k,ω̃)
= − Im �̃

(2)
R (k,ω̃)

= [
g̃2

0 − 4g̃0g̃1 − 4g̃0g̃2 + 4g̃0g̃2ε2k

+ 4g̃0(g̃1 − 2g̃2) εk X + 8g̃0g̃2 X2
] 2N0 + 1√

1 − X2
.

(C24)

The quasiparticle lifetime is already finite in equilibrium.
However nonequilibrium corrections make it k-dependent.

APPENDIX D: LANG-FIRSOV CANONICAL
TRANSFORMATION

We start from the following effective Hamiltonian:

H̃ = t̃1
∑
m

(c†m+1cm + H.c.)

+
∑

q

ω̃q b†qbq +
∑
m,q

g̃q e−iqm c†mcmBq

+ g̃2

∑
m,q

βqe
−iqm(c†m+2cm + H.c.)Bq, (D1)

where g̃q = g̃0 + αqg̃1, αq =2(εq −1), and βq =1−2e−iq +
e−i2q . The standard Lang-Firsov transformation consists of

H = eSH̃ e−S, (D2)

with

S = −
∑
mq

uq e−iqmc†mcm (bq − b
†
−q), uq = g̃q

ω̃q

. (D3)
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It transforms bosonic and fermionic operators according to

eSbqe
−S = bq −

∑
m

uq eiqmc†mcm, eScme−S = cmXm, (D4)

where the operator Xm is defined as

Xm = exp

(∑
q

uq e−iqm(bq − b
†
−q)

)
(D5)

and commutes with fermionic operators. The transformation turns the effective Hamiltonian into

H̃ ′ =
∑

q

ω̃qb
†
qbq −

∑
mnq

g̃2
q

ω̃q

e−iq(m−n)c†mcmc†ncn + g̃2

∑
mq

βqe
−iqmc

†
m+2cmX

†
m+2Xm

(
bq + b

†
−q + 2

∑
n

uq eiqnc†ncn

)

+ g̃2

∑
mq

βqe
−iqmc†mcm+2X

†
mXm+2

(
bq + b

†
−q + 2

∑
n

uq eiqnc†ncn

)

=
∑

q

ω̃qb
†
qbq − �̃

∑
q

c†mcm + t̃1
∑
m

(c†m+1cmX
†
m+1Xm + H.c.) + t̃2

∑
m

(c†m+2cmX
†
m+2Xm + H.c.)

+ g̃2

∑
mq

βqe
−iqm(c†m+2cmX

†
m+2Xm + H.c.)Bq, (D6)

where interactions between polarons have been neglected, �̃ = ∑
q g̃2

q/ω̃q , and t̃2 = 2g̃2
∑

q βquq . For dispersionless phonons
of frequency ω̃0, the on-site energy is given by

�̃ = 1

ω̃0

∑
q

[g̃0 + g̃1αq]2 � 1

ω̃0

∑
q

(
g̃2

0 + 2g̃0g̃1αq

) � 1

ω̃0

∑
q

(
g̃2

0 + 4g̃0g̃1(cos q − 1)
) � g̃2

0 − 4g̃0g̃1

ω̃0
(D7)

and

t̃2 = 2g̃2

∑
q

βquq = 2g̃2

∑
q

(1 − 2e−iq + e−i2q)
g̃0 + 2g̃1(cos q − 1)

ω̃0
� 2

g̃0g̃2

ω̃0
. (D8)

In the expressions above we have neglected products such as g̃1g̃2, since they yield a λ4 contribution.

APPENDIX E: PEIERLS-FEYNMAN-BOGOLIUBOV VARIATIONAL PRINCIPAL

The canonical transformation does not diagonalize the effective Hamiltonian and yields a nonlocal interaction between a
next-nearest-neighbor hopping polaron and the lattice vibrations it feels along it motion, which makes the analytical description
complicated a priori. In order to overcome this complexity, we aim to map Hamiltonian H̃ ′ onto

H ∗ =
∑

q

ω̃q b†qbq − �̃
∑
m

c†mcm + t∗1
∑
m

(c†m+1cm + H.c.) + t∗2
∑
m

(c†m+2cm + H.c.). (E1)

This Hamiltonian is quadratic in momentum space, so that we know its partition function Z∗ = Tr e−βH ∗
. Parameters t∗1 and t∗2

are then determined under the constraint that ρ∗ = Tr e−βH ∗
/Z∗ is the best approximation of the exact density operator defined

from Hamiltonian H̃ ′. This leads to the Peierls-Feynman-Bogoliubov variational principle which consists of minimizing with
respect to t∗1 and t∗2 the functional

F ∗ + 〈H̃ ′ − H ∗〉∗, (E2)

where F ∗ = −(1/β) ln Z∗. This requires the calculation of the following average:

〈H̃ ′ − H ∗〉∗ = t̃1
∑
m

〈c†m+1cm〉∗〈X†
m+1Xm〉∗ − t∗1

∑
m

〈c†m+1cm〉∗ + t̃2
∑
m

〈c†m+2cm〉∗〈X†
m+2Xm〉∗ − t∗2

∑
m

〈c†m+2cm〉∗

+ g̃2

∑
mq

βqe
−iqm〈c†m+2cm〉∗〈X†

m+2Xm Bq〉∗ + H.c., (E3)

where

X†
mXn = exp

(∑
q

uq (e−iqn − e−iqm)(bq − b
†
−q)

)
. (E4)
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The average of this bosonic operator can be estimated via the Feynman disentangling method as follows:

〈X†
m+nXm〉∗ = 〈

e
∑

q (vm,qbq−v∗
m,qb

†
q )〉

∗ =
∏

q∈BZ

(1 − e−βω̃q )
+∞∑
nq=0

e−βω̃qnq 〈nq |e(vm,qbq−v∗
m,qb

†
q )|nq〉

=
∏

q∈BZ

e− vm,q v∗
m,q [bq ,b

†
q ]

2 (1 − e−βω̃q )
+∞∑
nq=0

e−βω̃qnq 〈nq |evm,qbq e−v∗
m,qb

†
q |nq〉

=
∏

q∈BZ

e− |vm,q |2
2 (1 − e−βω̃q )

+∞∑
nq=0

e−βω̃qnq

+∞∑
m=0

(−|vm,q |2)m

(m!)2

nq!

(nq − m)!

=
∏

q∈BZ

e− |vm,q |2
2 (1 − e−βω̃q )

+∞∑
nq=0

e−βω̃qnq Lnq
(|vm,q |2) =

∏
q∈BZ

e− |vm,q |2
2 e−|vm,q |2Nq =

∏
q∈BZ

e−|vm,q |2(Nq+ 1
2 ), (E5)

where Lnq
denotes the Laguerre polynomial of order n, and Nq is the equilibrium distribution function that characterizes phonons

of frequency ω̃q . Besides

vm,q = uq e−iqm(1 − e−inq ), (E6)

so that

|vm,q |2 = 2u2
q(1 − cos nq), (E7)

and finally

〈X†
m+nXm〉∗ =

∏
q∈BZ

e−u2
q (1−cos nq)(2Nq+1) = 〈X†

mXm+n〉∗. (E8)

It is worth mentioning that this average does not depend on atomic coordinate m, but it does depend on interatomic distance n.
Another average which still has to be evaluated is

〈X†
m+2Xm(wq ′,m bq ′ + w∗

m,q ′b
†
−q ′ )〉∗ = ∂φ

〈
X

†
m+2Xme

φ(wq′,m bq′+w∗
m,q′b

†
−q′ )

〉
∗
∣∣
φ=0

= ∂φ

∏
q∈BZ

e
(vm,q w∗

m,q −v∗
m,q wm,q )δ

qq′
2 φ(1 − e−βωq ) (E9)

×
+∞∑
nq=0

e−βωqnq 〈nq |e((vm,q+φwm,qδq,q′ )bq−(v∗
m,q−φw∗

m,q δqq′ )b†q )(bq ′ + b
†
−q ′ )|nq〉

∣∣
φ=0

= ∂φ

∏
q∈BZ

e
(vm,q w∗

m,q −v∗
m,q wm,q )δ

qq′
2 φe−(vm,q+φwm,qδq,q′ )(v∗

m,q−φw∗
m,q δqq′ )(Nq+ 1

2 )
∣∣
φ=0

= 2i Im[vm,q ′w∗
m,q ′ ](Nq ′ + 1)〈X†

m+2Xm〉∗, (E10)

where wm,q = βq e−iqm. As far as we are concerned, phonons are dispersionless so that ωq = ω0 and Nq = N0. As a result

〈X†
m+nXm〉∗ = exp

(
−(2N0 + 1)

∑
q

u2
q (1 − cos nq)

)
= exp

(
−(2N0 + 1)

∑
q

(
g̃0 + g̃1αq

ω̃0

)2

(1 − cos nq)

)

= exp

(
−(2N0 + 1)

∑
q

(
g̃0 + 2g̃1(cos q − 1)

ω̃0

)2

(1 − cos nq)

)

� exp

(
−2N0 + 1

ω̃2
0

∑
q

(
g̃2

0 + 4g̃0g̃1(cos q − 1)
)

(1 − cos nq)

)
� exp

(
−(2N0 + 1)

g̃2
0 − 4g̃0g̃1 − 2g̃0g̃1δn,1

ω̃2
0

)
(E11)

and∑
q

Im[vm,qw
∗
m,q] =

∑
q

Im[uq e−iqm(1 − e−i2q ) β∗
q e+iqm] =

∑
q

Im

[
g̃0 + g̃1αq

ω̃0
(1 − e−i2q)(1 − 2e+iq + e+i2q)

]

=
∑

q

Im

[
4i

g̃0 + 2g̃1(cos q − 1)

ω̃0
sin 2q (cos q − 1)

]
= 4

∑
q

g̃0 + 2g̃1(cos q − 1)

ω̃0
sin 2q (cos q − 1) = 0

(E12)
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since this relies on the integral of an odd function of q. After
introducing

t1 = t̃1〈X†
m+1Xm〉∗ = t̃1 exp

(
−(2N0 + 1)

g̃2
0 − 6g̃0g̃1

ω̃2
0

)
(E13)

and

t2 = t̃2〈X†
m+2Xm〉∗ = t̃2 exp

(
−(2N0 + 1)

g̃2
0 − 4g̃0g̃1

ω̃0

)
,

(E14)

we end up with the following expression:

〈H̃ ′ − H ∗〉∗ = (t1 − t∗1 )
∑
m

〈c†m+1cm + H.c.〉∗

+ (t2 − t∗2 )
∑
m

〈c†m+2cm + H.c.〉∗. (E15)

Minimizing the functional F ∗ + 〈H̃ ′ − H ∗〉∗ with respect to
t∗1 and t∗2 then leads to∑

k

[(t1 − t∗1 ) εk + (t2 − t∗2 ) ε2k] ∂t∗1 〈c†kck〉∗ = 0,

∑
k

[(t1 − t∗1 ) εk + (t2 − t∗2 ) ε2k] ∂t∗2 〈c†kck〉∗ = 0, (E16)

where

〈c†kck〉∗ = 1/(1 + eβ(t∗1 εk+t∗2 ε2k)) = nk. (E17)

The system of Eq. (E19) implies∑
k

[(t1 − t∗1 ) εk + (t2 − t∗2 ) ε2k]2 n′
k = 0. (E18)

Because n′ = ∂X[1/(1 + eβX)] < 0, the functional F ∗ +
〈H̃ ′ − H ∗〉∗ is finally minimized when

t∗1 = t1,

t∗2 = t2. (E19)
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