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Mode decomposition based on crystallographic symmetry in the band-unfolding method
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The band-unfolding method is widely used to calculate the effective band structures of a disordered system
from its supercell model. The unfolded band structures show the crystallographic symmetry of the underlying
structure, where the difference of chemical components and the local atomic relaxation are ignored. However, it
has still been difficult to decompose the unfolded band structures into the modes based on the crystallographic
symmetry of the underlying structure, and therefore detailed analyses of the unfolded band structures have
been restricted. In this study, a procedure to decompose the unfolded band structures according to the small
representations (SRs) of the little groups is developed. The decomposition is performed using the projection
operators for SRs derived from the group representation theory. The current method is employed to investigate
the phonon band structure of disordered face-centered-cubic Cu0.75Au0.25, which has large variations of atomic
masses and force constants among the atomic sites due to the chemical disorder. In the unfolded phonon band
structure, several peculiar behaviors such as discontinuous and split branches are found in the decomposed modes
corresponding to specific SRs. They are found to occur because different combinations of the chemical elements
contribute to different regions of frequency.
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I. INTRODUCTION

Configurational disorder is commonly seen in alloy sys-
tems, which often changes their physical properties. First-
principles calculations for such a disordered system require
some approximations. Among such approximations, the vir-
tual crystal approximation [1] and the coherent potential
approximation [2] consider an effective medium for the
disordered system and have often been adopted. These
methods, however, generally do not explicitly consider the
local environment around each atom, which is sometimes
critical for quantitative evaluations of physical properties of
the disordered system [3]. In contrast, the use of a supercell
model to mimic the disordered system is computationally
more demanding, but can accurately account for the local
environment around each atom, including local relaxation of
atomic positions. With the development of high-performance
computers, the supercell approach is increasingly more
popular.

A disordered system can be associated with its cor-
responding underlying structure, where the difference of
chemical components and the local atomic relaxation are
ignored. However, when the disordered system is mimicked
by a supercell model, it generally lacks the crystallographic
symmetry of the underlying structure. This makes it difficult
to compare the band structures (of electrons and phonons)
calculated from the supercell model with experimental data
because they are typically described as if the disordered
system has the crystallographic symmetry of its underlying
structure. To fill the gap between such supercell calculations
and the experimental data, a computational method to obtain
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the effective band structures, which show the symmetry of the
corresponding underlying structure, should be useful.

The band-unfolding method [4–7] is one of the methods
to obtain such effective band structures using a supercell
model. In this method, we obtain the effective band structure
by decomposing the eigenvectors (of electrons or phonons)
obtained from the supercell model of a disordered system
according to the translational symmetry of its underlying
crystal structure. The band-unfolding method has already
been applied to the electronic band structures [4–6,8–12] and
to the phonon band structures [7,13–16] of various systems
with disorders and has also been used in characteristic ways
such as analyses of surface states [7] and of spinor wave
functions [17]. Among various band-unfolding formulations,
Allen et al. use the projection operators that decompose the
eigenvectors obtained from a supercell model according to the
translational symmetry of the underlying structure [7]. Unlike
previous approaches [4–6], their formulation has conceptual
and practical advantages because it can be understood based on
the group theory and because it does not require any reference
vectors for the decomposition. Even in their formulation,
however, one still cannot further decompose the unfolded band
structures into the modes that transform in different ways under
the symmetry operations with nontrivial rotational parts.

From a group-theoretical viewpoint, the small representa-
tions (SRs) of the little group of the wave vector k describe
how the eigenvectors of a crystalline material at k transform
under the symmetry operations [18–20]. Since the SRs of the
eigenvectors are useful to analyze various physical behaviors
in band structures such as selection rules and avoided band
crossings [21], it is reasonable to decompose the unfolded
band structures into the modes corresponding to different SRs.
In a previous band-unfolding approach [13], an unfolded band
structure is decomposed according to the cumulative spectral
function. The modes determined in this manner, however, do
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not reflect the crystallographic symmetry of the underlying
structure, i.e., they do not follow any SRs of the little groups
for the underlying structure. Moreover, the degeneracies of
the modes cannot be determined in this approach in terms of
crystallographic symmetry.

In this study, we develop a procedure to decompose
unfolded band structures according to the SRs of the little
groups of the underlying crystal structure. For this purpose,
we introduce the projection operators for SRs [Eq. (24)] based
on the group representation theory. These projection operators
can be applied to symmetrically degenerated modes. Using the
projection operators for SRs, we can analyze the unfolded band
structures in very similar ways to those of ordered systems in
terms of crystallographic symmetry.

Here we also analyze the contributions of different chem-
ical elements in the unfolded band structures. In previous
approaches [4,6,13], it was not clear how to investigate the
contributions of different chemical elements to the unfolded
band structures. This issue largely limits our understanding
about the band structures of disordered systems. In this study,
we also derive another type of projection operators [Eq. (27)] to
decompose the unfolded phonon band structures according to
the contribution of the chemical elements. This decomposition
enables us to analyze peculiar behaviors in the unfolded
phonon band structures that are not found in ordered systems.

The current band-unfolding method is employed to inves-
tigate the phonon band structure of disordered face-centered-
cubic (fcc) Cu0.75Au0.25. This alloy is known to have large
variations of atomic masses and force constants among the
atomic sites due to the chemical disorder, and hence its phonon
band structure has been investigated in experimental [22] and
computational [23] approaches to reveal the impacts of these
variations. In the unfolded phonon band structure, several
peculiar behaviors such as discontinuous and split branches
are found in the decomposed modes corresponding to specific
SRs. These peculiar behaviors are found to occur because
different combinations of the chemical elements contribute to
different regions of frequency.

II. METHODS

In this section, we first summarize the computational
procedure of phonon modes because in this paper we focus on
the unfolding for phonon band structures. Next we introduce
the notations to describe the relations between a supercell
model and its underlying crystal structure. Then we derive
three types of projection operators, which are the keys of the
current band-unfolding method. Finally, we obtain the spectral
functions, which are plotted as the unfolded band structures.

We denote transformation operators on real-space points
in the Seitz notation as {R|w}, where the rotational part R
and the translational part w are 3 × 3 and 3 × 1 real matrices,
respectively. {R|w} transforms a real-space point x as

{R|w}x = Rx + w. (1)

We use the same notation also for transformation operators on
functions of x (see Appendix A for how {R|w} works on the
functions).

A. Phonon-mode calculations

Suppose xlκ is the equilibrium position of the κth atom in
the lth unit cell of a crystalline system. The second-order force
constants for the pair of the atoms lκ and l′κ ′ are denoted
as �αβ(lκ,l′κ ′), where α and β are indices for Cartesian
coordinates. The dynamical matrix D(K) at the wave vector K
is then calculated as

D
αβ

κκ ′ (K) = 1√
mκmκ ′

∑
l′

�αβ(0κ,l′κ ′) exp[iK · (xl′κ ′ − x0κ )],

(2)

where mκ is the mass of the κth atom. Phonon frequencies
ω(K,J ) and mode eigenvectors v(K,J ) at K are obtained by
solving the eigenvalue problem of D(K) as

D(K)v(K,J ) = [ω(K,J )]2v(K,J ) (3)

or ∑
βκ ′

D
αβ

κκ ′v
β

κ ′(K,J ) = [ω(K,J )]2vα
κ (K,J ), (4)

where J is the band index. v(K,J ) can be explicitly written as

v(K,J ) =

⎛
⎜⎝

v1(K,J )
...

vn(K,J )

⎞
⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

vx
1 (K,J )

v
y

1 (K,J )

vz
1(K,J )

...

vx
n (K,J )

v
y
n (K,J )

vz
n(K,J )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5)

where n is the number of atoms in a unit cell, and 3 × 1
matrices vκ are the component for the κth atom. Hereafter,
v(K,J ) is supposed to be normalized.

To explicitly describe the dependence of the atomic dis-
placements on the wave vector K, we consider the “phase-
weighted” mode eigenvectors ṽ(K,J ). The components of
ṽ(K,J ) are given for all the atomic sites in all the unit cells as

ṽlκ (K,J ) ≡ exp[iK · xlκ ]vκ (K,J ), (6)

ṽl(K,J ) ≡

⎛
⎜⎝

ṽl1(K,J )
...

ṽln(K,J )

⎞
⎟⎠. (7)

ṽ(K,J ) can be regarded as a vector-field function of x defined
on xlκ , and hence {R|w} transforms ṽ(K,J ) according to
Eq. (A4) as

[{R|w}ṽ(K,J )]lκ = Rṽl′κ ′(K,J ), (8)

where l′ and κ ′ satisfy

xl′κ ′ = {R|w}−1xlκ

= R−1xlκ − R−1w. (9)

B. Supercell model and its underlying crystal structure

The basis of the lattice of a supercell model Ai can be
constructed from the basis of the lattice of the underlying
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BZ for the underlying structure

BZ for a supercell model

FIG. 1. Two-dimensional representation of the relation between
a supercell model and its underlying structure in reciprocal space.
White and black circles represent reciprocal lattice points of the
supercell model, and the white circles also correspond to reciprocal
lattice points of the underlying structure. Green arrows represent Gi

in Eq. (12).

structure ai as Ai = ∑3
j=1 njiaj (i = 1,2,3), where (nji) is

a 3 × 3 integer matrix. The “size” of the supercell model
relative to the underlying crystal structure is then given as
N ≡ | det(nji)|. Lattice vectors of the underlying structure t
and of the supercell model T can be obtained as the integral
linear combinations of ai and Ai , respectively.

The space group of the underlying structure is denoted as
G. The point group of the space group G, which consists of
the distinct rotational parts of the elements in G, is denoted as
Ḡ. The supercell model generally has lower crystallographic
symmetry than G. The set of t forms the translation subgroup
T of G, while the set of T forms the translation group T ′,
which is a normal subgroup of T . T can be decomposed using
the coset representatives relative to T ′ as

T = {I3|t1}T ′ + · · · + {I3|tN }T ′, (10)

where I3 is the 3 × 3 identity matrix.
The bases of the reciprocal lattice of the underlying

structure bi and of the supercell model Bi satisfy ai · bj =
2πδij and Ai · Bj = 2πδij , respectively. Reciprocal lattice
vectors of the underlying structure g and of the supercell model
G can be obtained as the integral linear combinations of bi and
Bi , respectively. G satisfies the following relation:

1

N

N∑
j=1

exp[iG · tj ] =
{

1 if G ∈ {g}
0 otherwise, (11)

where {g} is the set of g, and the set of tj is the lattice vectors
of the underlying crystal structure corresponding to the coset
representatives in Eq. (10). Figure 1 represents the relation
of the first Brillouin zones (BZs) for the supercell model
and for its underlying structure. A wave vector K is related
to N distinct wave vectors k1, . . . ,kN inside the BZ for the
underlying structure as

ki = K + Gi (i = 1, . . . ,N), (12)

where Gi is the reciprocal lattice vector of the supercell model
corresponding to ki . If k = l, then kk − kl = 0 ∈ {g}, while
if k �= l, then kk − kl /∈ {g} because both kk and kl are inside

the BZ for the underlying structure. Therefore, using Eq. (11),

1

N

N∑
j=1

exp[i(kk − kl) · tj ] = δkl . (13)

C. Projection operators

Three types of projection operators are derived to for-
mulate the current band-unfolding method. The projection
operators for wave vectors P̂ k are used to decompose the
eigenvectors obtained from a supercell model according to the
translational symmetry for the underlying crystal structure.
These projection operators are equivalent to those derived in
Ref. [7]. The projection operators for SRs P̂ kμ are used to
further decompose the eigenvectors according to the SRs of
little groups. The projection operators for chemical elements
P̂ X are also defined to analyze the contributions of different
combinations of the chemical elements to the unfolded band
structures.

1. Projection operators for wave vectors

Let f K(x) be an eigenfunction obtained from the supercell
model, which transforms under the translation T̂ = {I3|T} ∈
T ′ as

T̂ f K(x) = exp[−iK · T]f K(x). (14)

Note that both scalar-field and vector-field functions can be
considered as f K(x). f K(x) can be decomposed using the
basis functions of the irreducible representations (IRs) of T as

f K(x) =
N∑

k=1

ckk
f kk (x), (15)

where kk (k = 1, . . . ,N) is a wave vector inside the BZ for the
underlying structure obtained from K according to Eq. (12),
and f kk (x) is the basis function of the IR of T labeled kk . By
definition, f kk (x) is transformed by the translation t̂ ≡ {I3|t} ∈
T as

t̂f kk (x) = f kk (t̂−1x)

= exp[−ikk · t]f kk (x), (16)

where the set of exp[−ikk · t] for all t̂ is the IR labeled kk .
Note that all the IRs of T are one dimensional because T is
an Abelian group [18–20]. f kk (x) and f kk′ (x) are orthogonal
to each other when k �= k′.

The projection operator P̂ kk for the wave vector kk can be
constructed using the coset representatives t̂j = {I3|tj } of T
relative to T ′ in Eq. (10) as

P̂ kk = 1

N

N∑
j=1

χkk (t̂j )∗ t̂j

= 1

N

N∑
j=1

exp[ikk · tj ]t̂j , (17)

where χkk (t̂j ) = exp[−ikk · tj ] is the character of t̂j in the IR
labeled kk . Using the orthogonality relations in Eq. (13) and
the transformation rule for the basis functions of the IRs of T
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in Eq. (16), it can be shown that

P̂ kk f K(x) = ckk
f kk (x) (18)

(see Appendix C for detailed derivation). Equation (18)
indicates that P̂ kk extracts from f K(x) the basis function of
the IR of T specified by the wave vector kk . From Eqs. (15)
and (18),

f K(x) =
N∑

k=1

P̂ kk f K(x). (19)

P̂ kk f K(x) and P̂ k′
k f K(x) are orthogonal to each other when

k �= k′. Figures 2(a)–2(c) visualize how P̂ kk works on a
phonon-mode eigenvector of a supercell model.

2. Projection operators for SRs

f kk (x) shows the translational symmetry of the underlying
crystal structure but, in general, is not a basis function of
the SRs of the little group of the wave vector kk . Here the
projection operators for SRs to decompose f kk (x) according
to the SRs are derived. For the sake of simplicity, we hereafter
omit the index for the wave vector kk , and then f kk (x) is
denoted as f k(x).

The little group Gk is the subgroup of G whose elements
{R|w} leave k invariant in the sense that RT k = k + g [24].
The SRs 
kμ of Gk are defined as the IRs of Gk that satisfy


kμ({I3|t}) = exp[−ik · t]Idμ
, (20)

where μ is the index for the SRs, dμ is the dimension of the
μth SR, and Idμ

is the dμ × dμ identity matrix [18–20]. Note
that the number of the inequivalent SRs of Gk is finite.

Since the SRs of Gk satisfy Eq. (20), f k(x) can be
decomposed as

f k(x) =
∑

μ

nμ∑
s=1

dμ∑
k=1

cμskf
kμsk(x), (21)

where f kμsk(x) is the kth-row basis function of the μth SR
belonging to the sth set for the SR, nμ is the number of the
sets for the μth SR, and cμsk is the coefficient of the linear
combination. Note that there can be two or more sets of basis
functions belonging to the same SR. By definition, f kμsk(x) is
transformed by ĝ = {R|w} ∈ Gk as

ĝf kμsk(x) = f kμsk(ĝ−1x)

=
dμ∑

k′=1

f kμsk′
(x)
kμ

k′k(ĝ). (22)

f kμsk(x) and f k′νs ′k′
(x) are orthogonal to each other when

μ �= ν, s �= s ′, or k �= k′.
Gk can be decomposed using the coset representatives

relative to T as

Gk = {R1|w1}T + · · · + {R|Ḡk||w|Ḡk|}T , (23)

where and Ḡk is the little cogroup, i.e., the point group
composed of the distinct rotational parts of the elements in
Gk. The projection operator P̂ kμ for the μth SR is constructed

using ĝj = {Rj |wj } as

P̂ kμ = dμ

|Ḡk|
|Ḡk|∑
j=1

χkμ(ĝj )∗ĝj , (24)

where χkμ(ĝj ) ≡ tr [
kμ(ĝj )] = ∑dμ

m=1 

kμ
mm(ĝj ) is the char-

acter of ĝj in the μth SR. Using the orthogonality relations for
SRs in Eq. (B7) (see Appendix B) and the transformation rule
for the basis functions of the SRs in Eq. (22), it can be shown
that

P̂ kμf k(x) =
nμ∑
s=1

dμ∑
k=1

cμskf
kμsk(x) (25)

(see Appendix D for detailed derivation). Equation (25)
indicates that P̂ kμ extracts from f k(x) the part being in the
partial space spanned by the basis functions for the μth SR of
Gk. From Eqs. (21) and (25),

f k(x) =
∑

μ

P̂ kμf k(x). (26)

P̂ kμf k(x) and P̂ kνf k(x) are orthogonal to each other when
μ �= ν. Figures 2(d)–2(g) visualize how P̂ kμ works on a
phonon-mode eigenvector of a supercell model.

Practically, P̂ kμ can be explicitly obtained as follows. As
shown in Appendix B, the SRs of Gk can be constructed using
the irreducible projective representations (IPRs) of Ḡk. Since
the characters of the IPRs of Ḡk are tabulated in the literature
[21], the characters of the SRs of Gk can be obtained from
these data using Eq. (B3). P̂ kμ is then calculated from the
obtained characters of the SRs of Gk.

It should be emphasized that from a mathematical view-
point, the derivations of P̂ k and of P̂ kμ are very similar. The
only difference is that two- or more-dimensional SRs have to
be dealt with for P̂ kμ.

3. Projection operators for chemical elements

A phonon-mode eigenvector ṽ [here ṽ(K,J ) is simply
denoted as ṽ] of a supercell model can be decomposed into
the contributions from different elements using the projection
operator P̂ X for the chemical element X, which works on ṽ as

[P̂ Xṽ]lκ =
{

ṽlκ if X is on the site lκ

0 otherwise. (27)

P̂ X satisfies

ṽ =
∑

X

P̂ Xṽ, (28)

where the summation is taken over all the chemical elements
in the system. When X �= X′, P̂ Xṽ and P̂ X′

ṽ are orthogonal
to each other. However, P̂ kP̂ Xṽ and P̂ kP̂ X′

ṽ are not neces-
sarily orthogonal to each other, as well as P̂ kμP̂ kP̂ Xṽ and
P̂ kμP̂ kP̂ X′

ṽ are not necessarily orthogonal to each other.
Figure 3 visualizes how P̂ X and P̂ X′

for two different
chemical components X and X′, respectively, works on ṽ. In
this figure, P̂ kμP̂ kP̂ Xṽ [Fig. 3(f)] and P̂ kμP̂ kP̂ X′

ṽ [Fig. 3(h)]
point in the same direction for each atomic position. Those
projected vectors are “positively correlated” in the sense that
the real part of the dot product between P̂ kμP̂ kP̂ Xṽ and
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FIG. 2. Two-dimensional representation of how the projection operators for wave vectors P̂ k in Eq. (17) and for SRs P̂ kμ in Eq. (24) work
on a phonon-mode eigenvector of a supercell model of a disordered system. Circles represent atoms in the system; red and green ones represent
the chemical elements X and X′, respectively, while white ones indicate that the chemical elements are no longer distinguished. Blue arrows
on the circles represent the real parts of a mode eigenvector on atoms or its projections. (a) Hypothetical phonon-mode eigenvector ṽ. (b), (c)
Projection of ṽ by P̂ k and P̂ k′

for different wave vectors k and k′, respectively. (d)–(g) Further projection of P̂ kṽ (P̂ k′
ṽ) by P̂ kμ and P̂ kν (P̂ k′μ′

and P̂ k′ν′
), where μ and ν (μ′ and ν ′) are indices for the SRs of Gk (Gk′

).

P̂ kμP̂ kP̂ X′
ṽ is positive. In contrast, P̂ kνP̂ kP̂ Xṽ [Fig. 3(g)]

and P̂ kνP̂ kP̂ X′
ṽ [Fig. 3(i)] point in the opposite direction for

each atomic position. Those projected vectors are “negatively
correlated” in the sense that the real part of the dot product
between P̂ kνP̂ kP̂ Xṽ and P̂ kνP̂ kP̂ X′

ṽ is negative. In this case,
each of X and X′ contributes to the νth SR, but in total they
cancel out each other.

D. Spectral functions

Here we obtain the spectral functions, which are regarded as
the unfolded band structures. We use the notations for phonon
modes in Sec. II A for the sake of simplicity.

1. Spectral functions at each k

Let us first consider the “original” spectral function of a
supercell model As(K,ω) as

As(K,ω) =
∑

J

δ[ω − ω(K,J )]. (29)

The peak positions of the δ functions constitute the “original”
band structure of the supercell model.

The unfolded spectral function A(kk,ω) is defined using the
projection operators for wave vectors P̂ kk in Eq. (17) as

A(kk,ω) ≡
∑

J

∣∣[P̂ kk ṽ(K,J )]l
∣∣2

δ[ω − ω(K,J )], (30)

where A(kk,ω) does not depends on the choice of the index
for supercells l. A(kk,ω) satisfies

As(K,ω) =
N∑

k=1

A(kk,ω), (31)

where we use Eq. (19) and the orthogonality between
[P̂ kk ṽ(K,J )]l and [P̂ kk′ ṽ(K,J )]l when k �= k′. It can be said
that As(K,ω) defined in the BZ for the supercell model is
remapped in the BZ for the underlying crystal structure with
the weights obtained from [P̂ kṽ(K,J )]l . A(kk,ω) is equivalent
to the unfolded spectral function in previous reports [6,7].

The partial spectral function Aμ(k,ω) (the index for k is
hereafter omitted for the sake of simplicity) for the μth SR
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FIG. 3. Two-dimensional representation of how the projection operators for chemical elements P̂ X in Eq. (27) work on a phonon-mode
eigenvector of a supercell model of a disordered system. The symbols are used in the same way as those in Fig. 2. (a) Hypothetical mode
eigenvector ṽ. (b), (c) Projection of ṽ by P̂ X and P̂ X′

. (d), (e) Further projection of P̂ Xṽ and P̂ X′
ṽ by P̂ k. (f)–(i) Further projection of P̂ kP̂ Xṽ

and P̂ kP̂ X′
ṽ by P̂ kμ and P̂ kν .

of Gk is defined using the projection operator for SRs P̂ kμ in
Eq. (24) as

Aμ(k,ω) ≡
∑

J

|[P̂ kμP̂ kṽ(K,J )]l|2δ[ω − ω(K,J )]. (32)

Aμ(k,ω) satisfies

A(k,ω) =
∑

μ

Aμ(k,ω), (33)

where we use Eq. (26) and the orthogonality between
[P̂ kμP̂ kṽ(K,J )]l and [P̂ kνP̂ kṽ(K,J )]l when μ �= ν.

Aμ(k,ω) can be further decomposed using the projection
operators for chemical elements P̂ X in Eq. (27) as

Aμ(k,ω) =
∑
X,X′

Aμ,XX′
(k,ω), (34)

where

Aμ,XX′
(k,ω) ≡

∑
J

[P̂ kμP̂ kP̂ Xṽ(K,J )]†l

× [P̂ kμP̂ kP̂ X′
ṽ(K,J )]lδ[ω − ω(K,J )]. (35)

Aμ,XX′
(k,ω) represents the contribution of the combina-

tion of the elements X and X′ to Aμ(k,ω). Aμ,XX(k,ω)

is for the contribution only from X, while Aμ,XX′
(k,ω) ≡

Aμ,XX′
(k,ω) + Aμ,X′X(k,ω) (X �= X′) is for the correlative

contribution from X and X′. Akμ,XX(k,ω) is always non-
negative, while Akμ,XX′

(k,ω) (X �= X′) becomes negative
when the atomic movements of X and X′ for the μth SR are
negatively correlated, as described in Sec. II C 3 and Fig. 3.

2. Average spectral functions over crystallographically equivalent
wave vectors

Although we can obtain the spectral functions using the pro-
cedure described above, generally they still do not fully show
the rotational symmetry for the underlying crystal structure.
To impose the crystallographic symmetry of the underlying
crystal structure to the spectral functions obtained using the
band-unfolding method, we take the average of the spectral
functions over the wave vectors that are crystallographically
equivalent for the underlying structure in the same manner as
described in Sec. III E in Ref. [6].

For a wave vector k, the set of crystallographically
equivalent wave vectors {k} is called the star of k [21,24].
The average spectral function Ā(k,ω) at k is calculated as

Ā(k,ω) = 1

|{k}|
∑

k′∈{k}
A(k′,ω). (36)
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Similarly, we can take the average also for Aμ(k,ω),
Aμ,XX(k,ω), and Aμ,XX′

(k,ω) as

Āμ(k,ω) = 1

|{k}|
∑

k′∈{k}
Aμ(k′,ω), (37)

Āμ,XX(k,ω) = 1

|{k}|
∑

k′∈{k}
Aμ,XX(k′,ω), (38)

and

Āμ,XX′
(k,ω) = 1

|{k}|
∑

k′∈{k}
Aμ,XX′

(k′,ω), (39)

respectively.

III. COMPUTATIONAL DETAILS

Here the computational details to obtain the effective
phonon band structure of disordered fcc Cu0.75Au0.25 using
the current band-unfolding method are described.

A. Supercell models of disordered fcc Cu0.75Au0.25

The atomic configuration in disordered fcc Cu0.75Au0.25 was
approximated using special quasirandom structures (SQSs)
[25]. SQSs mimic fully disordered atomic configurations
within limited-size supercells in terms of the correlation
functions in the cluster expansion method [26–28]. In this
study, the SQSs for the 2 × 2 × 2 (32 atoms) and the 3 × 3 × 3
(108 atoms) supercells of the conventional fcc unit cell were
constructed and used to model disordered fcc Cu0.75Au0.25.
The SQSs were obtained using simulated annealing [29,30] as
implemented in the CLUPAN code [31,32].

B. Electronic structures

The plane-wave basis projector augmented wave (PAW)
method [33] was employed in the framework of density func-
tional theory within the generalized gradient approximation of
the Perdew-Burke-Ernzerhof form [34] as implemented in the
VASP code [35–37]. A plane-wave energy cutoff of 350 eV was
used. 3d and 4s electrons were treated as valence electrons for
Cu, and 5d and 6s electrons were treated as valence electrons
for Au. Other electrons were kept frozen. The BZs were
sampled by the 
-centered 12 × 12 × 12 k-point mesh per
conventional fcc unit cell, and the Methfessel-Paxton scheme
[38] with a smearing width of 0.4 eV was employed. The
total energies were minimized until the energy convergences
were less than 10−8 eV. Lattice shapes were kept to be
cubic, and lattice constants of Cu0.75Au0.25 were fixed to the
experimental value at room temperature, 3.753 Å [39]. Atoms
in the supercell models were initially put on the fcc atomic
sites, and then the internal atomic positions were optimized
until the residual forces became less than 1 × 10−3 eV/Å.

C. Band unfolding for phonons

The unfolded phonon band structure of disordered fcc
Cu0.75Au0.25 was obtained as follows. First the second-order
force constants of the supercell models were calculated by
applying finite atomic displacements of 0.01 Å to the supercell

models with the optimized internal atomic positions. Specifi-
cally, 192 and 648 sets of atomic positions with displacements
were employed for the 32- and the 108-atom supercell models,
respectively, to calculate the force constants. No further
expansion of the supercell models was applied to calculate
the force constants in this study. Next the phonon modes of the
supercell models were obtained according to Sec. II A. Here
the atoms in the supercell models were supposed to be exactly
on the fcc atomic sites before the optimization of the internal
atomic positions to provide one-to-one correspondence for
the atomic positions between the supercell models and their
underlying fcc structure. Finally, the phonon modes were
unfolded into the BZ for the primitive fcc unit cell; total
and partial spectral functions described in Eqs. (36)–(39)
were calculated. δ functions in these spectral functions were
smeared by the Lorentzian functions with the half width at
half maximum of 0.05 THz for plotting. The band unfolding
was performed using our own script in combination with the
PHONOPY code [40,41].

IV. RESULTS AND DISCUSSION

Figure 4 shows the phonon band structure of disordered fcc
Cu0.75Au0.25 obtained using the band-unfolding method based
on the first-principles calculations. The 108-atom supercell
model shows much smoother spectral function than the 32-
atom supercell model. To investigate the convergence of the
unfolded phonon band structure with respect to supercell size

FIG. 4. Phonon band structure of disordered fcc Cu0.75Au0.25

calculated using the band-unfolding method. The upper and the lower
panels show the results obtained from the 32- and the 108-atom
supercell models, respectively. White circles represent experimental
data at room temperature [22], and blue dashed curves represent the
result calculated using the ICPA method [23].

024305-7



IKEDA, CARRERAS, SEKO, TOGO, AND TANAKA PHYSICAL REVIEW B 95, 024305 (2017)

FIG. 5. (a) Phonon band structure of a typical pure fcc metal.
Here the result of fcc Cu obtained using first-principles calculations
is shown. The label of the SR is also shown for each phonon branch in
the Mulliken notation in blue text. (b) Atomic displacements of the B2

mode at the wave vector 〈0.5,0.5,0.0〉 at a certain moment. Squares
represent the conventional fcc unit cells, white and black circles
represent the atoms in different layers along the 〈001〉 direction, and
blue arrows represent the atomic displacements.

in more detail, band-unfolding calculations for Cu0.75Au0.25

are also performed using empirical interatomic potentials (see
Appendix E). It is found that the unfolded phonon band
structure obtained from the 108-atom supercell model is in
excellent agreement with that obtained from the 864-atom
supercell model and that even the 32-atom supercell model
gives the unfolded phonon band structure qualitatively in good
agreement with that obtained from the 864-atom supercell
model. Hereafter, the results obtained from the 108-atom
supercell model are focused on.

The peak positions of the spectral function (red and yellow
colored in Fig. 4) roughly form the curves similar to the
phonon band structures of typical pure fcc metals, like that
shown in Fig. 5(a). The unfolded phonon band structure,
however, also shows the “linewidths” of phonon modes. Since
the current phonon modes are obtained under the harmonic
approximation, these linewidths originate not from the phonon
anharmonicity but from the variations of atomic masses and
force constants among the atomic sites due to the chemical
disorder in Cu0.75Au0.25. Actually, the atomic mass of Au
relative to Cu is approximately 3.5. Moreover, the values
of the force constants in Cu0.75Au0.25 strongly depend on
the combinations of the chemical elements and interatomic
distance, as shown in Appendix F.

The unfolded phonon band structure can be decomposed
according to the SRs as shown in Eq. (33) using the projection
operators for SRs defined in Eq. (24). Figure 6 shows this
decomposition for the unfolded phonon band structure of
disordered fcc Cu0.75Au0.25. The A1 and the B1 modes along
the 〈110〉 direction are clearly separated even when they cross
to each other around the wave vector 〈0.7,0.7,0.0〉. This is
difficult in a previous band-unfolding approach [13], where
each mode in the unfolded band structure is determined based
on the cumulative spectral function. The modes obtained in the
current band-unfolding method are associated with the SRs and
hence reflect the crystallographic symmetry. This enables us to
analyze the unfolded band structures of disordered systems in
very similar manners to the ordinary band structures of ordered
systems.

In Fig. 6, the partial spectral functions clearly show several
peculiar behaviors which cannot be found for pure metals
or ordered alloys. One is that the B2-mode branch along the
〈110〉 direction, whose associated atomic displacements are
shown in Fig. 5(b), looks discontinuous around the wave vector
〈0.4,0.4,0.0〉. At this wave vector, there is a jump of the peak
positions of the spectral function from around 2 THz to around
3 THz. Another peculiar behavior is that the doubly degenerate
E-mode branch along the 〈111〉 direction looks split around
the midpoint between the 
 and the L points. At the L point,
the split peak positions are found around 2 THz and around 3–
4 THz. To investigate whether or not these peculiar behaviors
are found also in larger-size supercell models, we also check
the unfolded phonon band structure of Cu0.75Au0.25 calculated
using empirical interatomic potentials (see Appendix E). It
is found that the discontinuous and the split modes are still
found up to the 864-atom supercell model, where the unfolded
phonon band structure is almost converged with respect to
the supercell size. Therefore, these peculiar behaviors are
probably not spurious ones due to the limited supercell size,
but reveal physically meaningful characteristics of disordered
fcc Cu0.75Au0.25 originating from its chemical disorder.

To elucidate the origins of the discontinuous and the split
branches, the partial spectral functions for these modes are
further decomposed into the contributions of the combinations
of the chemical elements, as shown in Eqs. (38) and (39).
Figure 7(a) shows the result for the B2 mode along the 〈110〉
direction. Around the 
 point, all Cu-Cu, Cu-Au, and Au-Au
contribute to the B2 modes. Cu-Cu also contributes to the
B2 modes around 2–3 THz, but this Cu-Cu contribution is
canceled out by the negative Cu-Au contribution. As explained
in Sec. II C 3 and Fig. 3, when the Cu-Au contribution is
negative, Cu and Au atoms hypothetically on the same position
tend to move to the opposite directions, although each chemical
element in itself shows the B2-mode atomic movements.
When the wave vector goes away from the 
 point, the peak
contributed by all the combinations of the chemical elements
almost disappears around the wave vector 〈0.4,0.4,0.0〉, where
the peak frequency is around 2 THz. Instead, at this wave
vector, the Cu-Cu contribution makes a new peak around 3
THz, which continues up to the X point. As a result, the
B2-mode branch looks discontinuous around 〈0.4,0.4,0.0〉.
Figure 7(b) shows the decomposition of the doubly degenerate
E modes along the 〈111〉 direction into the contributions
of the combinations of the chemical elements. Like the B2

mode along the 〈110〉 direction, all Cu-Cu, Cu-Au, and Au-Au
contribute to the E modes around the 
 point. The cancellation
between the Cu-Cu and the Cu-Au contributions is also found
around 2–3 THz. Cu-Au and Au-Au continue to contribute to
this peak up to the L points, while Cu-Cu contribute less to this
peak as the wave vector goes away from the 
 point. Instead,
around the midpoint between the 
 and the L points, Cu-Cu
makes a new peak around 3 THz, which continues up to the L
point. As a result, the E modes look to have two peaks from
around the midpoint between the 
 and the L points. Overall,
it can be said that the discontinuous and the split branches
occur because different combinations of the chemical elements
contribute to different regions of frequency.

In Fig. 4, we also compare the phonon band structure
of Cu0.75Au0.25 calculated using the band-unfolding method

024305-8



MODE DECOMPOSITION BASED ON CRYSTALLOGRAPHIC . . . PHYSICAL REVIEW B 95, 024305 (2017)

FIG. 6. Decomposition of the unfolded phonon band structure of disordered fcc Cu0.75Au0.25 according to the SRs along (a) the 〈100〉,
(b) the 〈110〉, and (c) the 〈111〉 directions. The result is obtained from the 108-atom supercell model. The leftmost panels show the total
spectral function, while the other panels show the partial spectral functions corresponding to different SRs specified at the upper left of the
panels.

with those calculated using the itinerant coherent potential
approximation (ICPA) method [42]. In the ICPA method, the
phonon band structure of a disordered system is calculated
with consideration in the variations of both atomic masses and
force constants among the atomic sites, like the band-unfolding
method, while the ICPA method is based not on the supercell
approach but on the augmented-space formalism [43]. The
peak positions of the spectral function of the band-unfolding
method are mostly in agreement with those of the ICPA
method. The result of the ICPA method shows the discontinuity

in the lowest-frequency branch along the 〈110〉 direction as
well as the result of the band-unfolding method.

Finally, in Fig. 4, the phonon band structure of Cu0.75Au0.25

calculated using the band-unfolding method is mostly in
agreement with experimental data [22]. The experimental data,
however, do not clearly show the discontinuous branch along
the 〈110〉 direction or the split branch along the 〈111〉 direction,
unlike the result of the band-unfolding method. The reason for
this discrepancy is not clear, but since both the band-unfolding
and the ICPA methods show the discontinuous branch along
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FIG. 7. (a) Decomposition of the partial spectral function for the B2 mode along the 〈110〉 direction into the contributions of the combinations
of the chemical elements for disordered fcc Cu0.75Au0.25. The result is obtained from the 108-atom supercell model. The leftmost panel shows
the partial spectral function for the B2 mode in total, while the other panels show the contributions of the combinations of chemical elements
specified at the upper left in the panels. (b) The same as (a), but for the doubly degenerate E modes along the 〈111〉 direction.

the 〈110〉 direction, we think that the discontinuous branch
should be found in computational approaches as far as we
incorporate the variations of atomic masses and force constants
among the atomic sites into the calculations. It should be
noted that discontinuous phonon branches have been observed
also in experiments for disordered fcc Ni-Pt [44] and Cu-Pt
[45] alloys, which have large variations of atomic masses
and, possibly, force constants among the atomic sites as well
as disordered fcc Cu0.75Au0.25. This fact implies that the
experimental data for Cu0.75Au0.25 might have overlooked the
peculiar behaviors found in the computational approaches.
It should also be mentioned that the effective phonon band
structure of Cu0.25Au0.25 calculated using the average atomic
mass and force constants (or dynamical matrices) over the
chemical elements, reported in Ref. [46], seems to be in good
agreement with the experimental data. However, the approach
in Ref. [46] ignores the variations of atomic masses and force
constants among the atomic sites inherent in disordered alloys
and hence does not sufficiently describe the actual situation in
disordered alloys. As shown above, these variations are large
in Cu0.75Au0.25 and hence should be explicitly incorporated
into calculations of the effective phonon band structure. The
computational result in Ref. [46] using the average values
may be accidentally in agreement with the experimental
data.

V. CONCLUSIONS

In this study, we develop a procedure to decompose the
effective band structures obtained using the band-unfolding
method according to the SRs of the little groups. For the
decomposition, we derive the projection operators for SRs
based on a group-theoretical approach. The current procedure
enables us to compare the band structure of a disordered system
with that of an ordered system or of another disordered system
in a consistent manner in terms of crystallographic symmetry.

The current band-unfolding method is applied to the phonon
band structure of disordered fcc Cu0.75Au0.25, which has large
variations of atomic masses and force constants among the
atomic sites due to the chemical disorder. The calculated
phonon band structure shows the linewidths of phonon modes
induced by the chemical disorder in Cu0.75Au0.25. The phonon
band structure also shows several peculiar behaviors such
as the discontinuous and the split branches for the modes
corresponding to specific SRs. These peculiar behaviors occur
because different combinations of the chemical elements
contribute to different regions of frequency for these branches.

The band-unfolding method can be applied not only to
systems with chemical disorder but, in principle, also to
those with magnetic disorder. Recently, several computational
approaches have been attempted to obtain the phonon band
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structures of magnetic systems in the high-temperature param-
agnetic (PM) phase [47–54]. It may be possible to also employ
the band-unfolding method for obtaining the phonon band
structures in the PM phase modeled by a supercell model with
disordered magnetic moments, which enables us to estimate
the impact of thermal magnetic fluctuation on the phonon band
structures.
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APPENDIX A: TRANSFORMATION OF FUNCTIONS

When {R|w} is applied to a scalar-field function f (x), the
transformed function f ′(x) ≡ {R|w}f (x) satisfies

f ′({R|w}x) = f (x). (A1)

Therefore,

f ′(x) = f ({R|w}−1x)

= f (R−1x − R−1w), (A2)

where {R|w}−1 ≡ {R−1| − R−1w} is the inverse transforma-
tion operator to {R|w}. Similarly, when {R|w} is applied to
a vector-field function f(x), the transformed function f′(x) ≡
{R|w}f(x) satisfies

f′({R|w}x) = Rf(x). (A3)

Therefore,

f′(x) = Rf({R|w}−1x)

= Rf(R−1x − R−1w). (A4)

APPENDIX B: ORTHOGONALITY RELATIONS FOR SRs

Here we show the orthogonality relations for the SRs of the
little groupGk of the wave vector k, which are used to derive the
projection operators for SRs in Eq. (24). Since Gk is an infinite
group, we cannot directly use the orthogonality relations for
IRs for finite groups. As shown below, however, we can derive
the orthogonality relations for the coset representatives of Gk

relative to the translation subgroup T , which is very similar
to the orthogonality relations for finite groups. First we show
that the SRs of Gk can be written using the IPRs of the little
cogroup Ḡk in the same manner as in the literature (e.g., Sec.
14.4.2 in Ref. [18]). Then we derive the orthogonality relations
for the SRs using the orthogonality relations for the IPRs of
Ḡk.

Gk is decomposed using the coset representatives {Rj |wj }
relative to T , as shown in Eq. (23). The coset representatives
satisfy the following multiplication rule:

{Rj |wj }{Rk|wk} = {I3|t}{Rl|wl}, (B1)

where Rl = Rj Rk , and t = Rj wk + wj − wl ∈ T . The μth
SR 
kμ of Gk then satisfies


kμ({Rj |wj })
kμ({Rk|wk}) = exp[−ik · t]
kμ({Rl|wl}),
(B2)

where the property of SRs in Eq. (20) is applied to {I3|t}.
Suppose that 
kμ({R|w}), where {R|w} ∈ Gk, is decomposed
as


kμ({R|w}) = exp[−ik · w]�kμ(R). (B3)

By substituting Eq. (B3) into Eq. (B2),

exp[−ik · wj ]�kμ(Rj ) exp[−ik · wk]�kμ(Rk)

= exp[−ik · t] exp[−ik · wl]�
kμ(Rl); (B4)

∴ �kμ(Rj )�kμ(Rk) = λ(j,k)�kμ(Rj Rk), (B5)

where λ(j,k) ≡ exp[−i(RT
j k − k) · wk]. λ(j,k) is found to sat-

isfy λ(j,k)λ(jk,m) = λ(j,km)λ(k,m). Equation (B5) there-
fore indicates that �kμ is a projective representation (PR)
[18,21] of the little cogroup Ḡk with the factor system defined
as the set of λ(j,k). �kμ is irreducible because 
kμ is supposed
to be irreducible. Now |λ(j,k)| is equal to one for all the
combinations of the coset representatives, and hence the IPR
�kμ can be transformed to be unitary without changing the
factor system. This can be proved in a similar manner to that
in, e.g., Theorem 12.3.1 in Ref. [18]. �kμ can therefore be
supposed to be unitary without loss of generality. Note that
in special cases, the set of the coset representatives can be
chosen so that λ(j,k) is equal to one for all the combinations
of the coset representatives. In such cases, �kμ reduces to
an ordinary IR of Ḡk. Such cases occur, e.g., when the space
group G is symmorphic or when k is not on the BZ boundary.

The set of the unitary IPRs {�kμ} belonging to the same
factor system satisfies the following orthogonality relations
(see, e.g., Theorem 12.3.2 in Ref. [18]):

∑
R∈Ḡk

�
kμ

jk (R)�kν
j ′k′(R)∗ = |Ḡk|

dμ

δμνδjj ′δkk′ . (B6)

Using Eq. (B6), it is also found that the set of the SRs {
kμ}
satisfies the following orthogonality relations for the coset
representatives:

|Ḡk|∑
l=1



kμ

jk ({Rl|wl})
kν
j ′k′({Rl|wl})∗

=
|Ḡk|∑
l=1

exp[−ik · wl]�
kμ

jk (Rl) exp[ik · wl]�
kν
j ′k′(Rl)

∗

= |Ḡk|
dμ

δμνδjj ′δkk′ . (B7)

It should be emphasized that although Eq. (B7) looks similar
to Eq. (B6), Eq. (B7) is for the little group Gk, which is an
infinite group.
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APPENDIX C: DERIVATION OF EQ. (18)

The notations follow those in Sec. II C 1.

P̂ kk f K(x) = 1

N

N∑
j=1

exp[ikk · tj ]t̂j

N∑
l=1

ckl
f kl (x)

= 1

N

N∑
j=1

exp[ikk · tj ]
N∑

l=1

ckl
[t̂j f

kl (x)]

= 1

N

N∑
j=1

exp[ikk · tj ]
N∑

l=1

ckl
f kl (x) exp[−ikl · tj ]

[∵ Eq. (16)]

=
N∑

l=1

ckl
f kl (x)

⎧⎨
⎩ 1

N

N∑
j=1

exp[i(kk − kl) · tj ]

⎫⎬
⎭

=
N∑

l=1

ckl
f kl (x)δkl [∵ Eq. (13)]

= ckk
f kk (x). (C1)

APPENDIX D: DERIVATION OF EQ. (25)

The notations follow those in Sec. II C 2.

P̂ kμf k(x) = dμ

|Ḡk|
|Ḡk|∑
j=1

χkμ(ĝj )∗ĝj

∑
ν

nν∑
s=1

dν∑
k=1

cνskf
kνsk(x)

= dμ

|Ḡk|
|Ḡk|∑
j=1

χkμ(ĝj )∗
∑

ν

nν∑
s=1

dν∑
k=1

cνsk[ĝj f
kνsk(x)]

= dμ

|Ḡk|
|Ḡk|∑
j=1

χkμ(ĝj )∗
∑

ν

nν∑
s=1

dν∑
k=1

cνsk

×
[

dν∑
l=1

f kνsl(x)
ν
lk(ĝj )

]
[∵ Eq. (22)]

=
dμ∑

m=1

∑
ν

nν∑
s=1

dν∑
k=1

cνsk

dν∑
l=1

f kνsl(x)

×
⎡
⎣ dμ

|Ḡk|
|Ḡk|∑
j=1


μ
mm(ĝj )∗
ν

lk(ĝj )

⎤
⎦

=
dμ∑

m=1

∑
ν

nν∑
s=1

dν∑
k=1

cνsk

dν∑
l=1

f kνsl(x)δμνδmlδmk

× [∵ Eq. (B7)]

=
nμ∑
s=1

dμ∑
k=1

cμskf
kμsk(x). (D1)

FIG. 8. Unfolded phonon band structure of disordered fcc
Cu0.75Au0.25 calculated using the EAM interatomic potentials. The
sizes of the supercell models are shown at the upper left in
the panels. White circles represent experimental data at room
temperature [22].
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APPENDIX E: UNFOLDED PHONON BAND STRUCTURE
CALCULATED USING EMPIRICAL INTERATOMIC

POTENTIALS

Here we investigate the convergence of the unfolded phonon
band structure of disordered fcc Cu0.75Au0.25 with respect to
the supercell size using the empirical embedded-atom-method
(EAM) interatomic potentials. In Sec. IV, the unfolded phonon
band structure of disordered fcc Cu0.75Au0.25 is obtained from
first-principles calculations using the 32- and the 108-atom
supercell models. Although we can find several peculiar
behaviors such as the discontinuous and the split branches
in the unfolded phonon band structure, one may wonder
if these peculiar behaviors are spurious due to the limited
supercell size. Therefore, it is worth confirming the cell-size
convergence of the unfolded phonon band structure. However,
it requires prohibitively high computational costs to calculate
the second-order force constants for further larger supercell
models of disordered fcc Cu0.75Au0.25 based on first principles.
The use of the EAM interatomic potentials enables us to access
the further larger supercell models because it requires much
less computational costs to calculate the second-order force
constants than first-principles calculations.

Disordered fcc Cu0.75Au0.25 was modeled using the 2 × 2 ×
2, 3 × 3 × 3, 4 × 4 × 4, 5 × 5 × 5, and 6 × 6 × 6 supercells
of the conventional fcc unit cell, including 32, 108, 256, 500,
and 864 atoms, respectively. For the 32- and the 108-atom
supercell models, the chemical disorder was approximated
using the SQSs the same as those used in the first-principles
calculations, while for the further larger supercell models, the
chemical disorder was approximated using a pseudorandom-
number generator. We used the EAM interatomic potentials
parametrized by Foiles et al. [55] as implemented in the
LAMMPS code [56]. The lattice shape was kept cubic, and the
lattice constant of Cu0.75Au0.25 was fixed to the experimental
value at room temperature, 3.753 Å [39]. The internal atomic
positions were optimized until the residual forces became
less than 1 × 10−9 eV/Å. The second-order force constants
of the supercell models were calculated using finite atomic
displacements of 0.01 Å with no further expansion of the
supercell models. Phonon modes obtained from the supercell
models were unfolded into the BZ for the primitive fcc unit
cell.

Figure 8 shows the unfolded phonon band structure of dis-
ordered fcc Cu0.75Au0.25 calculated using the EAM interatomic
potentials. The results are qualitatively very similar to those
obtained using first-principles calculations shown in Fig. 4.
The spectral function is almost converged at the 108-atom
supercell model; the result of the 108-atom supercell model is

FIG. 9. Distributions of the second-order force constants between
the 1NN atomic pairs with respect to interatomic distance for disor-
dered fcc Cu0.75Au0.25 obtained from the 108-atom supercell model.
Red circles, blue squares, and green triangles are for Cu-Cu, Cu-Au
(Au-Cu), and Au-Au pairs, respectively. The first and the second
chemical components are supposed to be on (0,0,0) and (1/2,1/2,0),
respectively, in fractional coordinates for the conventional fcc unit
cell. Each panel corresponds to the symmetrically inequivalent
element of the force constants specified at the upper left in the panel
in Cartesian coordinates, where the first and the second symbols are
for the first and the second chemical components, respectively.

very similar to the result of the 864-atom supercell model.
Actually, even the result of the 32-atom supercell model
captures most characteristics of the spectral functions of the
larger supercell models. The discontinuous branch along the
〈110〉 direction and the split branch along the 〈111〉 direction
are found in the EAM results, as well as the first-principles
results, even for the 864-atom supercell model. Since the
spectral function is expected to be converged at the 864-atom
supercell model, this result implies that the discontinuous
and the split branches are not spurious behaviors due to the
limited supercell size, but realistic ones originating from the
chemical disorder in Cu0.75Au0.25. As analyzed in Sec. IV, the
discontinuous and the split branches occur because different
combinations of the chemical elements contribute to different
regions of frequency for the modes corresponding to specific
SRs.

APPENDIX F: VARIATIONS OF FORCE CONSTANTS
IN Cu0.75Au0.25

Figure 9 shows the distributions of the second-order force
constants between the first-nearest-neighbor (1NN) atomic

TABLE I. Average and standard deviation (SD) of the second-order force constants and interatomic distances between the 1NN atomic pairs.

Force constants (eV/Å
2
)

Interatomic distance (Å) xx xy xz zz

Average SD Average SD Average SD Average SD Average SD

Cu-Cu 2.626 0.078 −0.636 0.237 −0.718 0.261 0.000 0.028 0.086 0.020
Cu-Au 2.679 0.070 −1.165 0.405 −1.368 0.441 0.000 0.052 0.256 0.048
Au-Au 2.776 0.055 −1.919 0.497 −2.279 0.532 0.000 0.084 0.502 0.066
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pairs with respect to interatomic distance for disordered fcc
Cu0.75Au0.25 calculated from the 108-atom supercell model.
Table I summarizes the average and the standard deviation of
the force constants.

The force constants clearly depend on the combinations of
the chemical elements. At a certain interatomic distance, the
force constants of the Cu-Cu pairs are smaller in magnitude
than those of the Cu-Au (Au-Cu) and the Au-Au pairs. The

strong dependence of the force constants on the combinations
of the chemical elements indicates that it is not adequate to
take the average of force constants over the combinations
of the chemical elements to describe the real physics in
Cu0.75Au0.25.

The force constants also depend on the interatomic distance.
The element-resolved force constants tend to be smaller in
magnitude as the bond distance increases.
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