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The observation of nonsaturating classical linear magnetoresistivity has been an enigmatic phenomenon in
solid-state physics. We present a study of a two-dimensional ohmic conductor, including local Hall effect and a
self-consistent consideration of the environment. An equivalent-circuit scheme delivers a simple and convincing
argument why the magnetoresistivity is linear in strong magnetic field, provided that current and biasing electric
field are misaligned by a nonlocal mechanism. A finite-element model of a two-dimensional conductor is suited
to display the situations that create such deviating currents. Besides edge effects next to electrodes, charge carrier
density fluctuations are efficiently generating this effect. However, mobility fluctuations that have frequently
been related to linear magnetoresistivity are barely relevant. Despite its rare observation, linear magnetoresitivity
is rather the rule than the exception in a regime of low charge carrier densities, misaligned current pathways and
strong magnetic field.
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I. INTRODUCTION

The classical magnetoresistivity (mr) ρ(B) of a homo-
geneous conductor vanishes in the simplest models, but
under realistic assumptions it is quadratic in magnetic field
B and starts to saturate when μB exceeds unity (μ is
the charge carrier mobility) [1,2]. However, since the early
days of solid-state physics, counterexamples are known, for
which the mr is strictly linear, without saturation [2,3]. This
phenomenon remains a barely resolved enigma of solid-state
physics and has led to significant confusion. It has been
reported in experiments on three-dimensional (3D) materials
as different as common metals [4], semimetals [5–9], and
semiconductors [10–13]. As magnetoresistivity is essentially
a two-dimensional phenomenon, it occurs also in the novel
2D materials classes of graphene-derived materials [14–16]
and topological insulators [17–21]. The enigma is which
generic mechanism creates such a simple phenomenology
(strictly linear mr, no saturation) that is seemingly insensitive
to the substantial differences provided by the broad range of
materials that have only a finite conductivity in common.

There are models that attempt to explain linear mr as a
quantum phenomenon at the lowest Landau level [22,23],
or near charge neutrality [24]. Another approach has been
presented in 2003 by Parish and Littlewood (PL), which is
essentially a finite-element analysis of the magnetoresistance
(MR) [in contrast to the magnetoresistivity (mr)] of a finite 2D
conductor, including Hall effect and Kirchhoff rules [25,26].
This model guides the way to the correct understanding, but
remains incomplete and caused significant confusion. We will
critically discuss it in more detail below (see Sec. V).

II. GENERATING MECHANISM: THE ARGUMENT
FOR LINEARITY

The resistivity tensor in a homogeneous isotropic 2D
material in a perpendicular magnetic field B reads(

Ex

Ey

)
=

(
ρ0 B/ne

−B/ne ρ0

)(
jx

jy

)
(1)
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with E the electric field, j the current density, ρ0 = 1/neμ

the Drude resistivity and n the charge carrier density. For zero
magnetic field B, current and electric field are collinear. For
strong magnetic fields, defined by μB � 1, these quantities
approach to a perpendicular configuration, which leads to
a reshaped potential landscape. As a first approach to the
problem, we treat this limit such that we suppress the diagonal
terms ρ0 entirely. Then, the equations read

Ex = (B/ne)jy (2)

Ey = (−B/ne)jx. (3)

In this limit, currents flow along equipotential lines, and
further increase of B does not affect the direction of currents,
neither does it modify the potential landscape further (under
voltage biased conditions). This is a well-known phenomenon
that can be studied either analytically [27] or using finite
element analysis [25,26] and will be discussed in detail later
in the paper. When Ex and Ey are frozen, these equations
leave no other solution than j ∝ 1/B. This simple scaling
argument is the origin of linear mr. Note that in addition to the
local resistance tensor that has no mr, a nonlocal property of
the environment (B-independent E) is important in order to
explain linear mr.

In order to link up with finite-element concepts, we focus
on a single square tile in the middle of a homogeneous quasi-
infinite conducting material with translational invariance [see
Fig. 1(a)]. The relation between currents and voltages under
the influence of Hall effect at the square tile is given by a
resistance tensor:(

Ux

Uy

)
=

(
ρ0 B/ne

−B/ne ρ0

)(
Ix

Iy

)
. (4)

We are interested in linear response conductivity, and assume
without loss of generality a finite external voltage in x direction
that drives a current through the tile. Translational invariance
guarantees that the current incoming from the left equals
the current outgoing to the right, such that only one current
Ix (and, by the same argument, Iy) has to be considered
[Figs. 1(a)–1(d)].
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FIG. 1. (a) Homogeneous conductor subdivided in small square tiles. Arbitrary tile (gray), far away from electrode banks and boundaries,
where translational symmetry is fulfilled. (b)–(d) Stepwise design of an equivalent circuit for such a tile. (b) Current conservation in y direction
is guaranteed via a feedback resistor Reff (B). (c) A voltage source is added to drive a current. (d) Schematic of the electron current flow in the
equivalent circuit. The currents Ix and Iy are independently conserved by the circuit, although they are mixed in the presence of magnetic field.

The model that we propose uses an equivalent circuit
in which the top and bottom edge are shorted via an
effective resistor Reff to ensure this current conservation in the
calculation. The latter represents the effective resistance of the
environment, summarizing many current paths that reach out
in the conductive plane, with R′

y = −Uy/Iy = Reff . Solving
this equivalent circuit one obtains the longitudinal resistance
R′

x = Ux/Ix as

R′
x = ρ0 + (B/ne)2

ρ0 + Reff
. (5)

As a special case, for Reff = ∞ this formula contains the
standard Hall result: vanishing Iy , and a constant mr. This
system of equations, however, contains richer solutions with
finite transversal currents Iy . We define tan [α(B)] := Iy/Ix as
a measure of the direction of current with respect to the bias
direction (x axis).

If one assumes Reff as constant (i.e., B independent) then
a quadratic mr R′

x ∝ B2 would result in the strong-field limit.
This, however, is obviously inconsistent: Reff represents the mr
of the environment and has, therefore, the same B dependence
as the mr of the specific tile we have chosen. Self-consistency
in the high-field limit (α = α∞) can be reached by choosing

Reff = 1

tan(α∞)

B

ne
(6)

R′
x = Ux/Ix ≈ ρ0 + tan(α∞)

B

ne
(7)

with tan(α∞) appearing as the prefactor by comparison of
coefficients [28]. This is the only high-field solution, in which
the tile‘s effective resistance R′ and its environment share
the same B dependence. This is the key argument why
in the high-field limit the mr is linear. When rewriting (6)
as tan(α∞) = 1

Reff

B
ne

it becomes obvious that α∞ is determined
by both parameters of the tile (its charge density) as well as
of the environment. It is therefore sensitive to the electrostatic
landscape in which the tile is embedded. Explicitly, α∞ =
const. means both Ux and Uy become B independent. This
links up seamlessly with the scaling argument presented above.
Note that within our simplifying model, α(B) is antisymmetric
with respect to B and approaches in both field directions to
asymptotic values α∞ and −α∞.

Following this argument, linear mr is the self-consistent
solution of a simple conductor in the high-field limit and should

therefore be rather the rule than the exception. The appearance
of finite linear mr, however, requires an additional ingredient:
a nonlocal mechanism that provides finite values of α∞ and
cants the current I with respect to the electric field bias E (in
our model represented by a local voltage drop Ux).

In the course of this paper, we focus on mechanisms that
create such finite current distortion (CD) fields α∞(r) as a
consequence of inhomogeneities. Among such we find the
importance of macroscopic boundaries, addressed by PL, and
bulk disorder, in particular local variations of the charge carrier
density.

III. METHODS

From now on, the paper essentially uses the same con-
ceptual framework as PL [25,26], in particular a network of
four-terminal (and three-terminal) tiles [Fig. 2(a)] to model the
2D material. Every little Hall tile in the network is treated as a
classical conductor, the electrostatics of which obey Maxwell’s
equations. The classical transport in a circular tile [Fig. 2(b)] is
described by Ohm‘s law j = σ̂ E, with j the current density,
σ̂ the conductivity tensor and E = −∇ϕ. The electrostatic
potential ϕ within the tile is calculated using the Laplace
equation �ϕ = 0, by expanding the solution in a Fourier series
in the angle θtile. The current density inserted into the tile is
assumed to be constant over the whole opening angle δt of each
terminal. Ohm‘s law −σ̂ · ∇ϕ = j can be solved, at the edge
of the tile, by expanding the current density in a Fourier series
and comparing coefficients of left- and right-hand side of the
equation. Thus, the impedance matrix Ẑ of the tile connecting
the input currents I and the potentials U at the terminals is
obtained (example for a four-terminal tile with terminals at
angles θtile = {0,π/2,π,3π/2}):

z(θtile) =
∞∑

n=1

1

n2
[−ρxx Sn − ρxy Tn cos(nθ )

−ρxx Tn + ρxy Sn sin(nθ )]

ρxx = 1

enμ
and ρxy = B

en

U = Ẑ · I + c with Ẑ =

⎛
⎜⎜⎝

z(0)T

z(π/2)T

z(π )T

z(3π/2)T

⎞
⎟⎟⎠. (8)
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FIG. 2. (a) Model of a four-terminal network with equipotential electrode banks, very similar to Ref. [25]. (b) Scheme of a four-terminal
tile with currents I (green arrows) and potentials ϕ at the terminal positions. The opening angle of the terminal at angle θtile is given by δt .
(c) RSD(B) for homogeneous networks with 40 × 40 (bottom black squares) and 40 × 200 tiles (top red squares). (d) Mean potential of each
tile mapped for the 40 × 40 network at a magnetic field of 30 T (μ = 1) with left electrode at 0 V and right electrode at 1 V.

The vectors [28] Sn and Tn contain the Fourier coefficients
of the current density entering the terminals. c = (c,c,c,c)T is
an undetermined constant that can be added to the electrostatic
potential without changing the result. The resistor network
[Fig. 2(a)] is formed by connecting the tiles with perfectly
conducting wires. Accounting for current conservation and
a continuous potential at the connections between tiles and
boundary conditions (here chosen: 0 V at the left bank
and 1 V at the right bank), a system of linear equations
describing the network is derived and solved numerically using
a sparse-matrix algorithm.

IV. NETWORK SIMULATIONS: RESULTS
AND DISCUSSION

A. Homogeneous networks

In order to study the impact of our equivalent-circuit model
on extended networks, we link up with the PL model that
treats homogeneous, but finite networks, in which all discs
are identical, arranged between two voltage-biased electrodes
(source and drain). This model has lead to an understanding
of linear MR, but barely of linear mr, as we will demonstrate.

The occurrence of finite CD fields α∞(r) (and the in-
complete aspects of the PL model) can best be illustrated
when choosing a matrix with a high aspect ratio (number of
columns/number of rows). The MR calculated as a solution
of the system of equations is displayed in Fig. 3(a): Beyond a
certain threshold, the source-drain resistance RSD rises strictly
linearly, without any saturation within our classical treatment.
This simple curve can be characterized by an analysis of
the slope, the minimal resistance RSD(B = 0), and the onset
threshold Bonset of linear behavior. The slope, expressed in
units of 1/ne for two different values of n clearly shows
a behavior independent of μ [Fig. 3(b)]. RSD(B = 0) is
trivially inversely proportional to the charge carrier mobility
μ [Fig. 3(c)]. The threshold Bonset is given by μB ≈ 1, and
independent of n [Fig. 3(d)]. This set of parameters describes
the phenomenology of linear MR.

Starting from B = 0 the potential map evolves from a
regular voltage drop along x direction to a tilted landscape as
in Fig. 3(e). For B � 1/μ, this potential map has asymptotical
behavior, i.e., changes only very slightly with increasing B.
This can be rationalized by revisiting the concept of the Hall
angle θ , which is a measure of the ratio between the y and
x components of the electric field E. With the textbook

results tan θ = Ey/Ex = μB [1], the Hall angle saturates
asymptotically beyond μB ≈ 1, which freezes the potential
landscape under voltage-biased conditions. The resulting
potential map is rather insensitive to the tiling chosen for the
finite-element analysis [28].

The potential map of the self-consistent solution reveals
three spatial regions: the two areas close to the electrodes
indicated with A reproduce the diagonal equipotential line of
Fig. 2(d). The central region B represents the situation in a real
bulk material that is remote from electrode banks. Note that
the potential map in this region is very similar to a standard
textbook result of the Hall effect in strong magnetic fields with
a Hall electric field that is approximately perpendicular to the
current direction (Hall angle θ ≈ 90◦). The arrows in Fig. 3(e)
indicate the current direction in nine selected tiles. At such
high fields (μB � 1) the current follows equipotential lines.

It is useful to introduce an analysis of local impedances
Zx of each disk. We calculate Zx = Ux/Ix with Ix = (Ileft +
Iright)/2 and Ux being the potential drop along one disk. This
scheme results in local magnetoimpedances that turn out to
be linear in B, an example of which is shown in Fig. 3(f). An
analysis of their slope indicates that it scales nicely with 1/ne,
with a proportionality constant that depends on the position.
In region A, this proportionality is approximately unity, and
the slope is dZx(B)/dB ≈ 1/ne [see Fig. 3(g)]. The spatial
pattern of the local impedances resembles the PL case of a
square matrix [see Fig. 3(h)].

More importantly, in region B the slope is reduced by
orders of magnitude. In other words, the parts remote from
the electrode equipotential boundary condition have vanishing
mr and, hence, do not contribute to linear MR. In order
to corroborate this finding, it is instructive to elongate the
matrix step by step, a procedure that inserts more and
more contributions from region B (compare [Fig. 2(c)]).
The outcome of this numerical experiment is unambiguous:
the zero-field resistance trivially scales with the aspect ratio
following Ohm’s law in two dimensions,

RSD = R�
l

w
(B = 0) (9)

with l being the length and w the width in appropriate units. In
contrast, in the high-field limit, the linear-in-B contribution is
insensitive to geometry for rectangular homogeneous networks
and its prefactor (slope) is simply 1/ne [Fig. 3(b)]. It is
therefore an electrode-induced MR rather than a specific mr.
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FIG. 3. (a) Example for evaluation of characteristic MR parameters: slope at high-fields, zero-field resistance RSD(B = 0), and onset field
Bonset for the 40 × 200 homogeneous network. (b)–(d) Network parameters for homogeneous 40 × 200 networks dependent on the mobility
inside a tile μ calculated for two different charge carrier densities n = 6 × 1016/m2 (black squares) and n = 1 × 1017/m2 (red circles).
(b) Slope of RSD(B), fitted from 30–50 μB, turns out to be nearly constant at a value of 1/ne independent of mobility. (c) Zero field resistance
scales with 1/μ and also depends on charge carrier density via conductivity σ = enμ. (d) Onset field is found proportional to 1/μ with
Bonset = (2.69 ± 0.01)/μ, independent of charge carrier density n. (e) Potential map of a 40 × 200 network at a magnetic field of 30 T (μ = 1).
The arrows denote current direction (but not total current) at chosen tiles of the network. (f) Example for evaluation of the slope of mr
locally calculated at a tile via Zx(B) = 2(ϕright − ϕleft)/(Ileft + Iright). (g) Logarithmic map of the local slope in units of (1/ne) for the network
from (e). It divides in two regions: A near the electrodes and B in the center of the network, where the textbook Hall conditions are met.
(h) Logarithmic map of the local slope for the corresponding square network, where only region A is present. (i) Logarithmic map of current
ratio Ix/Iy with Ix averaged over left and right terminal and Iy averaged over bottom and top terminal.

The overall MR in the high-field limit reads

RSD ≈ R�

(
l

w
− 1

)
︸ ︷︷ ︸

B

+ B

ne︸︷︷︸
A

(μB � 1). (10)

Note that the two terms stand for region A and B, although
these regions are not sharply separated in space. The PL
model for the homogeneous case treats only the latter term
because square geometry is assumed [25], while linear mr in
experiments was observed in four-terminal measurements, i.e.,
in geometries that are only sensitive to the first term [15].

In this section we have so far argued in the conceptual
framework of the finite-element/PL model. At this stage,
however, we can easily link it with the individual tile model
described in Sec. II. In particular, the resistivity of the indi-
vidual tile, R′

x = Ux/Ix ∝ tan(α∞) B
ne

at high magnetic fields
(cf. formula (7)), with α∞ determined by the environment,
can now immediately be linked to the local impedances Zx(r)
calculated with the finite-element model.

One can simply calculate the CD field α∞(r) within
the finite-element model for each element, and map it as
tan[α∞(r)] = Iy/Ix for the homogeneous network [Fig. 3(i)].
The coincidence of the maps in Figs. 3(g) and 3(i) (with
significant differences only at the edges where translational
symmetry is strongly violated) gives convincing evidence that
the equivalent circuit model, in conjunction with the CD field
α∞(r) that has to be derived from geometry, is the relevant
point of view to understand linear magnetoresistivity.

B. Inhomogeneous networks

We have shown that in homogeneous conductors linear mr is
built in, however with zero amplitude when being remote from
electrodes (region B). Linear MR and mr, however, have been
suspected as originating from disorder. Conceptually, the gen-
erating mechanism presented in Sec. II relies on translational
invariance, i.e., can not be applied in the inhomogeneous case.
This is why we consider inhomogeneities in the framework
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FIG. 4. (a) and (b) Potential maps for disordered 40 × 200 networks at a magnetic field of 30 T. A flat distribution with mean value 〈x〉
and total width 2〈x〉 was used for these maps. (a) shows the influence of disorder in μ (n fixed). In (b) the charge carrier density n was varied
(μ fixed). (c) Slope of linear MR/mr (in units of 1/ne with n = 6 × 1016/m2) as a function of the total width of disorder distribution for μ

or n disorder. The squares indicate the slope of the source-drain resistance RSD , whereas the circles show the slope of the bulk resistivity ρxx .
(d) Slope of the network resistance [see (c)] under variation of aspect ratio of the network. The values for the network with 20 rows were
averaged over five configurations for each aspect ratio. A linear fit yields a slope of (0.37 ± 0.01) and an offset of (0.57 ± 0.05). (e) and (f)
Map of CD field. The plotted quantity is tan[α(r,B = 30 T) − α(r,B = 0)], i.e., the field-induced change of the local current direction with
respect to the local electric field. The values are averaged over a square of 5 × 5 tiles, negative values are displayed in white. (e) corresponds to
the case of μ disorder [see (a)] and (f) to the case of n disorder [see (b)]. (g) Maximum slope of the source-drain-resistance (black squares) and
the resistivity (black circles), in region B, of 40 × 200 networks in dependence of the fraction of n-type discs [28]. For the simulation, charge
carrier density nn,p = 6 × 1016/m2 and mobility μ = 1m2/Vs were fixed and just the sign of the Hall-coefficient varied statistically between
the different tiles. Inset: Bottom (open circles) and top (filled circles) limit of the magnetic field region in which the resistivity is found to be
linear in B. (h) Slope of RSD for different aspect ratios of networks with equal fraction of n- and p-type tiles. Each point represents an average
over five configurations. A linear fit yields a slope of (0.89 ± 0.02) and an offset of (0.05 ± 0.05).

of the finite-element model [25,26]. It provides a tool to
continuously enhance the degree of disorder and to extend
the underlying physics to the disordered regime. As we will
see, disorder goes along with a nonvanishing tan[α∞(r)] field.

Inhomogeneities are introduced via a stochastic choice of
parameters for the individual tiles. We have chosen disorder
of the charge carrier mobility or, alternatively, charge carrier
density, expressed by an equal distribution of total width
�μ or �n centered around an average value 〈μ〉 or 〈n〉,
respectively. This procedure allows us to independently control
the continuous evolution from weak to strong inhomogeneities.
Figures 4(a) and 4(b) show the effect on the potential map
at high magnetic field (B = 30 T), and under a stochastic
variation of μ and n, respectively. Obviously, the U = 0.5 V

equipotential line becomes distorted as compared to Fig. 3(e).
Note that n disorder tilts the equipotential line much stronger
than μ disorder. This is not surprising, as the local Hall
resistance scales with 1/ne. An analysis of the source-drain
resistance RSD of the device as a function of disorder �μ and
�n is shown in Fig. 4(c). It turns out that the effect of charge
carrier density variations �n is immediately acting on linear
MR, whereas �μ is barely influential (cf. [29]). The effect of
the boundaries can be eliminated by investigating linear mr
of ρxx obtained in the bulk region B. Here, the linear-in-B
contributions start from zero, and show a rapid increase when
n disorder is applied. This can again be traced back to the CD
fields. Figures 4(e) and 4(f) show the CD map, more explicitly
tan[α∞(r)] for the case of μ and n disorder, respectively. The
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difference is stunning: μ disorder does not cant the current
with respect to the bias direction in the middle of the simulated
device, whereas n disorder efficiently creates finite CD fields,
which are distributed over the whole area and let even the
near-electrode regions (region A) unstructured in comparison
to Fig. 4(e). Consequently, charge carrier density disorder
delivers a contribution to the bulk specific resistivity, i.e., it
creates rather a linear magnetoresistivity (mr) than a linear
magnetoresistance (MR): every square of the two-dimensional
sample contributes linear mr, a fact that is corroborated by a
variation of the aspect ratio (AR) of the network [see Fig. 4(d)]:
The longer the sample, the larger the linear MR of the sample.
The offset stems from region A, i.e., from the electrodes. The
latter effect next to the electrodes can be fully traced back to
the charge density contrast between the tiles (finite n) and the
equipotential electrodes (n = ∞).

Note that in Ref. [25] disorder was treated in a square device
geometry, i.e., fully dominated by region A. The authors made
the less appropriate choice of considering μ disorder, for which
they had to assume enormously high values of �μ/〈μ〉 � 1 to
overcome the strong influence of boundary conditions. In this
limit they included negative values, i.e., a mixture of electrons
and holes with statistical emphasis on vanishing mobilities.
This is an extreme, barely realistic case, the essence of which
we treat now in a simpler bipartite ensemble: instead of a
Gaussian distribution around μ ≈ 0 [25], we assume two
sorts of tiles with well-controlled homogeneous charge carrier
mobilities and density, but with positive and negative charge
carriers (p-type and n-type tiles), randomly distributed in a
rectangular four-terminal network. Such bipartite materials
have been treated in model calculations [30,31] and have
revealed linear MR at exact electron/hole balance. In our finite-
element treatment, starting off with a percentage of n-type
tiles from zero, i.e., from a homogeneous network, the linear
slope increases rapidly when more and more n-type tiles are
introduced [see Fig. 4(g)]. In particular, the slope of the mr ρxx

increases and reaches values as big as 1/ne per square, indicat-
ing a very efficient generation of linear mr, also illustrated by
a variation of aspect ratio of the slope of linear mr [Fig. 4(h)].

The slope of the resistance consequently reaches a maxi-
mum as high as 5/ne when the number of n- and p-type tiles
is equal, which reflects the aspect ratio of the simulated device
(40 × 200 tiles). For mixtures in between 0 and 50%, the mr
saturates at finite B, recalling the traditional case of a saturating
mr in the presence of electrons and holes in a homogeneous
medium [1] and linear mr only appears in a limited field
region [31] [see inset in Fig. 4(g)]. For exactly 50%, the case
resembles Ref. [24]. Note that also in the disordered case,
the potential landscape freezes with increasing the B field for
rectangular device geometries.

This elucidates the generating mechanism for linear mr
in disordered materials: the disorder provides a stochastic
mixture of longitudinal and Hall electric fields. Consequently,
the formation of a macroscopic Hall field (in which the
Lorentz force is close to zero) is impossible, but instead locally
varying mismatch between the current and the bias direction
is enforced. This can be understood as finite, stochastically
varying values of α∞ at each tile. The most important point,
however, is the interplay of the local resistivity matrix with the
nonlocal potential map. Our analysis of the inhomogeneous

network resistance (Fig. 4) clearly shows that the feedback
mechanism by the effective medium expressed in Eq. (7)
overcompensates the loss of translational invariance when
disorder is turned on and stabilizes linear magnetoresistivity
both locally and globally. In that sense, linear mr is rather
the rule than the exception when an additional nonlocal
mechanism provides locally varying current directions in
strong B fields, for example next to a metallic electrode or
in a disordered medium.

V. CRITICAL REVIEW

In the light of our findings the slope of linear magnetoresis-
tance and linear magnetoresistivity is inversely proportional to
n, but insensitive to μ in the high-field limit μB > 1. This
simple finding has been hidden both in theoretical and in
experimental work by the commonly used plot of ρ(B)/ρ(0)
that explicitly removes the n dependence. Note that within
simple Drude formulas the division by ρ(0) is equivalent
to multiplication with μ · n · e, which brings μ artificially
into play and was subsequently related to the slope of linear
MR [25,26]. When further including mobility fluctuations,
electron-hole mixing had to be assumed (expressed as �μ �
〈μ〉) in order to see an effect on linear MR, which is again
rather charge disorder than mobility disorder.

As a consequence of this treatment, the slope of linear
mr has been assigned to mobility fluctuations, which was
misleading and has strongly influenced the interpretation of
experiments [10,13,18,20,21,32–35]. The generating mech-
anism is much more sensitive to charge carrier density
fluctuations [11], as can be seen in Fig. 4(c).

We know from experiment that additional mechanisms exist
that generate finite CD fields, and, consequently, linear mr. In
the case of bilayer graphene, charge carrier density is fixed
by the epitaxially defined surface [15], and the mosaic tiling
defined by 50 nm distant partial dislocations is so small that
the charge carrier mobility inside a tile is ill defined (tile size
and mean-free path coincide). Nevertheless, we robustly find
a strong linear mr in each and every of about 30 samples
investigated. This suggests that structural disorder prepatterns
the current map and therefore creates finite tan[α∞(r)] CD
fields. The distorted current/potential map, together with the
strong and robust effective medium argument, is sufficient
to generate linear mr. This is presumably why topological
materials tend to display linear mr as well [18,20,36].

The importance of disorder and finite CD fields, in
coincidence with high overall mobilities, provide the link to
granular materials, in which linear mr has first been observed.
Note that magnetoresistance is essentially a 2D phenomenon.
When transferring the model to a 3D material [37,38], the
generating mechanism, however, is expected to remain valid.

VI. SUMMARY

Key to the understanding of linear magnetoresistivity of a
conductor in classically strong magnetic fields is an effective
medium argument, which can be traced back for homogeneous
materials to the simple equivalent circuit in Fig. 1(d): When the
feedback of Hall currents is via the same material, only R ∝ B
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is a self-consistent solution at high magnetic fields. However,
an additional nonlocal mechanism is required, which cants
the current with respect to the applied biasing electric field
by an angle α∞(r) and thus creates a finite current distortion
field. This, in apparent contradiction, can only be provided
in inhomogeneous materials. In order to understand such a
nonlocal canting mechanism, a finite-element analysis is well
suited. One outcome is that charge carrier density fluctuations
are most efficiently creating finite current distortion fields,
whereas mobility fluctuations are only weakly influential.
A special case of charge density contrast occurs when an
extended metallic electrode is added, which is particularly
influential for linear mr. The simulations further prove that the
generating mechanism is so robust that its effect survives even
when homogeneity is lifted.

Linear mr can be best observed when (i) charge density
is low, leading to large local Hall effect; (ii) the overall
mobility is high, such that the linear MR can be observed at

small magnetic fields (μB exceeds unity); and (iii) a nonlocal
mechanism that creates a significant current distortion field
α∞(r). For the simple conductor considered here, the effect is
generic. The effect is, however, obscured or replaced in other
parameter regimes, including the low-temperature Landau
quantization regime, perfect electron-hole balance, or complex
Fermi surfaces.

Altogether, linear mr is rather the rule than the exception
when inhomogeneities distort current pathways in a simple
classical low-density conductor.
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