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Elastic anharmonicity of bcc Fe and Fe-based random alloys from first-principles calculations
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We systematically investigate elastic anharmonic behavior in ferromagnetic body-centered cubic (bcc) Fe and
Fe1−xMx (M = Al, V, Cr, Co, or Ni) random alloys by means of density-functional simulations. To benchmark
computational accuracy, three ab initio codes are used to obtain the complete set of second- and third-order
elastic constants (TOECs) for bcc Fe. The TOECs of Fe1−xMx alloys are studied employing the first-principles
alloy theory formulated within the exact muffin-tin orbital method in combination with the coherent-potential
approximation. It is found that the alloying effects on C111, C112, and C123, which are governed by normal
strains only, are more pronounced than those on C144, C166, and C456, which involve shear strains. Remarkably,
the magnitudes of all TOECs but C123 decrease upon alloying with Al, V, Cr, Co, or Ni. Using the computed
TOECs, we study compositional effects on the pressure derivatives of the effective elastic constants (dBij /dP ),
bulk (dK/dP ), and shear moduli (dG/dP ) and derive longitudinal acoustic nonlinearity parameters (β). Our
predictions show that the pressure derivatives of K and G decrease with x for all solute elements and reveal a
strong correlation between the compositional trends on dK/dP and dG/dP arising from the fact that alloying
predominantly alters dB11/dP . The sensitivity of dB11/dP to composition is attributed to intrinsic alloying effects
as opposed to lattice parameter changes accompanying solute addition. For Fe and the considered Fe-based alloys,
β along high-symmetry directions orders as β[111] > β[100] > β[110], and alloying increases the directional
anisotropy of β but reduces its magnitude.

DOI: 10.1103/PhysRevB.95.024203

I. INTRODUCTION

Crystal anharmonicity determines many physical properties
of solids, for instance, thermal expansion, thermal conductiv-
ity, and specific heat at elevated temperatures. Anharmonicity
of the lattice is also important in the discussion of crys-
talline imperfections, such as dislocations and interfaces,
since displacements are typically large around defects. In
the continuum approach, the third-order elastic constants
(TOECs) are the lowest-order and most important parameters
measuring anharmonicity of materials [1–3] and concerned
with the nonlinear relationship between elastic strain and
stress, whereas the ordinary second-order elastic constants
(SOECs) characterize the linear elastic regime. In addition,
TOECs serve as a basis for investigation of other anharmonic
properties, e.g., the calculation of Grüneisen constants [4],
the determination of cubic anharmonic force constants in
studying phonon linewidths [5], and to distinguish the order
of a martensitic phase transition [6]. They have also been
employed to develop pseudopotentials [7] and empirical
interatomic potentials [8] suitable for applications that involve
relatively large displacements of atoms from equilibrium. Most
recently, TOECs appeared in evaluating size effects on Young’s
modulus of nanowires [9].

Hitherto, the TOECs for a wide variety of bulk materials
(e.g., pure metals, semiconductors, compounds, and alloys)
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have been determined from experiments often through ul-
trasound velocity measurements [1,10–12]. Less frequently,
mechanical tensile testing of pristine crystalline systems, such
as whiskers or nanostructures, permitted the measurement of
nonlinear elastic responses at applied strains [13,14]. On the
theoretical side, several approaches have been adopted to study
the TOECs of single crystals, for instance, early empirical
force-constant models [15,16] and molecular-dynamics simu-
lations using fluctuation formulas [17]. Later, first-principles
quantum-mechanical calculations have been employed to ob-
tain the TOECs of various monoatomic systems and diatomic
compounds [18–20]. Applications of these methods to TOECs
of alloys are, however, rare.

Iron is interesting from a fundamental point of view since its
thermodynamic and mechanical properties are closely related
to its magnetic state [21–23]. Iron is also the main ingredient
in steels, which are beyond doubt an important class of alloys
and indispensable in today’s industrial world. A large number
of works has been dedicated to understand the alloying effect
on the SOECs of pure Fe, and a detailed mapping of them
as a function of composition is available today. Here, we are
concerned with the investigation of TOECs for ferromagnetic
body-centered cubic (bcc) Fe and the role of alloying in
Fe-based alloys. We analyze and discuss other anharmonic
properties that allow lending further fundamental insight into
the interplay of alloying and anharmonicity in this material:
(i) pressure derivatives of effective elastic constants and
polycrystalline moduli, which, for example, play an important
role in lattice dynamical calculations, the equation of state,
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and in studying the reversible deformation induced anisotropy
in materials [24–26] and (ii) nonlinearity parameters char-
acterizing anharmonic behavior of long-wavelength lattice
vibrations. Nonlinearity parameters were linked to material
damage and microstructural changes, such as fatigue [27,28],
and correlated with interatomic bonding and hardness in
metallic alloys [29]. It is expected that the present results
are useful in studying and understanding other nonlinear
phenomena in Fe-based alloys and provide a theoretical
guideline for further optimizing and designing them. Since
the computational determination of TOECs is a rather subtle
problem, the present results can also serve as a test of both
precision and accuracy in the computation of TOECs from
first-principles theory.

The paper is organized as follows. In Sec. II, we briefly
introduce finite-strain continuum elasticity theory, pressure
derivatives of effective elastic constants and polycrystalline
moduli, nonlinearity parameters, and specify details of the total
energy calculations. The results are presented and discussed
in Sec. III: First we assess precision and accuracy of our
calculations by considering pure bcc Fe using three ab initio
codes, and then we study the effects of five alloying elements
on the TOECs of Fe. We continue with a discussion about
the alloying effects on the pressure derivatives of effective
effective elastic constants and polycrystalline moduli and
acoustic nonlinearity parameters, which were determined from
the TOECs. Finally, a conclusion of this paper is presented in
Sec. IV.

II. METHODOLOGY AND COMPUTATIONAL METHOD

A. Continuum elasticity theory and methodological details

Here, we briefly introduce the basics of finite-strain elastic-
ity theory [2,30]. Let us consider ai to be the initial coordinates
of a material point. After applying strain, the same point has
new coordinates xi = xi(aj ). The deformation applied to this
material point can be measured by the deformation gradients,

Jij = ∂xi

∂aj

, i,j = {1 · · · 3}, (1)

from which the symmetric Lagrangian strains are defined as

ηij = 1

2

∑
k

(JkiJkj − δij ). (2)

In the theory of nonlinear elasticity, deformations are consid-
ered small, so it is convenient to expand the free-energy E

per unit mass at 0 K as a Taylor series in terms of the strains
around the equilibrium state, viz.,

ρ0E(ηij ) = ρ0E(0) + 1

2

∑
ijkl

Cijklηij ηkl

+ 1

6

∑
ijklmn

Cijklmnηij ηklηmn + · · · . (3)

Here, ρ0 is the initial mass density of the material, and E(0)
is the initial-state energy. Cijkl and Cijklmn are the second- and

TABLE I. The relations between the coefficients λ2 and λ3 in
Eq. (7) and the second- and third-order elastic constants for the
Lagrangian strain tensors η specified in Eq. (6).

η λ2 λ3

ηA C11 C111

ηB 2C11 + 2C12 2C111 + 6C112

ηC 3C11 + 6C12 3C111 + 18C112 + 6C123

ηD C11 + 4C44 C111 + 12C166

ηE 12C44 48C456

ηF 2C11 + 2C12 + 4C44 3(2C111/3 + 2C112 + 4C144 + 4C166)

third-order isothermal elastic constants, respectively, evaluated
at the initial state,

Cijkl = ρ0
∂2E

∂ηij ∂ηkl

∣∣∣∣
0

, (4)

Cijklmn = ρ0
∂3E

∂ηij ∂ηkl∂ηmn

∣∣∣∣
0

. (5)

For a cubic crystal structure, there are three independent
SOECs, C11, C12, and C44, and six independent TOECs,
C111, C112, C123, C144, C166, and C456 (here the Voigt notation
is used; Cαβ,Cαβγ , where α,β,γ = {1 · · · 6} [2]). These can be
obtained by applying appropriate homogeneous Lagrangian
strains [18]. In this paper, six Lagrangian strain tensors η were
employed where the nonzero components of each strain tensor
are expressed in terms of a single parameter ξ ,

ηA =
⎛
⎝ξ 0 0

0 0 0
0 0 0

⎞
⎠, ηB =

⎛
⎝ξ 0 0

0 ξ 0
0 0 0

⎞
⎠,

ηC =
⎛
⎝ξ 0 0

0 ξ 0
0 0 ξ

⎞
⎠, ηD =

⎛
⎝ξ ξ 0

ξ 0 0
0 0 0

⎞
⎠, (6)

ηE =
⎛
⎝0 ξ ξ

ξ 0 ξ

ξ ξ 0

⎞
⎠, ηF =

⎛
⎝ξ 0 0

0 ξ ξ

0 ξ 0

⎞
⎠.

The elastic energy change Eq. (3) can then be written as an
expansion in the strain parameter ξ , viz.,

ρ0[E(ξ ) − E(0)] = 1
2λ2ξ

2 + 1
6λ3ξ

3 + O(ξ 4). (7)

The coefficient λ2 is a combination of SOECs, and λ3

is a combination of TOECs. The relation between these
coefficients and the SOECs and TOECs for the specific strain
matrices displayed above are listed in Table I. In practice, the
coefficients λ2 and λ3 may be obtained by fitting Eq. (7) to
calculated energy-strain data for each η, and consequently the
full set of SOECs and TOECs can be derived. We found that
the obtained λ2 for the SOECs were not sensitive to the
strain range of fitting. However, the coefficient λ3 was more
sensitive to the maximum ξ . Our results showed that the
TOECs converged for the maximum strain parameter |ξ | larger
than a certain value and were stable over a certain range, e.g.,
the variations of the TOECs C111 and C456 were <2% when

024203-2



ELASTIC ANHARMONICITY OF bcc Fe AND Fe-BASED . . . PHYSICAL REVIEW B 95, 024203 (2017)

|ξ | was changed from 0.08 to 0.10. Therefore, in this paper, ξ

was varied between −0.09 and 0.09 with step 0.01.
Applied homogeneous strains distort the crystal lattice. In

order to construct the deformed crystal structure spanned by
a basis lattice vector r ′ from the unstrained configuration, the
deformation gradients Jij are applied to an unstrained basis
lattice vector r as in Ref. [18], viz.,

r ′
i =

∑
j

Jij rj . (8)

We may obtain the deformation gradients Jij from the
Lagrangian strains ηij by inverting Eq. (2).

B. Pressure derivatives of effective elastic constants
and polycrystalline moduli

The relation between the variation of stress and the variation
of strain of a loaded crystal has been the focus of several
theoretical works [2,30–35]. Accordingly, the effective elastic
constants Bijkl (sometimes referred to as Birch coefficients
or stress-strain coefficients in the literature) are particularly
useful for the analysis of crystals under isotropic pressure.
For the sake of a self-contained work, their relation to the
second-order coefficients Cijkl under arbitrary pressure P is
given in Appendix A.

Following Birch [31] and Wallace [2,30], the Bαβ (Voigt
notation) may be expanded in a Taylor series around the
equilibrium state, and for linear order in P we have

Bαβ(P ) = Bαβ

∣∣∣∣
0

+ dBαβ

dP

∣∣∣∣
0

P + O(P 2). (9)

The dBαβ

dP
are the first-order pressure derivatives evalu-

ated at zero pressure expressed in terms of SOECs and
TOECs, which for cubic symmetry read (Appendix B)

dB11

dP
= −2(C11 + C12) + C111 + 2C112

C11 + 2C12
, (10a)

dB12

dP
= −−C11 − C12 + 2C112 + 2C123

C11 + 2C12
, (10b)

dB44

dP
= −C11 + 2C12 + C44 + C144 + 2C166

C11 + 2C12
, (10c)

dB ′

dP
= 1

2

(
dB11

dP
− dB12

dP

)
. (10d)

We defined B ′ = (B11 − B12)/2. It should be noted that
Bαβ = Cαβ at zero pressure (Appendix A).

With the help of Eqs. (10a)–(10d), we may obtain the
pressure derivatives of the polycrystalline shear dG

dP
and bulk

dK
dP

moduli at arbitrary pressure P [33]. Here, the values of dG
dP

were computed using the Hill average method for G [36] in
order to facilitate comparison with measured polycrystalline
data. We obtain

dK

dP
= 1

3

(
dB11

dP
+ 2

dB12

dP

)
, (11a)

dG

dP
= 1

2

(
dGR

dP
+ dGV

dP

)
, (11b)

dGV

dP
= 1

5

(
dB11

dP
− dB12

dP
+ 3

dB44

dP

)
, (11c)

dGR

dP
= 5

(
dB ′
dP

B44 + dB44
dP

B ′) − (
2 dB44

dP
+ 3 dB ′

dP

)
GR

2B44 + 3B ′ ,

(11d)

where

GR = 5B ′B44

2B44 + 3B ′ . (12)

C. Nonlinearity parameters

The deviation of a solid from linear stress-strain behavior
has been quantified using nonlinearity parameters by many
researchers [37–39]. In this paper, a proposed generalized
definition of the acoustic nonlinearity parameters β for single
crystals is employed [37]

β = −

∑
ijklmn

(Cjlmnδik + Cijnlδkm + Cjknlδim + Cijklmn)n̂j n̂l n̂nûi ûkûm

∑
ijkl

Cijkl n̂j n̂l ûi ûk

, (13)

where n̂ and û are the wave propagation and polarization directions (normalized to unity), respectively. The longitudinal acoustic
nonlinearity parameters for a cubic crystal in the high-symmetry [100], [110], and [111] directions are the most important ones,
viz.,

β[100] = −
(

3 + C111

C11

)
, (14a)

β[110] = −
(

3 + C111 + 3C112 + 12C166

2(C11 + C12 + 2C44)

)
, (14b)

β[111] = −
(

3 + C111 + 6C112 + 12C144 + 24C166 + 2C123 + 16C456

3(C11 + 2C12 + 4C44)

)
. (14c)
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D. Total energy calculation

In this paper, the employed ab initio approach is based
on density-functional theory [40]. The generalized-gradient
approximation of the Perdew-Burke-Ernzerhof [41] functional
was adopted to describe exchange and correlation, which is
well known to give the correct ferromagnetic bcc ground state
for Fe. For the main part of the paper, the Kohn-Sham equations
were solved using the exact muffin-tin orbital (EMTO) method
[42,43]. The scalar relativistic approximation and the soft core
scheme were used. Brillouin-zone integrations were performed
on a 33 × 33 × 33 uniform k mesh. The problem of chemical
disorder in Fe1−xMx alloys was treated within the coherent-
potential approximation (CPA), and the total energy was
computed via the full charge-density technique [44–46]. Since
the CPA is a single-site approximation, local lattice relaxation
(LLR) was not accounted for in the present paper. Recent
investigations for random Ti-Al and Cu-Au alloys showed that
LLR has a minor effect on SOECs for low solute concentration
(�15 at. %) [47]. This result is in agreement with the work of
Zhang et al. for the presently considered Fe1−xMx binaries
[48], who reported that the LLR effect on the lattice parameter
and bulk modulus for Fe-rich binaries (x = 0.0625) is small.
Thus, we expect that LLR has a negligible effect on the SOECs
and TOECs for the present considered Fe1−xMx alloys where
the maximum solute concentration is 0.1. The accuracy of the
EMTO method for the equation of state and SOECs of metals
and alloys (including Fe-based alloys) was demonstrated in
a number of previous works [48–50] and is assessed for the
TOECs of Fe in Sec. III A.

Additional calculations for pure Fe were performed with
the full-potential local-orbital (FPLO) scheme FPLO-14 [51],
and the projector-augmented wave (PAW) method as imple-
mented in the Vienna ab initio simulation package (VASP)
release 5.3.3 [52]. The FPLO calculations were performed
in the scalar-relativistic approximation. Convergence of the
numerical parameters, in particular integration meshes and the
basis, was carefully checked. Linear-tetrahedron integrations
with Blöchl corrections were performed on a 48 × 48 × 48
mesh in the full Brillouin zone and the valence basis contained
3d, 4spd, and 5s states. All VASP calculations were performed
with the default spd-valence state PAW potential and the
global “accurate” precision switch. Total energies were found
converged for a plane-wave cutoff of 500 eV. Brillouin-zone
integrations were performed on a 33 × 33 × 33 Monkhorst-
Pack mesh, smeared by a first-order Methfessel-Paxton scheme
with a smearing parameter of 0.1 eV. The grid for augmen-
tation charges contained eight times more points than the
default.

We should emphasize that the FPLO and VASP calcula-
tions involve full Kohn-Sham potentials, whereas the EMTO
method is based on the optimized overlapping muffin-tin
(OOMT) approximation. Furthermore, the FPLO method uses
local orbitals as basis functions in contrast to the plane
waves used in the PAW and the partial waves in the EMTO.
Hence, comparing the three sets of ab initio results for pure
Fe helps to assess the accuracy of the OOMT approxima-
tion as well as the basis set dependence of the predicted
properties.

FIG. 1. The three independent SOECs of bcc ferromagnetic
Fe computed from non-volume-conserving Lagrangian strains. The
present results (EMTO, FPLO, and VASP) are compared with available
experimental data from Ref. [56].

III. RESULTS AND DISCUSSIONS

A. Second- and third-order elastic constants of bcc iron

Our methodological approach permits the simultaneous
determination of the second- and third-order elastic constants
in the framework of finite-strain elasticity theory. On the other
hand, SOECs may be extracted from energy-strain or stress-
strain relationships using the infinitesimal-strain formalism for
which we use the notation cijkl for clarity, where

cijkl = ρ0
∂2E

∂eij ∂ekl

∣∣∣∣
0

, (15)

and eij is the Eulerian strain tensor. In the following we use
Voigt notation (cαβ). Before turning to the TOECs, we briefly
discuss and compare the results of both approaches to the
SOECs for bcc Fe.

We show the SOECs of bcc Fe obtained from the strains
ηA, ηB , and ηE using the EMTO, FPLO, and VASP methods
and available experimental data in Fig. 1. It can clearly be
seen that the three ab initio codes systematically overestimate
C11 but yield C12 and C44 in reasonable agreement with
the low-temperature experimental values [53]. These theo-
retical data are compared (Table II) to the results employing
infinitesimal-strain elasticity theory and volume-conserving
strains in the determination of c44 and c′ = (c11 − c12)/2
as detailed in Ref. [54] in addition to deriving the linear
combination c11 + 2c12 = 3K from the equation of state (K
denotes the bulk modulus). We find that the largest systematic
deviation occurs between C44 and c44, and C12 (c12) from the

TABLE II. The three independent SOECs (in units of gigapascals)
of bcc Fe obtained from the infinitesimal-strain formalism (cαβ ) and
the non-volume-conserving Lagrangian strains (Cαβ ).

Method c11 C11 c12 C12 c44 C44

EMTO 287 292 132 123 106 110
FPLO 297 300 150 150 117 123
VASP 278 276 149 149 100 105
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FIG. 2. The six independent TOECs of bcc ferromagnetic Fe. The
present results (EMTO, FPLO, and VASP) are compared with available
experimental data from Ref. [56].

EMTO is somewhat sensitive to the approach. Nevertheless,
the results derived from the infinitesimal-strain and the
non-volume-conserving Lagrangian strain formalisms are
overall in close agreement with each other.

The scatter of the theoretical data apparent from Fig. 1
may be taken as a measure of the typical precision presently
achievable in calculations of the SOECs of Fe across different
all-electron schemes. A plausible explanation for part of the
systematic deviation of C11 from the experimental value is
the underestimation of the equilibrium volume (a detailed
comparison of equilibrium lattice parameters of Fe can be
found in Ref. [55]). We may use the relation dC11/dV =
dC11/dP × dP/dV to see that the deviation of C11 by
underestimating the volume is proportional to the pressure
derivative of C11 (P denotes the pressure). dC11/dP turns out
to be the largest among the pressure derivatives of SOECs of
Fe (see Sec. III C and Appendix A), suggesting why C11 has
the largest error.

Figure 2 displays the six independent TOECs of bcc Fe
from our calculations and available experimental data [56].
As is evident, all six TOECs obtained from the three ab initio
codes are negative, and C111 is significantly larger in magnitude
compared to the other five TOECs. This is in good agreement
with the experimental data [56]. The values obtained from
the different numerical methods show common features, such
as all of them systematically overestimate |C111|, |C112|, and
|C456|, underestimate |C123| but give good C144 and C166,
compared with the experimental data at 77 K.

In order to further evaluate the performance of the three
ab initio codes for the TOECs, we studied the mean absolute
relative deviations (MARDs) of the calculated values from
the measured data at 77 K. The obtained MARDs are
approximately 24%, 27%, and 22% for the EMTO, FPLO,
and VASP, respectively, which correspond to 2–5% scatter
among the numerical methods. When comparing ab initio
results to experimental data, it should be mentioned that the
above ab initio calculations were performed for a perfect
crystalline structure at 0 K, whereas the measurements were
carried out at finite temperatures on samples that often contain
defects. Furthermore, due to difficulties in the experimental
procedure, reported TOECs typically exhibit relative uncer-

tainties exceeding those of SOECs [10]. On the theoretical
side, despite careful convergence of numerical parameters,
the exchange-correlation approximation may always be one
possible source for the discrepancy. Thus, keeping the above
in mind together with our assessments, we conclude that the
EMTO, FPLO, and VASP describe the TOECs of bcc FM Fe
well, which provides the support for the approach used in this
paper, and continue with Fe-based alloys.

B. Second- and third-order elastic constants of bcc
Fe-based alloys

Using the EMTO method, we investigated the TOECs of
Fe1−xMx random solid solutions, where M = Al, V, Cr, Co,
or Ni. The selected solute atoms commonly are used alloying
elements in commercial Fe-based steels. The concentration
of the solutes x was varied from 0 to 10 at. %. Because the
evaluation of pressure derivatives and nonlinearity parameters
(Secs. III C and III D) also requires the knowledge of the
SOECs of the alloys, we present them here for the sake of
completeness. Here, all SOECs were obtained in the frame-
work of finite-strain elasticity theory using ηA, ηB , and ηE .

Figure 3 shows the calculated SOECs and TOECs of Fe
as a function of alloying concentration. We find that the
predicted alloying trend of the SOECs overall agree well with
results of a previous study [48] using the infinitesimal-strain
formalism. We refer the reader to Refs. [48,57] for a more
detailed discussion of the alloying effects on the SOECs.

For all binaries considered here, the obtained TOECs are
negative. As can be seen, C111, C112, and C123 are particularly
sensitive to the solute concentration. These three elastic con-
stants are governed by normal strains only. The magnitudes of
C111 and C112 decrease with increasing alloying concentration
in contrast to C123, whose magnitude increases. On the other
hand, the three elastic constants also involving shear strains,
C144, C166, and C456, are relatively insensitive to alloy con-
centration and just slightly decrease with increasing alloying
content. Co shows the weakest compositional effect on several
TOECs, but Ni turns out to have the strongest effect on several
TOECs, such as for C111, which reduces by ∼11% and ∼35%
when 10% Co and 10% Ni, respectively, are added to Fe.

C. Pressure derivatives of effective elastic constants
and polycrystalline moduli of bcc Fe and Fe-based alloys

The pressure derivatives of the coefficients Bαβ and poly-
crystalline moduli for pure Fe obtained in this paper using
the three ab initio codes, those derived here from available
experimental SOECs and TOECs at 77 and 273 K and using
the Hill average for G, as well as the reported measurements
are given in Table III. We find that the values computed with
the three ab initio codes are in close agreement with each other.
On one hand, all methods consistently overestimate dB11

dP
and,

as a result, yield too large dB ′
dP

compared to the experimental
data. We attribute these differences to the overestimation of
|C111| by all three ab initio codes (see Fig. 2). To underline
this point, if the computed C111 equaled the experimental value
at 77 K from Ref. [56] (and the other calculated TOECs
unchanged), the pressure derivatives of B11 and B ′ by the
EMTO would decrease to 6.4 and 1.0, respectively, bringing
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(a) SOECs (b) TOECs

FIG. 3. The three independent SOECs and six independent TOECs of Fe1−xMx alloys as a function of solute concentration x. All elastic
constants are in units of 103 GPa.

them very close to the experimental data. On the other hand,
the results for the pressure derivative of B12 and B44 agree well
with those derived from the experimental SOECs and TOECs
[53,56] and measurements [58,59]. The pressure derivatives
of the bulk and shear moduli obtained from the three ab initio
codes are close to each other and in good agreement with the
measured data [58–60] but larger than those determined from
the experimental SOECs and TOECs [53,56].

An alternative theoretical approach that does not involve
TOECs may be employed to determine the pressure derivatives
of Bαβ . Accordingly, one fits the linear function Eq. (9) to
computed Bαβ as a function of P (cf. Appendix A). Without
loss of generality, we used the EMTO to estimate dBαβ

dP
in this

way and list the results in parentheses in Table III. The two sets
of theoretical data are in good agreement, i.e., dB11

dP
is slightly

smaller, and both dB12
dP

and dB44
dP

are slightly larger than the
values involving TOECs [Eqs. (10a)–(10d)]. The resulting two
sets for dK

dP
and dG

dP
are in close agreement as well. We do not

find a general improvement with respect to the experimental
values. This finding supports the robustness of our predictions
and points towards the above discussed overestimation of
C111 as one of the main reasons behind the differences seen
in Table III between the theoretical and the experimental
values.

The detailed analysis of the compositional effects on the
pressure derivatives of bulk and shear moduli for bcc Fe is
given in Fig. 4. We find that dK

dP
of Fe decreases with any

considered alloying addition. Ni shows the strongest alloying
effect, whereas Co overall has the weakest one. For example,
adding 10 at. % Ni into Fe reduced dK

dP
of Fe by nearly 20%.

Surprisingly, the alloying trend on dG
dP

is very similar to that of
dK
dP

as shown in Fig. 4. Accordingly, the anharmonic response
of both the bulk modulus and the shear modulus due to external
hydrostatic pressure reduces as a result of adding Al, V, Cr,
Co, or Ni to bcc Fe. The correlation between dK

dP
and dG

dP
for the

considered Fe1−xMx alloys approximately obeys the following

TABLE III. The pressure derivative of the effective elastic constants Bαβ and polycrystalline moduli from our calculations, derived from
available experimental SOECs and TOECs [53,56] at 77 and 273 K as well as from measurements [58–60] at 300 K for pure Fe. The values in
parentheses were obtained from SOECs evaluated under pressure; see the text for details.

Method dB11
dP

dB12
dP

dB44
dP

dB ′
dP

dK

dP

dG

dP

EMTO 8.6 (8.4) 4.4 (5.2) 2.7 (3.2) 2.1 (1.6) 5.8 (6.3) 2.4 (2.5)
FPLO 7.7 4.4 2.3 1.7 5.5 2.0
VASP 8.0 4.5 2.3 1.8 5.6 2.0
Expt. 77 K (Refs. [53,56]) 6.2 4.3 2.5 1.0 4.9 1.7
Expt. 273 K (Refs. [53,56]) 6.4 4.4 2.5 1.0 5.0 1.8
Expt. 300 K (Ref. [58]) 6.8 4.6 2.6 1.1 5.3 1.8a

Expt. 300 K (Ref. [59]) 6.4 5.2 2.7 1.2 6.0 1.9a

Expt. 300 K (Ref. [60]) 5.1 2.2b

aMeasurement on a single crystal. Polycrystalline data from the Hill average.
bMeasurement on a polycrystal.
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FIG. 4. (a) Correlation between the pressure derivatives of the
bulk modulus and the shear modulus for Fe1−xMx alloys (x denotes
the concentration of solute M, x � 0.1). The dashed line is a linear fit
to the data (for details see the text). The insets display the correlation
between the pressure derivatives of B11 and the shear and bulk moduli.
(b) The total effect on dB11/dP evaluated by means of a finite
concentration change �x = 0.05 with pure Fe as a reference and
the decomposition into the lattice parameter effect and the intrinsic
alloying effect according to Eq. (17).

linear relationship:

dK

dP
= 0.98

dG

dP
+ 3.4, (16)

which also is indicated in Fig. 4.
To seek the primary reason behind the linear relationship

Eq. (16), we consult the compositional effect on the individual
pressure derivatives. We find that the alloying effects on dB12

dP

and dB44
dP

are significantly weaker on average than the one on
dB11
dP

. We may hence consider the former two to be constant
(equal to the values of pure iron) in the following brief analysis.
The compositional effect on dK

dP
then is determined mainly by

the alloying effect on dB11
dP

and approximately follows a simple
linear relationship; see the lower inset of Fig. 4(a). By the
same reasoning, the compositional effect on dGV

dP
is mainly

controlled by that on dB11
dP

also approximately obeying a linear
relationship [Eq. (11c)]. Since dGR

dP
typically scales with dGV

dP

(the former is a lower bound, and the latter is an upper bound),
a linear correlation between the compositional effect on their

arithmetic average dG
dP

[Eq. (11b)] and the one on dB11
dP

can be
expected. That this is indeed the case is demonstrated in the
upper inset of Fig. 4(a) based on the actual computed values for
dG
dP

and dB11
dP

. We conclude from this analysis that the dominant
alloying effect on dB11

dP
is the primary reason behind the linear

correlation Eq. (16).
In an attempt to understand the alloying effect on the

pressure derivative of B11, we separate the changes caused
by the intrinsic alloying effect (electronic structure) at iso-
volumetric conditions from that due to the lattice parameter
change accompanying solute addition. Thus, we assume that
dB11
dP

is a function of the alloying concentration x and the lattice
parameter a, i.e., dB11

dP
(x,a(x)). The total change in dB11

dP
with

x may be written as

d(dB11/dP )

dx
=

(
∂(dB11/dP )

∂x

)
a

+
(

∂(dB11/dP )

∂a

)
x

da

dx
. (17)

Pure Fe was selected as the reference state. The first term on
the right-hand side of Eq. (17) is the intrinsic alloying effect
with respect to a change in alloy concentration at a constant
lattice parameter (equilibrium lattice parameter of bcc Fe).
Since for alloys the equilibrium lattice parameter depends on
the concentration, dB11/dP is evaluated at that particular
pressure that brings the volume of the Fe1−xMx alloy in
coincidence with the equilibrium volume of pure Fe. The
second term on the right-hand side of Eq. (17) measures the
lattice parameter effect at constant concentration (pure Fe;
x = 0) multiplied by the change in the equilibrium lattice
parameter accompanying alloying ( da

dx
). This term reflects the

change in dB11/dP of pure Fe evaluated at that particular
pressure that brings the volume of bcc Fe in coincidence with
the equilibrium volume of Fe1−xMx .

In practice, the total effect was evaluated by means of a
finite concentration change �x = 0.05 from the data shown
in the inset of Fig. 4(a) with pure Fe as the reference state. The
lattice parameter effect was estimated from an analytical model
for B11(P ) as detailed in Appendix B. The intrinsic alloying
effect was defined as to balance Eq. (17). It should be noted
that previous numerical simulations predict that all presently
considered solutes (and x = 0.05) increase the equilibrium
lattice parameter of bcc Fe [55], and we refer the reader to that
paper for a more detailed presentation and discussion.

TABLE IV. The longitudinal acoustic nonlinearity parameters
of bcc Fe in the [100], [110], and [111] directions. The values
determined from experimental SOECs [53] and TOECs [56] are listed
for comparison.

Method β[100] β[110] β[111]

EMTO 11.1 6.9 13.0
FPLO 9.4 7.0 11.6
VASP 10.7 7.1 11.5
Expt. 77 K (Refs. [53,56]) 8.8 5.7 10.2
Expt. 273 K (Refs. [53,56]) 8.7 6.1 11.4
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TABLE V. The longitudinal acoustic nonlinearity parameters of
Fe1−xMx alloys as a function of concentration.

M x β[100] β[110] β[111]

Al 0.05 11.0 6.4 12.3
0.1 9.1 5.4 11.4

V 0.05 10.2 6.0 11.9
0.1 8.9 5.4 10.8

Cr 0.05 9.7 5.9 11.8
0.1 9.0 5.4 11.0

Co 0.05 10.9 6.5 12.7
0.1 10.2 5.8 11.9

Ni 0.05 9.7 5.9 12.7
0.1 7.5 4.8 11.4

Range of β: 7.5–11.0 4.8–6.5 10.8–12.7

With the results given in Fig. 4(b), we are able to estimate
the intrinsic alloying effect and the lattice parameter effect on
dB11
dP

for adding 5 at. % solute to pure Fe. One can see that
the lattice parameter effects are all positive and the intrinsic
alloying effects turn out to be all negative. In other words,
the intrinsic alloying effect is the main driving force for the
observed changes in the pressure derivative of B11, whereas
the lattice parameter effect gives a smaller correction. The
trend of the lattice parameter effect can be understood since
all considered solutes expand the lattice parameter of Fe
(Ref. [55]), and the second derivative of B11 with respect
to P of Fe is a monotonically decreasing function in P

(Appendix B). In other words, the larger the compositional
effect on the equilibrium lattice parameter, the larger the
change in dB11/dP . The total effect in Fig. 4(b) is set by
the concentration dependencies of the SOECs and TOECs
(Sec. III B). For dB11/dP, C111 plays the most important role
as it is the elastic constant that experiences the largest changes
with composition, e.g., alloying with Co (Ni) leads to the

weakest (strongest) compositional effect on C111 in accordance
with the trend seen in Fig. 4(b).

D. Nonlinearity parameters of bcc Fe and Fe-based alloys

Results for the acoustic nonlinearity parameters of bcc
Fe obtained from the presently computed elastic constants
are presented in Table IV together with data determined
from experimental SOECs and TOECs. We can see that the
calculated nonlinearity parameters along the three special
directions are larger than those obtained from the exper-
imental elastic constants, however, they are still in good
agreement. Furthermore, we observe that the nonlinearity
parameters order as β[111] > β[100] > β[110], i.e., longi-
tudinal elastic anharmonicity is the largest along the [111]
direction.

The concentration dependence of the nonlinearity parame-
ters for the present binary alloys is shown in Table V. It is found
that the nonlinearity parameters of Fe for the three considered
directions decrease with x for each solute. The nonlinearity
parameters in the [100] and [110] directions show pronounced
compositional effects with maximum changes of 32.4% and
30.0% for x = 0.1, respectively, whereas alloying has a weaker
effect on the nonlinearity parameter of Fe in the [111] direction
(a variation of 16.9%). The obtained results indicate that
anharmonic corrections to long-wavelength acoustic lattice
modes diminish in all three high-symmetry directions with
introducing any of the considered alloying elements to Fe.
In other words, the response to interatomic displacements
becomes more symmetric with respect to positive or negative
elongations. This effect is most noticeable in the [100] and
[110] directions. Interestingly, solute addition does not influ-
ence the directional ordering of the nonlinearity parameters,
i.e., β[111] > β[100] > β[110] holds for all considered Fe-
based alloys.

FIG. 5. The longitudinal acoustic nonlinearity parameter β as a function of wave propagation direction for (a) bcc Fe and for (b) a Fe0.9Ni0.1

alloy. The Cartesian axes specify the projection of β onto the [100], [010], and [001] crystallographic axes.
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To illustrate the full directional dependence of the longitu-
dinal acoustic nonlinearity parameter, we show β as a function
of wave propagation direction for pure Fe and for Fe0.9Ni0.1

(as an example for the alloys) in Fig. 5. Although β decreases
with alloying Ni, the anisotropy of β (ratio of largest values to
smallest value β[111]/β[110]) increases in fact. This is true
for any of the considered solutes.

IV. CONCLUSIONS

We presented a detailed first-principles investigation of
elastic anharmonicity in bcc Fe and Fe-based random alloys.
Three ab initio codes (the EMTO, FPLO, and VASP) were
employed to systematically benchmark the TOECs Cαβγ

of Fe. In possession of the Cαβγ , we also assessed the
pressure derivatives of Birch’s effective SOECs dBαβ/dP

and the longitudinal acoustic nonlinearity parameters β.
Although the computational determination of TOECs is
subtle, it is encouraging that the three ab initio codes yield
comparable results. The obtained values for Fe are in good
agreement with available experimental data; solely C111 is
noticeably underestimated by the three ab initio codes, and
this error propagates to the pressure derivatives of B11

and B ′.
Using the EMTO method in combination with the coherent-

potential approximation, we investigated the TOECs of bcc
Fe1−xMx (M = Al, V, Cr, Co, or Ni) random alloys for
x � 0.1. The alloying effects on C111, C112, and C123 turned
out to be stronger than those on C144, C166, and C456. Remark-
ably, the magnitudes of all TOECs but C123 decrease upon
alloying with Al, V, Cr, Co, or Ni indicating a predominantly
diminished anharmonic contribution to the elastic stress-strain
relationship for the binaries. With the help of additionally
obtained SOECs, we showed that the pressure derivatives
of the polycrystalline bulk and shear moduli (K and G,
respectively) decrease with x for all solute elements and
established a linear correlation between the compositional
effects on dK/dP and dG/dP . The dominant effect behind
this linear correlation is the strong variation of dB11/dP with
x as opposed to dB12/dP and dB44/dP . To shed light on
the alloying effect on dB11/dP , we disentangled the intrinsic
(electronic) alloying effect at isovolumetric conditions from
that due to the lattice parameter change accompanying solute
addition. The former turned out to prevail in all cases.
The computed nonlinearity parameters for long-wavelength
longitudinal acoustic modes in high-symmetry directions were
found to order as β[111] > β[100] > β[110] in bcc Fe and
Fe1−xMx indicating the largest degree of anharmonicity in the
[111] direction. Alloying with any of the considered solutes
generally increases the directional anisotropy of β but reduces
its magnitude. The latter suggests overall diminished longitu-
dinal acoustic phonon anharmonicities in the long-wavelength
limit.

Our results may serve as a guide and useful reference for
scientists who would further study and understand the an-
harmonic properties of Fe-based alloys. For instance, recently
proposed nondestructive testing techniques based on nonlinear
ultrasound have been used to characterize microstructural
changes in metallic materials, such as fatigue or radiation
damage [61–63]. These exploit the link between the amplitude

of second harmonics generated by the propagation of incident
longitudinal waves and the material’s SOECs and TOECs as
well as dislocation density.
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APPENDIX A: RELATIONSHIP BETWEEN
SECOND-ORDER COEFFICIENTS UNDER PRESSURE

The relations between the effective SOECs (Bijkl) and
the second derivatives of the free energy taken with respect
to Lagrangian strain parameters (Cijkl) or infinitesimal-strain
variables (cijkl) under arbitrary isotropic pressure P are given
by the following equations [2,30–32]:

Bijkl = Cijkl + P (δij δkl − δilδjk − δikδjl), (A1a)

Bijkl = cijkl + 1
2P (2δij δkl − δilδjk − δikδjl). (A1b)

For a crystal with cubic symmetry (Laue group I), the
relations for the three independent second-order coefficients
are as follows for arbitrary P :

B1111 = C1111 − P = c1111, (A2a)

B1122 = C1122 + P = c1122 + P, (A2b)

B2323 = C2323 − P = c2323 + 1
2P. (A2c)

The relations between the pressure derivatives of the
second-order coefficients at given pressure may be obtained
by applying d

dP
to Eqs. (A1) or, for cubic crystals, directly to

Eqs. (A2).
It should be noted that the Bijkl’s have complete Voigt

symmetry (Bαβ ; α,β = {1 · · · 6}) only in the case of isotropic
pressure [2,30].

APPENDIX B: EXPANSION OF EFFECTIVE ELASTIC
CONSTANTS AROUND A ZERO PRESSURE

CONFIGURATION

If a cubic material stays cubic under arbitrary pressure P ,
the effective elastic constants Bαβ evaluated at this pressure
may be expanded into a power series in terms of SOECs and
TOECs evaluated at the zero pressure configuration and an
expansion parameter ζ that measures the deformation from
the zero pressure configuration to the loaded state, i.e., to first
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order in ζ [2,30],

B11(P ) = C11 + ζ [2(C11 + C12) + C111 + 2C112], (B1a)

B12(P ) = C12 + ζ [−(C11 + C12) + C123 + 2C112], (B1b)

B44(P ) = C44 + ζ [C44 + C11 + 2C12 + C144 + 2C166].

(B1c)

The relation between the expansion parameter and the
pressure reads, for second order in P ,

ζ = − 1

m
P − n

m3
P 2, (B2)

where

m = C11 + 2C12, (B3)

n = −(C11 + 2C12) + 1
2 (C111 + 2C123 + 6C112). (B4)

Equation (B2) allows eliminating ζ in favor of P . The pressure
derivatives of Bαβ at P = 0 are readily obtained from Eqs. (B1)
and (B2) and transformed into the pressure derivatives of the
SOECs with the help of Eqs. (A2).
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