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Absence of nematic ordering transition in a diamond lattice: Application to FeSc2S4
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Recent neutron scattering observations by [Plumb et al., Phys. Rev. X 6, 041055 (2016)] reveal that the
ground state of FeSc2S4 is magnetic with two distinct Fe environments, instead of a quantum spin liquid as had
been previously thought. Starting with the relevant O(N )-symmetric vector model of FeSc2S4, we study how the
discrete (Z2) and continuous rotational symmetries are successively broken, yielding nematic and ordered phases.
At high temperatures, we find that the nematic order parameter falls as T −γ (γ > 0), and therefore, FeSc2S4 lacks
any distinct nematic ordering temperature. This feature indicates that the three-dimensional diamond lattice of
FeSc2S4 is highly susceptible to the breaking of Ising symmetries, and explains the two distinct Fe environments
that are present even at high temperatures, as seen by Mössbauer and far-infrared optical spectroscopy.

DOI: 10.1103/PhysRevB.95.020403

Introduction. Frustrated magnetic systems, resisting order-
ing to the lowest temperatures, can arise from an intricate
interplay between lattice geometry and the sign of the
magnetic exchange interactions. While no single parameter
can characterize the failure of a magnetic system to order,
a commonly used measure of frustration is a large value of
the ratio f = |�CW|/Tc, where �CW (proportional to the
exchange interaction) is the Curie-Weiss temperature, and
Tc is the transition temperature; the system is considered
frustrated in the regime Tc < T < �CW. In the class of
materials AB2X4 [1–8], which are known as spinels, the
exchange interactions are frustrated because the A-site atoms
form a diamond lattice and are surrounded tetrahedrally by the
X-site atoms. Consequently, numerous papers have proposed
that the ground state of these materials is of the spin liquid
type [5,9–12]. In particular, because the frustration parameter
in FeSc2S4 is enormous (f ≈ 1000), this material has risen to
the fore [4,13–15] as a leading candidate for a spinel exhibiting
quantum spin liquid behavior.

However, the recent neutron scattering measurements by
Plumb et al. [16] are surprising, because they found that
powdered samples of FeSc2S4 exhibit a magnetic ordering
transition at 11.8 K. With |�CW| ≈ 45 K [4], this observation
drastically reduces the frustration parameter in this material
from 1000 to about f ∼ 4. Their observations also uncovered
a small and “incipient” cubic to tetragonal structural transition
(c/a = 0.998) that closely accompanies the formation of
orbital order; both of these phases precede the magnetic
transition and continue to prevail even at high temperatures.
The structural transition distorts the sulfur atoms coordinating
the Fe ions, and in the process leaves the two Fe sublattices
surrounded by inequivalent atomic potentials. In this new
lattice environment with a lower symmetry, the hole in the
A sublattice occupies the dz2 orbitals, while that in the B

sublattice occupies the dx2−y2 orbitals.
In fact, the presence of two distinct Fe environments

was even in the original Mössbauer data [17,18] as noticed
recently by Broholm and collaborators [16]. Additionally,
far-infrared optical absorption measurements [19,20] detected
two distinct bands near 467 cm−1 up to 300 K, indicating a
high-temperature symmetry broken phase. Thus, in contrast
with previous reports [4,13–15], the authors [16] concluded
that there is a strong indication of a phase with broken Z2

sublattice symmetry, followed by the conventional regime in
which continuous spin rotational symmetry is broken.

It is this experimental puzzle that we address in this Rapid
Communication. Prior theoretical works on FeSc2S4 have
focused sharply [21–24] on the competition between spin-orbit
and Kugel-Khomskii [25] type exchange interactions, and
have obtained a phase diagram containing a spin-orbit singlet
phase and a magnetically/orbitally ordered phase separated
by a quantum critical point (QCP). Consistent with existing
experimental data [19,26], these works also argued that
FeSc2S4 lies close to the QCP on the spin-orbit singlet side
of the phase diagram. The experiment of Plumb et al. [16], in
contrast, shows that FeSc2S4 lies on the magnetic side of this
yet unobserved QCP.

In this work, using the order by disorder mechanism, we
aim to provide a theoretical description of these nematic
and ordered phases observed in FeSc2S4. We begin by
modeling the spins with an O(N )-symmetric vector model,
where the spins are represented by N -component real vectors
in three-dimensional space. Using the Hubbard-Stratonovich
transformation, we decouple the biquadratic terms and define
a generalized nematic order parameter in the context of the
diamond lattice. We then study the temperature dependence
of the spin nematic order parameter, and investigate the
development of long-range magnetic order. In the large
N limit, we find that, contrary to a few possible models
proposed in Ref. [16], the nearest-neighbor (NN) and next-
nearest-neighbor (NNN) exchange interactions (J1 and J2,
respectively) need to be comparable in order to fit experimental
data. Moreover, the spin nematic order persists even at high
temperatures; in the limit T/J1 � 1, the nematic order falls as
a power law proportional to T −γ , γ > 0. This indicates that the
three-dimensional diamond lattice is highly susceptible to Z2

symmetry breaking and explains the presence of two distinct Fe
environments even at high temperatures, as seen by Mössbauer
[17,18] and far-infrared optical spectroscopy [19,20]. This is
unlike the two-dimensional (2D) case [27,28] where there is
a distinct transition with a discontinuity in the first derivative
with temperature. The effects of including orbitals into the
theory are detailed in the Supplemental Material [29].

Order by disorder. Apart from the conventional breaking
of continuous spin rotational symmetries leading to ordered
phases, Hamiltonians describing magnetic systems can also
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FIG. 1. Two intercalated square lattices (solid and open circles)
with antiferromagnetic order on each sublattice. Each atom in a
sublattice either forms the center of a plaquette of the other sublattice,
or could be displaced along the c axis. The spins on one sublattice are
oriented at an angle � with respect to the spins on the other sublattice.

spontaneously break an additional discrete Ising (Z2) symme-
try associated with permutations of the sublattices [30–33].
This mechanism, widely referred to as the “order by disorder,”
has been extensively reported in high-temperature supercon-
ductors, such as the copper-based [34,35] and iron-based
superconductors [27,36]. The key physics underlying this
mechanism stems from biquadratic spin contributions [37]
derived from integrating out short-wavelength quantum fluc-
tuations that are not initially present in the classical versions
of the action. Such biquadratic terms in the Lagrangian will
be the main focus of this work. A representative system [33]
where this is realized is the double layered antiferromagnet,
schematically shown in Fig. 1. The emergent biquadratic terms
break the continuous symmetry (and hence the degeneracy)
with respect to arbitrary rotations (angle � in Fig. 1) between
the sublattices. At the classical level, this symmetry exists even
in the presence of intersublattice couplings. The net effect of
the high energy quantum fluctuations on the classical action,
then, is to lower the continuous rotational symmetry to a
discrete Ising symmetry corresponding to a relative sublattice
orientation of either 0 or π . Lowering the temperature can
then break the order parameter symmetry space Oj (N ) × Z2j

(j = spin, orbital, etc.) through successive phase transitions
for each participating symmetry, thereby leading to nematic
and/or ordered phases. Thus, due to the rich potential latent
in them, these ideas have had wide applicability outside two-
dimensional layered systems as well [38,39]. It is, therefore, of
great interest to further explore other classes of systems where
similar physics can be realized in more general settings.

Theory. The partition function for the spin only degrees of
freedom (the role of the orbital degree of freedom is presented
in the Supplemental Material) is written as

Z =
∫

D �φ1D �φ2 exp

{
− βN

∫
d3�r L

[
φa

1 (�r),φa
2 (�r)

]}
, (1)

where φa
1 (�r),φa

2 (�r) are the ath components of the O(N ) vector
on sublattices j = 1,2 at lattice site �r . For simplicity, we will
henceforth suppress the index a on φj (�r), keeping in mind that
they refer to the individual components of a vector. We also

denote L as the Lagrangian density, N as the number of spin
components, and β as the inverse temperature. Defining J1

and J2 to be the NN and NNN magnetic exchange couplings,
respectively, we can write the Lagrangian, L , in the continuum
limit as

L (φ1,φ2) = J2

2

∑
j = 1,2

i = x,y,z

[∂iφj (�r)]2 − NKφ[φ1(�r)φ2(�r)]2

+J1

∑
�aμ

∂�aμ
φ1(�r) ∂�aμ

φ2(�r). (2)

We note that the coupling constants J1 and J2 contain factors
proportional to the magnitude of the spin angular momentum
squared after setting the lattice constant to unity. The vectors
�aμ are the three translational vectors of the diamond lattice
occupied by the Fe atoms. They are given as �a1 = 1

2 (1,1,0),
�a2 = 1

2 (1,0,1), and �a3 = 1
2 (0,1,1), which are along the diago-

nals of the three faces of a cube. To obtain the first (J2) term,
we observe that each Fe in a sublattice has 12 second-nearest
neighbors. For an Fe atom centered at �r0 = (0,0,0), six of these
neighbors are positioned at �aμ, μ = 1,2,3, and their inverses;
six others are positioned perpendicular to these directions at
vectors �aμ − �aν with μ,ν = 1,2,3, and μ �= ν. Summing all
of these contributions in the continuum limit, one obtains the
first term up to an overall total derivative. The last (J1) term
can be obtained in a similar fashion by noting that the J1

exchange interaction connects the nearest-neighbor, opposite
sublattices, as shown in Fig. 2 (left). There are four such
nearest J1 neighbors for each Fe atom; three lie along the
lattice translation vectors (�aμ), and one lies within the same
primitive cell. The J1 term is then obtained by summing over
these contributions in the continuum limit.

Finally, a biquadratic term (with a coupling constant Kφ)
for the diamond lattice can be motivated in a manner analogous
to the case of a square lattice as was described in the previous
paragraph. Figure 2 (left) shows the lattice and magnetic
structures of the Fe atoms projected onto the a-b plane
(i.e., a c-axis viewpoint). The red (dark) and green (light)

FIG. 2. Left: Magnetic structure proposed in [16] with exchange
interactions defined. Red (dark) and green (light) disks denote the
two Fe sublattices with the arrows pointing in the spin direction. The
dark (light) arrows belong to the top (bottom) two layers. The disk
boundaries order the various layers along the c axis from the readers
viewpoint—(top to bottom) thick solid, thin solid, thick dashed,
and thin dashed. Right: The sulfur tetrahedra surrounding each Fe
sublattice. At lower temperatures, the tetrahedron about one of the Fe
sublattices contracts and the other expands.
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disks denote the two Fe sublattices, and the arrows point
in the direction of the spin moments. The topmost (second
from top) layer is indicated by a thick (thin) solid disk
boundary. These two layers belong to two different sublattices
and have antiferromagnetic order in each layer. Even in the
presence of a quadratic intersublattice coupling term, the
relative orientations of the spins between these two layers
are degenerate in the same sense as in Fig. 1. Therefore, the
introduction of an intersublattice biquadratic coupling term—
derived by integrating out the short-wavelength, high-energy
quantum fluctuations—will lower this continuous symmetry
to an Ising Z2 symmetry. This Z2 symmetry can then be
broken at lower temperatures to form a nematic state. For
simplicity in the analyses to follow, we ignore longer range
exchange couplings, an approximation which is consistent
with experiments [16].

We now proceed to decouple the biquadratic term using the
Hubbard-Stratonovich transformation. At a mean field level,
the Hubbard-Stratonovich field [≡σ (�r) = σ ] plays the role of
a nematic order parameter and is proportional to 〈φ1(�r)φ2(�r)〉.
A unitary rotation of the fields φ1(�r) and φ2(�r) shows that the
field σ (�r) quantifies the degree of a broken Z2 symmetry. The
vectors �φ1 and �φ2 are constrained in this model to lie on a
unit sphere, i.e., | �φ1|2 = | �φ2|2 = 1. This constraint is imposed
through Lagrange multipliers λj for each of the two fields.
Fourier transforming into momentum space and noting that
φ∗

j ( �p) = φj (− �p) [i.e., φj (�r) is real], the partition function can
be recast into

Z =
∫

Dφ1 Dφ2 Dσ Dλ1 Dλ2 exp

[−βN

2

×
∑

�p

{
�†( �p)M�( �p)−2T (λ1+λ2) + 2T 2σ 2

NKφ

}]
, (3)

where the matrix elements of the 2 × 2 matrix M are given by
Mii = 2λiT − J2(

∑
�aμ

p2
�aμ

+ ∑
�aμ,�aν

μ < ν

p2
�aμ−�aν

) for i = 1,2,

and Mij = −J1(1 + ∑
�aμ

p2
�aμ

) − 2T σ for i �= j . Here, p�aμ
=

�p · �aμ, and �†(p) = (φ∗
1 (p),φ∗

2 (p)). It is easy to check that
the J2 terms simply add up to p2 = ∑

i=x,y,z p2
i as was

discussed in the preceding paragraph. The �( �p) integrals
are Gaussian and can be performed easily by standard field-
theoretic techniques, while the remaining functional integrals
can be determined by the saddle-point approximation.

The resulting momentum integrals and the simultaneous
equations that must be solved for λj and σ are not straight-
forward; inclusion of the orbital degrees of freedom (see
Supplemental Material) only complicates this further, and one
must therefore resort to approximations. To do so, we seek
hints from experiments [16] which provide fits of the data
to three different magnetic exchange models. The simplest
model assumes that J1 and J2 have opposite signs, and that
|J1| � |J2|; this condition implies that we can ignore J1 to
the lowest-order approximation. By solving the simplified set
of equations, however, we find that this approximation does
not yield an experimentally consistent variation of the nematic
order parameter with temperature. We therefore consider the
two other models where J1 is similar in magnitude to J2

and has the same sign. This scenario becomes tedious if
the full momentum dependence in J1 is inserted; instead,
to allow for analytical transparency, we assume that the J1

term is a constant, independent of momentum. With these
approximations, we obtain simultaneous equations for λ and
σ given by (seeking solutions with λ1 = λ2 = λ)

2Nπ2

T ′ = −2� + G+(σ,λ,T ′) + G−(σ,λ,T ′),
(4)

−2π2σ

K ′
φ

= −G+(σ,λ,T ′) + G−(σ,λ,T ′),

where we have defined G±(σ,λ,T ′) =√
1 ± 2T ′(σ ∓ λ) arctan[ �√

1±2T ′(σ∓λ)
]. Here, � is the

momentum cutoff and is O(1) (where the lattice constant is
set to unity), T ′ = T/J1, K ′

φ = K/J1, and J1 = J2. Figure 3
(left) shows a plot of the spin nematic order parameter, σ , as a
function of T ′ obtained by numerically solving the above set
of equations. Within the aforementioned approximations, σ

acquires a long tail which slowly vanishes at very large tem-
peratures (compared to the magnetic exchange interactions).
It can be checked that at large values of T ′, the nematic order
parameter falls to zero as T ′−2. The absence of a distinct
nematic transition temperature and the presence of a long tail
is a result of the three dimensionality of the diamond lattice,
indicating that the existence of multiple sublattices in a cubic
system makes it highly susceptible to broken discrete sym-
metries. This is unlike the case of a 2D square lattice [27,28]
[also shown in Fig. 3 (left)] where there is a distinct nematic
transition temperature above which the nematic order is zero.

FIG. 3. Left: Plot of the spin nematic order parameter, σ , as a function of T ′ = T/J1 for � = 2, K ′
φ = Kφ/J1 = 0.05. For the sake of

comparison, we have also plotted the case of a 2D square lattice. Right: Plots of the magnetic transition temperature, T ′
m = Tm/J1, and the

value of the spin nematic order at the magnetic transition temperature, σm, as a function of 1/K ′
φ for � = 1.
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FIG. 4. Left: A plot of the temperature dependence of the spin nematic order parameter, σ , obtained by including the full momentum
dependence in the J1 term. Right: Same plot as that on the left but on a log-log scale. The slope in the high T ′ limit can be shown to be close
to −0.5 and is confirmed by the numerics above. The parameters chosen are � = 2, K ′

φ = 0.05, and N = 3.

These results provide a possible explanation for the presence
of two distinct Fe environments even at high temperatures,
as suggested in Ref. [16] and also supported by Mössbauer
[17,18] and far-infrared optical spectroscopy [19,20].

We note that our qualitative conclusions are robust to the
inclusion of the full momentum dependence in the J1 term as
shown in Fig. 4 (the accompanying Supplemental Material
gives details of the resulting integrals). However, the value of
γ decreases from 2 to about 0.5 with this inclusion, indicating
that the precise value of γ could be dependent on the ratio of
J1 and J2. That a relatively large NN exchange J1 (comparable
to the NNN J2) is needed to obtain experimentally consistent
results restricts the possible magnetic models of FeSc2S4. (For
example, it rules out model 3 in Ref. [16]). Finally, our results
reveal the presence of a Z2 broken nematic state (which extends
up to high temperatures) right above the ordered side of the
QCP in the “fan” diagram put forward in Ref. [22].

Next, to obtain the magnetic transition temperature, we
need to treat the order parameter field along one of the
spin components to be different from those orthogonal to
it [40]. In other words, we must integrate out only N − 1
components and treat the N th component as a Lagrange
multiplier. Doing so, we obtain the condition for the magnetic
transition as λ = 1

2T ′
m

+ σm, where T ′
m is the ratio of the

magnetic transition temperature to J1, and σm is the value
of the nematic order parameter at the transition temperature.
By substituting this condition into Eq. (4), we can solve for
T ′

m and σm. Figure 3 (right) shows that T ′
m grows linearly with

inverse K ′
φ , and for small K ′

φ , σm is linearly proportional to
K ′

φ . These conclusions are consistent with our expectations
that, depending on their ratio (K ′

φ), exchange interactions
promote magnetic order, while biquadratic couplings favor
nematic order. The Supplemental Material describes how
this behavior is affected by the presence of orbital degrees
of freedom and the Kugel-Khomskii (KK) type exchange

interactions coupling the spins and orbitals. The KK cou-
pling has two qualitatively different consequences: (a) both
the magnetic and orbital ordering temperatures vary with
the biquadratic interactions and (b) the linear dependence
of the transition temperatures with 1/Kφ—a salient feature
of T ′

m in the absence of KK interaction (see Fig. 3)—no longer
holds well; both T ′

m and the orbital equivalent, T ′
o , now vary

sublinearly. We would also like to point out at this juncture that
a solution for the magnetic ordering transition temperature in
our model exists only when the signs of J1 and J2 are the
same; this reaffirms our previous assertion that we can rule
out the magnetic structure of model 3 proposed in Ref. [16].
For � = 1, J1 ∼ J2 = 0.2 meV (from Ref. [16]), and K ′

φ =
0.05 (Kφ � J1), we obtain a magnetic ordering tempera-
ture of Tm = 30 K (compared to the experimental value
of 11.8 K).

To conclude, we modeled the successive breaking of Ising
and rotational symmetries in the diamond lattice structure of
FeSc2S4. We found that, unlike the case of a 2D square lattice,
the nematic order for the diamond lattice persists even at high
temperatures. Specifically, in the limit T/J1 � 1, the nematic
order parameter falls as a power law proportional to T −γ , γ >

0. This feature indicates that the three-dimensional diamond
lattice is unstable toward a Z2 breaking Ising order, and
explains the recent observation of two distinct Fe environments
in FeSc2S4 even at room temperatures. Our theory also restricts
the possible magnetic structures and exchange interactions
proposed in literature.
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[13] N. Büttgen, J. Hemberger, V. Fritsch, A. Krimmel, M. Mücksch,
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