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Quantum-critical spin dynamics in a Tomonaga-Luttinger liquid studied with muon-spin relaxation
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We demonstrate that quantum-critical spin dynamics can be probed in high magnetic fields using
muon-spin relaxation (μ+SR). Our model system is the strong-leg spin ladder bis(2,3-dimethylpyridinium)
tetrabromocuprate (DIMPY). In the gapless Tomonaga-Luttinger liquid phase we observe finite-temperature
scaling of the μ+SR 1/T1 relaxation rate which allows us to determine the Luttinger parameter K . We discuss
the benefits and limitations of local probes compared with inelastic neutron scattering.
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Quantum-critical states have attracted a great amount
of theoretical and experimental interest since they exhibit
universal behavior that is independent of the underlying
microscopic Hamiltonian [1,2]. Of particular interest has been
the universal scaling behavior of quantum critical phases that
has so far been explored primarily using inelastic neutron
scattering (INS) [3–7] even though many of the theoretical
predictions actually concern local correlation functions which
can also be explored using local probes such as nuclear
magnetic resonance (NMR) [8,9] and muon-spin relaxation
(μ+SR), both of which give access to an energy range
effectively inaccessible to INS. μ+SR is established as a
sensitive probe of magnetism and has been used to study
quantum-critical spin dynamics in zero or “small” (<1 T)
magnetic fields [10]. However, to the best of our knowledge,
quantum-critical spin dynamics have never been explored
using μ+SR in “high” (>1 T) applied fields, even though
the majority of quantum-critical regions of interest is located
at such magnetic fields. The reason for this were limitations in
the high-field/low-temperature capabilities of existing μ+SR
instruments and the difficulty of such experiments. The
commissioning of the worldwide-unique HiFi instrument at
ISIS, U.K. [11] now enables μ+SR to probe spin dynamics
in longitudinal fields up to 5 T at 20 mK. The longitudinal
(field parallel to initial muon spin) configuration is necessary
for probing spin dynamics. Here, we report the observation
of finite-temperature scaling of local spin correlations in the
Tomonaga-Luttinger liquid phase of the strong-leg spin lad-
der bis(2,3-dimethylpyridinium) tetrabromocuprate (DIMPY)
using μ+SR. This work demonstrates the feasibility of using
high-longitudinal-field μ+SR to study quantum-critical spin
dynamics.

Tomonaga-Luttinger liquid (TLL) theory provides a pow-
erful, universal description of gapless interacting fermions
in one dimension (1D), equivalent to the description that
Landau Fermi liquid theory provides in three dimensions [1].
Within TLL theory the effects of interactions are contained
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within one single parameter, the Luttinger parameter K ,
where K = 1 corresponds to noninteracting free fermions,
K < 1 describes repulsive interactions, and K > 1 describes
attractive interactions. This parameter K universally defines all
correlation functions regardless of the details of the interaction
potential. We note that there is an additional parameter in the
Luttinger model, the velocity u of the excitations, which we
are not sensitive to in this work. The experimental validation
of the universal finite-temperature scaling relations, predicted
by TLL theory [12], for spin correlations in S = 1

2 Heisenberg
chains using INS [3,4] was a particular triumph. However,
Heisenberg chains, like most other experimental TLL model
systems, are examples of a TLL with repulsive interactions
(K < 1) [1,13] and until recently a TLL with attractive interac-
tions was only known in certain quantum Hall edge states [14].
Spin ladders provide unique TLL model systems since the
ratio of the rung and leg exchange determines the nature of the
interactions between the spinless fermions in the system, with
the prototypical strong-rung ladder CuBr4(C5H12N)2 (BPCB)
exhibiting repulsive behavior [15,16] and the strong-leg ladder
DIMPY exhibiting attractive interactions [7,8,17,18].

DIMPY is a two-leg spin-ladder system with a quantum-
disordered (QD) singlet ground state with gap �0 = 0.32(2)
meV in zero field [19]. By virtue of the Zeeman effect this gap
can be closed by an applied field μ0Hc1 = �0/gμB ∼ 2.85 T
at a quantum-critical point (QCP) with a dynamic critical
exponent z = 2 (see Fig. 1) [18,19]. Above Hc1 and below
the saturation field [21] μ0Hc2 = 30 T, the system is in the
quantum-critical (QC) gapless z = 1 TLL state. The dominant
exchange interactions are Jleg = 1.42(6) meV and Jrung =
0.82(2) meV along the ladder legs and rungs, respectively.
In the gapless phase, three-dimensional long-range order
(3D LRO) sets in at field-dependent critical temperatures of
around 250 mK due to weak interladder interactions. Using
chain mean-field (MF) theory, interladder interactions were
estimated [18] to be nJ ′

MF = 6.5 μeV, where n is the number
of relevant interaction pathways.

In a μ+SR experiment, spin-polarized positive muons
are implanted into a sample. The experimentally measured
quantity is the decay asymmetry A(t) which is proportional
to the spin polarization of the muon ensemble at any one
time [22]. In this Rapid Communication we will concentrate
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FIG. 1. Schematic phase diagram of DIMPY [8,18–20].

primarily on the longitudinal (spin-lattice) relaxation of the
muon polarization 1/T1. In direct analogy with NMR, 1/T1

probes the local (q-integrated) dynamic structure factor [see
Eq. (5)] [23]

1

T1
∝

∫ ∑
ρ=x,y,z

Sρρ(q,ω)|ω=γμB dq, (1)

at the probing field B and γμ is the muon gyromagnetic ratio.
In general, μ+SR and NMR probe both longitudinal Szz and
transverse correlationsS⊥⊥. Usually in a μ+SR experiment the
magnetic coupling between the muon and sample is primarily
of a dipolar nature, which leads to both transverse and
longitudinal correlations being probed, while in NMR often
the contact coupling is dominant, which implies that mainly
transverse correlations are being probed [24]. However, the
key property of the system studied here is that it is well known
that only transverse correlations exist in the TLL phase at low
energies [16,17] which facilitates the study of their properties
by μ+SR, NMR, and nonpolarized neutron scattering. For
both NMR and μ+SR experiments the probing frequency
corresponds to an energy scale of μeV in fields of a few tesla
and so on the energy scale of the excitations in DIMPY and
most other quantum magnets (which are on the meV scale)
these effectively probe the local spin correlations as ω → 0,
i.e., the long-time behavior of the local spin correlations. The
probing energy scale is fixed for any given field.

Single crystal samples were grown by the method described
in Ref. [25]. Initial μ+SR experiments were performed on a
mosaic of single crystals, but the main μ+SR results presented
here were obtained by crushing the crystals into a fine powder
in order to cover a large area of the sample holder uniformly
since the muon beam profile varies significantly as a function
of magnetic field [11]. Due to the small g-factor anisotropy
of the Cu2+ ions (expected <10%), the scaling functions
in the TLL regime are effectively probed within a narrow
range of fields, but since their dependence on field in the
TLL phase is relatively weak, this effect is negligible. The
powder sample was mounted with vacuum grease onto a silver
sample holder which was attached to the cold finger of a
dilution refrigerator at the HiFi instrument, ISIS, U.K. In high
longitudinal fields, the relaxing asymmetry (Arel below) is very
small. The experiment therefore required high-statistics runs
(40 million events) and careful attention to detector dead-time
corrections by performing calibration measurements on a
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FIG. 2. Experimental muon decay asymmetry A(t) (arbitrary
offset). (a) Data in a longitudinal field μ0H = 2.5 T on the powder
sample. Inset: Data measured in zero applied field on a mosaic of
single crystals showing Gaussian relaxation due to nuclear moments.
(b) Results in applied longitudinal field μ0H = 4.8 T (in the TLL
phase).

silver backing plate at several fields covering the field range
discussed here.

In Fig. 2 we show some of the μ+SR asymmetry data at
different applied magnetic fields and temperatures. In high
longitudinal fields it is not straightforward to calibrate the
absolute scale of asymmetry, hence the data are shown with an
arbitrary offset. In zero applied field the muon spectra display a
temperature-independent Gaussian relaxation down to at least
40 mK, characteristic of a relaxation due to quasistatic nuclear
moments without any contribution due to electronic moments.
The zero-field data therefore demonstrate the absence of a
phase transition in zero field in DIMPY down to 40 mK. At
2.5 T applied field, i.e., H < Hc1, the relaxation is very weak at
low temperatures, but there is a distinct increase in relaxation
rate at higher temperatures. We expect any nuclear contribution
to the muon relaxation to be fully quenched at this field and
therefore we are only probing the electronic spin dynamics.
Figure 3 shows 1/T1 as a function of temperature at 2.5 and
4.8 T obtained by fitting the experimental asymmetry with

A(t) = Arel exp (−t/T1) + Anr, (2)

where the relaxing asymmetry Arel was kept fixed and Anr

is a field-dependent nonrelaxing component [26]. At μ0H =
2.5 T, the system is still in the gapped singlet state and 1/T1

is strongly suppressed. At temperatures T � nJ ′ = 75 mK
in the z = 2 1D quantum-critical regime, one expects [27]
1/T1 ∝ T −1/2. We observe an increase of 1/T1 with increasing
temperature that can be described phenomenologically by
1/T1 ∝ n(�/T )T −1/2 ∼ T +1/2 [where n(�/T ) is the Bose-
Einstein occupation factor]. We note that this is similar
to the behavior observed by NMR around the z = 2 QCP
in the spin-ladder system BPCB and the gapped quantum
magnet NiCl2-4SC(NH2)2 which was related to the effect of
three-dimensional interactions [28].

As we increase the field to μ0H = 4.8 T and enter the TLL
phase, the relaxation rate increases by approximately an order
of magnitude. A temperature scan at constant field reveals
a sharp rise of the relaxation rate with a peak around 225
mK, followed by nonmonotonic behavior in an intermediate
region between around 225 and 400 mK. Above 400 mK,
1/T1 exhibits power-law behavior. We identify the peak in
1/T1 around 225 mK with a transition to long-range magnetic
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FIG. 3. Relaxation rate 1/T1 at μ0H = 4.8 T (top) and μ0H =
2.5 T (bottom). Top: The peak around T = 225 mK indicates long-
range ordering. Above the ordering transition, 1/T1 is first dominated
by critical fluctuations before entering a regime of universal scaling
for 0.4 K � T � 2 K. The solid dashed line is a fit to Eq. (3). Bottom:
The dashed line indicates the approximate value of the gap for g =
1.94 at μ0H = 2.5 T.

order (LRO) previously observed [8,18,20] in DIMPY around
250 mK at μ0H = 5 T. Below the ordering temperature our
data are consistent with 1/T1 ∼ T , which is expected due to
the presence of a massless Goldstone mode [16]. However, the
paucity of data in this region prevents definitive conclusions
and further work is required to study the scaling behavior in
this region. We note that the linear behavior of 1/T1 in the
3D ordered state has not yet been observed by NMR [29].
The region immediately above the ordering temperature Tc

is dominated by thermal critical fluctuations until power-law
behavior sets in around 400 mK.

It has been shown that the dominant contribution to the
local correlation function S(ω) in a TLL at low energies
is due to transverse correlations, which is a feature that is
generic to spin ladders [16,17]. This greatly simplifies the
present study as the presence of significant spectral weight
in longitudinal correlations with different scaling properties
at low energies would otherwise require longitudinal and
transverse correlations to be studied separately. The transverse
correlations take on an ω/T scaling form [2]

1

T1
∝ S⊥⊥(ω) = (kBT )αF (�ω/kBT ), (3)

where F (�ω/kBT ) is a universal function [26] and α =
1/2K − 1, K being the Luttinger parameter [16,17]. Given the
weak temperature dependence [26] of F (�ω/kBT ) in the ω →
0 limit, the temperature dependence of 1/T1 approximately
follows a power law

1

T1
∝ T α = T 1/2K−1. (4)

Let us now consider the appropriate fitting range for
extracting the TLL parameter K . We argued that, at our probing
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FIG. 4. Scaling exponent α and corresponding Luttinger param-
eter K measured by 1H NMR [8], INS [7], μ+SR (this work), and
predicted by DMRG calculations [18].

field μ0H = 4.8 T, thermal critical fluctuations are negligible
above ∼0.4 K. Furthermore, the TLL model requires (i) a
linear dispersion relation and (ii) an infinitely deep Fermi sea.
Requirement (i) is found to hold up to at least 1 meV = 11.6 K
on the basis of previous INS data [7,30]. (ii) At μ0H =
4.8 T the depth of the Fermi sea �F = gμBμ0(H − Hc1) =
0.22 meV = 2.5 K with g = 1.94 and μ0Hc1 = 2.85 T [18].
Hence a fitting range extending from 0.4 to 1.8 K is justified
within the TLL framework. To further exclude any bias due to a
particular fitting range, the data were fitted four times: over the
full range 0.4–1.8 K, excluding either end point, and excluding
both end points. The final result is an average weighted by the
inverse squared statistical errors. This method is similar to the
shrinking-window method often used for extracting critical ex-
ponents. Following this procedure, fits to the full-scaling func-
tion Eq. (3) and the power-law approximation Eq. (4) yield α =
−0.55(7) [K = 1.10(13)] and α = −0.62(5) [K = 1.33(10)],
respectively. The obtained TLL parameter K > 1 indicates at-
tractive interactions between the spinless fermions in the TLL.

Figure 4 shows a comparison of our μ+SR results for the
Luttinger parameter with the previous experimental results
based on NMR [8] and inelastic neutron scattering [7]. Also
shown is the dependence of K on the applied field based
on density-matrix renormalization group (DMRG) calcula-
tions [18]. We note that the scaling function F (�ω/kBT ) does
have a finite-temperature dependence on the μ+SR energy
scales [26]. Hence we expect that parameters extracted by
μ+SR from Eq. (3) to be more accurate than those extracted
from the approximation in Eq. (4). This is consistent with the
observation that the μ+SR estimates of K using the former
show better agreement with the DMRG calculations. NMR
provides values of α that are lower, and, correspondingly,
values of K that are larger, than predicted by DMRG. Though
only available at a single field, the μ+SR results seem to
offer a somewhat better agreement with DMRG, although we
acknowledge that the μ+SR and NMR error bars at 4.8 and
5 T, respectively, overlap. Further to the discussion already
presented in Ref. [8] about the quantitative disagreement at
higher fields between NMR and DMRG, we believe that there
are two contributing factors that have not been considered so
far: (i) The NMR data were analyzed using the approximation
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in Eq. (4). Since F (�ω/kBT ) decreases as a function of
temperature even in the applicable low-energy limit [26] but is
assumed constant in Eq. (4), this leads to a fitted exponent in
the power law that is somewhat too negative. We have digitized
and reanalyzed some of the published NMR data [8] and find
that this effect accounts for only approximately 1%–2% of
the overestimate of |α|. As the probing energy scales of NMR
for a given field are lower than those of μ+SR by the ratio
of muon and proton gyromagnetic ratios γμ/γp ≈ 3.18, the
temperature dependence of F (�ω/kBT ) is also weaker for
NMR [26] by approximately this factor. Hence Eq. (4) is
a better approximation when analyzing NMR data than for
μ+SR data. (ii) The lower-energy scales probed by NMR lead
to another problem: 3D interactions in DIMPY are accurately
known nJ ′ = 6.5 μeV [18]. The proton NMR probing energy
scale at μ0H = 5 T is �ω = 0.88 μeV compared to �ω =
2.7 μeV for μ+SR at μ0H = 4.8 T. Therefore, any perturbing
effects due to 3D interactions will be more pronounced at any
given field for NMR than for μ+SR.

Finally, in an inelastic neutron scattering experiment, the
dynamic structure factor

Sρρ(q,ω) =
∫ ∞

−∞
〈Sρ(0,0)Sρ(r,t)〉 exp[i(ωt − q · r)]drdt

(5)
can be probed as a function of energy and momentum transfer
(ρ = x,y,z). INS therefore allows a certain region of interest
in energy-momentum space to be selected and, in particular,
it provides access to energy as an additional independent
parameter. By comparing the experimental INS spectra with
DMRG calculations, it was possible to identify the parts of
the spectrum where the transverse correlations described in
Eq. (3) dominate [7]. By using energy transfer and temperature
as independent parameters it was possible to probe universal
scaling over more than two decades in �ω/kBT , leading to
an excellent agreement with DMRG calculations. Scaling was
also observed by INS within the LRO phase T < Tc since the
considered energy scales 0.1 meV < �ω < 0.5 meV are well
above the energy scale of the 3D interactions. The exact value
of the determined Luttinger parameter at μ0H = 9 T depends
on the details of the analysis with values in the range: K = 1.25
in Ref. [7], K = 1.2(1) and K = 1.19(2) in Ref. [31].

In Fig. 5 we compare the different scales in �ω/kBT probed
by μ+SR, NMR, and INS. μ+SR fills a gap that is inaccessible
to both NMR and INS. In NMR similar energy scales could
only be achieved at much higher fields, implying that a
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FIG. 5. Comparison of the energy scales probed by the μ+SR
experiment reported in this work, the NMR experiment [8], and the
INS experiment [7]. The solid line gives the scaling function [26]
F (�ω/kBT ) for the local dynamic structure factor with K = 1.1.

different region of the phase diagram is being investigated.
In INS such energy scales are practically inaccessible even
with state-of-the-art cold neutron spectrometers.

In conclusion, using an exceptionally clean and well-
characterized model system of a Tomonaga-Luttinger liquid,
we have demonstrated that high-field μ+SR can be used to
probe quantum-critical spin dynamics in a magnetic field
range that is of great experimental interest in many topical
materials. μ+SR fills a gap in energy scales that is inaccessible
to established techniques such as NMR and INS. Model
systems where μ+SR would prove particularly useful are those
where INS is difficult to perform or universal behavior at the
lowest-energy scales is of interest.
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[24] A. Yaouanc and P. D. D. Réotier, Muon Rotation, Relaxation,

and Resonance (Oxford University Press, Oxford, U.K., 2011).
[25] A. Shapiro, C. P. Landee, M. M. Turnbull, J. Jornet, M. Deumal,

J. J. Novoa, M. A. Robb, and W. Lewis, J. Am. Chem. Soc. 129,
952 (2007).

[26] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.95.020402 for further details on the scaling
function, the field-dependent muon data, and the data shown in
the figures of this Rapid Communication.

[27] E. Orignac, R. Citro, and T. Giamarchi, Phys. Rev. B 75, 140403
(2007).

[28] S. Mukhopadhyay, M. Klanjšek, M. S. Grbić, R. Blinder, H.
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Paduan-Filho, B. Chiari, and O. Piovesana, Phys. Rev. Lett.
109, 177206 (2012).
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