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We study one-dimensional spinless fermions with random interactions, but without any on-site disorder. We
find that random interactions generically stabilize a many-body localized phase, in spite of the completely
extended single-particle degrees of freedom. In the large randomness limit, we construct “bubble-neck”
eigenstates having a universal area-law entanglement entropy on average, with the number of volume-law
states being exponentially suppressed. We argue that this statistical localization is beyond the phenomenological
local-integrals-of-motion description of many-body localization. With exact diagonalization, we confirm the
robustness of the many-body localized phase at finite randomness by investigating eigenstate properties such

as level statistics, entanglement/participation entropies, and nonergodic quantum dynamics. At weak random

interactions, the system develops a thermalization transition when the single-particle hopping becomes dominant.
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Disorder in isolated quantum systems leads to fascinating
phenomena such as Anderson localization [1]. Noninteracting
particles in the Anderson localized phase form a perfect insula-
tor with vanishing dc conductivity even at infinite temperature.
The lack of thermal transport in an Anderson localized system
prohibits thermalization, making it intrinsically nonergodic
and far out of equilibrium. The stability of localization
and nonergodicity against interactions, however, remained
controversial until the recent study of many-body localization
(MBL) [2-4]. Following the perturbative analysis in Ref. [2],
the robustness of localization against interactions has now been
established through exact numerical calculations [5—15] and a
mathematical proof under certain reasonable assumptions [16].
Experimentally, the dynamical nonergodic aspects of the MBL
phase have been examined with cold atoms in optical lattices
[17-21] and trapped ions [22]. Although currently an active
area of research, the general consensus is that a noninteracting
quantum system with sufficiently strong single-particle (i.e.,
on-site) disorder remains many-body-localized in the presence
of finite interparticle interactions.

While the existence of MBL is accepted for interacting
disordered fermions, the role of interaction remains somewhat
tangential. In the numerical studies of models with on-site dis-
order, MBL is only found in the regime dominated by single-
particle disorder potentials where the noninteracting system is
necessarily strongly localized [5—11]. Mathematically, despite
the proof of existence of MBL [16], a lower bound for
the required disorder strength has not been established. In
the “local-integrals-of-motion” (LIM) description [23-26],
the conserved charges strongly resemble their noninteracting
counterparts in the deep MBL regime. It is difficult to single
out the effect of interaction for MBL in models with single-
particle disorder, where interaction and single-particle terms
are always intertwined. This issue is particularly worrisome
when one looks for “smoking-gun” experimental signatures
to distinguish MBL from Anderson localization, and the
possibility that all experimentally observed MBL phenomena
are essentially (slightly perturbed) single-particle Anderson
localization cannot be definitively ruled out. It is thus desirable
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to study a simpler system where the localization is driven
purely by many-body effects, and the interacting MBL phase
is not adiabatically connected to a single-particle Anderson
localized phase.

In this Rapid Communication, we consider the precise
opposite limit and study MBL in a random-interaction model,
whose noninteracting limit is completely extended. In the
strong randomness limit, we formulate a ‘“bubble-neck”
construction (see Fig. 1) for the MBL eigenstates in this
system. Such bubble-neck eigenstates could have volume-law
entanglement. Our construction hence goes beyond the scope
of the LIM description and describes a novel type of MBL with
no noninteracting analog whatsoever (i.e., the corresponding
noninteracting system is in a trivial extended phase). Further,
we show that the average entanglement entropy over all
such eigenstates still obeys an area law, and we provide a
generic entropy upper bound, independent of the specific
model realization of thermal bubbles. With exact numeric
calculations, we confirm the robustness of the MBL phase
at finite random interactions. For weak disorder, the system
develops a thermalization transition when the single-particle
tunneling effects become dominant overwhelming random
interaction effects. We stress that our proposed statistical
bubble MBL phase is driven solely by the interaction, without
any influence from single-particle on-site disorder. While
aspects of MBL in the presence of extended single-particle
orbitals have been discussed in other systems [27-42], our
work shows that clean interacting spinless fermions have novel
generic features distinct from previous studies, establishing
that MBL in clean random interacting fermion systems is
a generic phenomenon completely distinct from the MBL
physics in disordered interacting systems which are adia-
batically connected to Anderson localized systems as the
interaction is turned off.

Model. We study one-dimensional (1D) spinless fermions
with random nearest-neighbor interactions,

L
H=—1) (clej+He)+ Y Vinnjr, (D)
j=1 j

where c; is a fermonic annihilation operator, n; = cj.cj, Lis
the number of lattice sites, and the tunneling ¢ is the energy
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FIG. 1. Eigenstates in the infinite random interaction limit.
(a) illustrates the “bubble-neck” eigenstates. Clusters with more
than one fermion on adjacent sites form insulating blocks (IB).
Others with isolated fermions form thermal bubbles (TB). Quantum
superpositions are allowed (forbidden) in the TB (IB). Cross-block
tunnelings (dashed arrows) are negligible in this limit. (b) shows the
histogram of the size (/) and the particle number (¢) of TBs. (c) shows
the bipartite entanglement entropy. The symbols “x” correspond
to exact diagonalization results with W/t = 10*. The solid lines
correspond to the entanglement upper bound and the Page-value
estimate from random sampling, which respectively saturate to
Sw ~ 1 and Se & 0.9 in the L — oo limit.

unit throughout this paper. We consider a uniform distribution
for the random interactions V; € [—W, W] and focus on half-
filling. In this model, the disorder effects arise purely from
interactions, with the noninteracting degrees of freedom being
completely delocalized.

Analysis of the infinite randomness limit. Let us first
consider the strong randomness limit W — oo. If the tunneling
t is strictly zero, the eigenstates of the system are trivial
product states albeit with huge degeneracies. Turning on an
infinitesimal tunneling breaks the degeneracy and gives a
bubble-neck structure to the eigenstates to be described below.

With infinitesimal tunneling (to the leading order in ¢/ W),
a cluster with more than one particles on adjacent sites (Fig. 1)
is localized (i.e., does not tunnel) due to random two-body
interactions, and such clusters form insulating blocks. Other
clusters with isolated fermions are extended, forming thermal
bubbles. Fermions in the thermal bubbles can tunnel almost
freely, except that the configurations with two fermions coming
to adjacent sites are forbidden. A thermal bubble with [
lattice sites and g fermions has a Hilbert space dimension
Dierm(l,q) = (1+l1_"). Fermion tunneling in a thermal bubble
makes a finite many-body energy splitting of the order
of f/Diherm, Which prohibits couplings of different thermal
bubbles across insulating blocks (to leading order in ¢/ W).
The resulting bubble-neck eigenstates are illustrated in Fig. 1.
In the infinite randomness limit, only the thermal bubbles
contribute to the entanglement entropy. With random state
sampling [43], we find that the probability distribution of the
thermal-bubble-size P(l,q) decays exponentially for large [
[Fig. 1(b)]. The entanglement entropy of the eigenstates in
the large randomness limit is thus bounded, i.e., obeying an
area-law scaling, which implies that the system is many-body
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localized [see Fig. 1(c) for the explicit entanglement scaling].
We find that the area-law entanglement entropy of such
bubble-neck eigenstates has a generic upper bound with the
Page-value estimate [44] in the thermodynamic limit,

Sub(L — 00) ~ 1, @
Sest(L — 00) ~ 0.9, 3)

independent of the specific model of thermal bubbles. Here,
the Page-value is the entanglement entropy averaged over
random pure states [44], and it provides an estimate for the
entanglement in thermal states [45]. The Page-value estimate
agrees with our numeric exact diagonalization results for small
systems [Fig. 1(c)]. We emphasize that the MBL eigenstates in
the infinite interaction disorder limit are generic, independent
of the specific disorder realizations. The bubble-neck MBL
picture with generic statistical entanglement properties does
not depend on the specific model of the dynamics in the
thermal bubble.

We stress that our MBL phase goes beyond the LIM
description. In the LIM picture [23-26], all eigenstates for
a fixed disorder configuration are short-range entangled with
their entanglement entropy determined by certain localization
length. In the strong disorder limit, the entanglement entropy
vanishes for the on-site disorder driven MBL and the corre-
sponding eigenstates are completely trivial. In sharp contrast,
the generic bubble-neck eigenstates [Fig. 1(a)], describing the
random interaction MBL at strong disorder, could be volume-
law entangled although the number of such states is statistically
suppressed by the exponentially decaying probability of long
bubbles [Fig. 1(b)]. The averaged entanglement entropy is thus
finite even in the large randomness limit, which is different
from previously studied MBL phases. We thus conclude that
our proposed random interaction driven MBL phase is sharply
distinct from the on-site disorder driven MBL. The distinction
is more transparent at low density [43].

It is worth noting that the thermal bubble of the particular
model in Eq. (1) is actually integrable through an inflated-
fermion mapping approach [43]. However, we stress that
the physics presented here does not rely on the choice of
this particular model. We check this by replacing the single-
particle Hamiltonian with the Aubry-André model where the
thermal bubble is no longer integrable, finding quantitatively
similar results [43]. This bubble-neck physical picture for
disorder-interaction driven MBL can be generalized to higher
dimensions and also to other systems. We also note here that
thermal bubbles of larger size become more dominant at lower
density [43].

The MBL phase at finite randomness. With finite random
interactions, the “forbidden” cross-block couplings [Fig. 1(a)]
come into play and the insulating blocks start to move.
Consequently, our bubble-neck picture no longer strictly
applies. We study such effects using exact diagonalization.
We have investigated different diagnostics, the bipartite en-
tanglement entropy S, the level statistics gap ratio r, and
the wave-function participation entropy S}, which are widely
used in the literature to characterize MBL. The entanglement
entropy S signifies localization in real space. The gap ratio
that characterizes the level statistics is defined to be r =
min(S,,8,+1)/max(8,,8,+1) [5], with §, the energy spac-
ing between close-by eigenstates. The participation entropy
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FIG. 2. The MBL phase of the random interaction model
[Eq. (1)]. (a), (b), and (c) share the same legend and show the system-
size dependence of r, SF, and S, respectively. Their probability
distributions across disorder samples and different eigenstates in the
deep localized phase (W/t = 55) are shown in (d), (e), and (f). The
dashed line in (a) marks the Poisson value rp =2In2 — 1. In (d),
the numeric data for P(r) with W/t = 55 for different L collapse
to Py(r) = 2/(1 +r)? (grey dashed line) with the deviation barely
noticeable in this plot. The inset in (b) shows the participation entropy
coefficients (see main text).

[46—49] is introduced to quantify the localization property
in the many-body Hilbert space, SF = ﬁZ{n} W 12,
with S = — 3", [Wy 1> In [Wy,|?, where Wy, is the many-
body wave function. We average over 1000 (10000) disorder
realizations for systems with size L > 12 (L < 12). Within
each disorder realization, we average over all eigenstates with
an equal weight, corresponding to an “infinite temperature” en-
semble, where the states near the spectrum center completely
dominate (Fig. S6 [43]) [37].

In Fig. 2, we provide the system-size dependence and the
probability distributions of different quantities. Figure 2(a)
shows the average gap ratio with varying random interaction
strength W /t. This quantity approaches the GOE (Gaussian
orthogonal ensemble) value g ~ 0.53 in the thermal phase
and the Poisson value rp = 2In2 — 1 in the nonergodic MBL
phase. At strong random interaction (W /t € [25,55] shown
in the figure), r monotonically decreases as we increase
the system size, and systematically approaches the universal
Poisson value rp in the thermodynamic limit [Fig. 2(a)].
Moreover, the probability distribution of the gap ratio for
different eigenstates and disorder samples collapses to the
function of Py(r) = 2/(1 + r)? [Fig. 2(d)], which corresponds
to the precise Poisson level statistics. We attribute the small
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deviation from Py(r) to finite-size effects as it systematically
shrinks on increasing L.

Figure 2(b) shows the rank-1 participation entropy S} .
In the thermal phase with its wave function completely
delocalized in the Hilbert space, S will approach In Dy (Dy
is the Hilbert space dimension) in the thermodynamic limit,
whereas in the localized phase S{/In Dy < 1 meaning the
wave function does not spread over the entire Hilbert space.
In our numerics, we find that S{ is proportional to In Dy,
SP = a; In Dy, with the coefficient a; < 1 for W/t > 25. (It
is worth noting that a related quantity, normalized participation
ratio [9], decays exponentially with the system size.) This
implies wave function localization in the Hilbert space. The
broad distribution of § lp [Fig. 2(d)] indicates a large variance
of dominant thermal bubble sizes in different eigenstates. We
also calculated the rank-2 participation entropy and found
its coefficient ay < 1 (a2 = S5 /In D), further verifying the
localization of the system. It is worth mentioning that a, # a,
[the inset of Fig. 2(b)], indicating that this random interaction
driven MBL phase is multifractal. The broad distribution of
participation entropy P(S!) shown in Fig. 2(e) is consistent
with the multifractal behavior.

Figure 2(c) shows the bipartite entanglement entropy. We
find that it grows with increasing L even for very strong random
interactions (we have checked the entanglement scaling for
W/t up to 10%). At the same time, S(L) apparently bends
downwards for W/t > 35. We attribute the growth of S(L) to
finite size effect, as even at infinite randomness limit we still
see strong L dependence in S(L) for L up to 100 [Fig. 1(c)].
In the distribution P(s) shown in Fig. 2(f), we find P(s — 0)
tends to diverge as L increases. This signifies the robustness
of insulating blocks for finite random interaction.

Entanglement dynamics and quantum nonergodicity. To
further verify the MBL phase, we study the quantum dynamics
by initializing the system in random product states. The time-
dependent entanglement entropy [ S(7)] and number imbalance
[Z(t)] are monitored (Fig. 3). The number imbalance is
defined as

_ Ni(t) — No(7)
Ni(7) + No(t)’

with Nj (Np) referring to number of particles in the initially
occupied (unoccupied) lattice sites. For the number imbalance
[Fig. 3(c)], we find that it does not relax at long time for large
W/t, confirming the dynamical nonergodicity of the system.
For S(7) [Fig. 3(a)], we obtain a linear growth at the beginning
up to a ballistic time scale 7y, and logarithmic growth at later
time, which is qualitatively similar to the case of on-site
disorder driven MBL. However, there are two quantitative
differences from the on-site disorder case. One is that the
ballistic time scale ty is about several tunneling time even at
huge W. We expect 1y to be the tunneling time multiplied by
the typical thermal-bubble size in our bubble-neck MBL phase.
The other is that the long time limit of entanglement entropy
S(00)is significantly larger than the deep on-site disorder MBL
phase, which we attribute to the existence of thermal bubbles
in our MBL system.

The MBL transition at finite W /t. As we further decrease
W/t, the cross-block couplings [Fig. 1(a)] become more
important and eventually drive a delocalization/thermalization

1(7)
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FIG. 3. Dynamical properties of the localized phase. Here we
begin with random product states and then compute their time-
evolution with H defined in Eq. (1). (a) Entanglement growth with
varying W/t. The dashed brown line is a logarithmic fit to the data.
(b) Scaling of the saturated value of entanglement S(co). Similar
to the case of random on-site disorder driven MBL [7], for strong
random interaction with W > 25, the entanglement entropy exhibits
an unbounded logarithmic growth in the thermodynamic limit and the
its saturation value obeys a volume-law for finite L. This lends strong
support of a random interaction driven MBL phase. (c) Dynamical
evolution of density imbalance. It saturates to a finite value and thus
does not relax at long-time, another signature of MBL and ergodicity
breaking. (d) Density imbalance at long time limit as a function of L
for different W/t.

transition. Figure 4 shows the behavior of the different
diagnostics. Figure 4(a) shows the gap ratio r. At strong
randomness W/t > 20, r approximately stays at the universal
Poisson value. For W/t < 5, we find that r systematically
approaches the GOE value r with increasing L, which implies
that the system is in a thermal phase. We expect r(W/t)
to approach a step function in the thermodynamic limit,
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giving a sharp transition at certain critical random-interaction
strength W,.. The crossings for different lines in Fig. 4(a)
indicate W, /¢ lies between 5 and 15. Figure 4(b) shows the
bipartite entanglement entropy density (s = S/L). At small
W, the entanglement entropy obeys volume-law scaling, and
is expected to approach the thermal entropy (~0.35L) for large
enough L. We find that the entanglement entropy has a plateau-
like behavior for small W/ ¢, providing numerical evidence for
s to be a constant in the thermal phase. Figure 4(c) shows the
variance of entanglement entropy (A;), which has been used
to diagnose the MBL transition [10,45,50,51]. In calculating
Ay, we first average s over all eigenstates within one disorder
realization, and then calculate the standard deviation across
different samples. In our study of the random interaction
model, we see A developing a peak in the crossover regime.
The peak value grows significantly as we increase L, which
is qualitatively similar to what has been found for the random
on-site disorder models [10,45,50]. This diverging behavior of
the entanglement variance also suggests W, € (5,15).

Conclusion. We study random interaction driven MBL
phase and point out its key differences with the on-site
disorder driven case. We construct the generic bubble-neck
eigenstates for the MBL phase in the infinite randomness
limit, transcending the LIM description of MBL. With exact
diagonalization, we confirm the MBL phase at finite random
interaction by calculating level statistics, participation entropy
and entanglement dynamics. At weak random interaction, we
find that the system undergoes a thermalization transition. The
random interaction driven MBL discussed in this paper is
generic for one-dimensional clean spinless fermions (as shown
in Ref. [43] by studying different models) and is qualitatively
different from MBL studied in interacting systems with single-
particle disorder.

Note added. After completing our work, we learned from
Katsura that the inflated-fermion mapping approach has been
used previously to study Luttinger liquid physics in the ground
state [52].
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FIG. 4. MBL transition of 1D fermions with random interactions. (a) Disorder averaged adjacent gap ratio » as a function of the random-

interaction strength W/¢. The level statistics obey the GOE and Poisson distributions in the thermal and MBL phase with r approaching 0.53
and 21n2 — 1 (marked by “dashed” lines), respectively. The transition gets sharper as we increase the system size L. (b) Disorder averaged
half-chain entanglement entropy density S/L. The inset shows the scaling of S with increasing L. The entanglement entropy is strongly
suppressed at large W. (c) Standard deviation of s across disorder samples (Ay). The numeric results indicate a MBL transition locating at
W./t € (5,15).
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