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Thermal fluctuations of the Josephson current in a ring of superconducting grains
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Thermal fluctuations of the Josephson current induced by the magnetic flux through a ring of N superconducting
grains are studied. When a half-fluxon is threading the ring, I exhibits incoherent transitions between the two
degenerate states due to thermal phase slips. We propose a numerical method to deal with both equilibrium and
dynamic properties of Josephson systems. Computed transition rate has the form � = A(N ) exp[−B(N )/T ],
where B(N ) agrees with the analytical result derived for the energy barrier associated with phase slips. In the
nondegenerate case (e.g., at a quarter-fluxon) the equilibrium value of I decreases with T due to harmonic
excitations and then gets destroyed by phase slips.

DOI: 10.1103/PhysRevB.95.014520

I. INTRODUCTION

Persistent currents in small metallic rings have been studied
theoretically and experimentally since the 1960s. [1] Rapid
progress in manufacturing of nanostructures [2] has ignited a
contemporary interest to measurements of microscopic chains
of Josephson junctions (JJ) [3]. Analytical studies in this
area consider two limits: When the dynamics of the chain
is dominated by the capacitances of the junctions [4] and
when the dynamics is dominated by the capacitances of the
superconducting islands [5]. Here we focus on the latter limit
in the classical regime when thermal fluctuations dominate
over quantum fluctuations.

There are two characteristic energy scales in the prob-
lem. One is the charging energy of the superconducting
island U ≡ EC = 2e2/C, where C is the capacitance of
the island with respect to the ground, and the other is
the Josephson energy J . They determine the characteris-
tic temperature ranges and physical properties of the JJ
chains [5–9]. At T � T ∗ = √

2JU quantum fluctuations
dominate over thermal fluctuations. At T = 0 and T ∗ =
TKT ∼ J (with TKT being the temperature of the Kosterlitz-
Thouless transition in a two-dimensional XY model) quan-
tum phase slips yield the superconductor-insulator transi-
tion [10–13]. The persistent currents in the quantum regime
have been computed numerically for long chains [14,15],
as well as analytically using the effective low-energy
description [16].

Here we focus on the classical thermal regime corre-
sponding to the temperature range T ∗ � T , which is easily
accessible in experiment. We begin with analytical calculation
of the low-temperature behavior of the persistent current I

and the energy barrier for the phase slip. The numerical
computation of the equilibrium value and dynamics of I that
follows is challenging for two reasons. First, while fluctuations
of the current decrease with the length of the chain, so does
the current itself, I ∝ 1/N . Thus increasing the system size
does not suppress fluctuations and an extensive averaging is
needed. Second, accounting for the exponentially rare phase
slips at T � J requires a very long computer time. We propose
an efficient numerical method to compute both equilibrium and
dynamic properties.

II. THE MODEL

The energy of the ring is a sum of charging energies of the
grains and the Josephson coupling energy (see, e.g., Ref. [15]
and references therein)

H =
N∑

i=1

{
C

2
V 2

i + J

[
1 − cos

(
θi+1 − θi + 2πφ

N

)]}
. (1)

Here C is the capacitance of a superconducting grain with
respect to the ground, Vi is the voltage of the ith grain, and
φ = �/�0, with � being the magnetic flux piercing the ring
and �0 = h/(2e) being the flux quantum. Using the Josephson
relation

Vi = �

2e
θ̇i , (2)

where θi is the phase of the superconducting order parameter
of the ith grain (θ̇i = dθi/dt), one can rewrite the energy as

H =
N∑

i=1

{
�

2

4U
θ̇2
i + J

[
1 − cos

(
θi+1 − θi + 2πφ

N

)]}
, (3)

with U ≡ EC = 2e2/C. A mechanical analogy to our problem
is a chain of rotators with the moment of inertia �

2

2U
.

Due to periodicity of the ring, the sum rule
∑N

i=1(θi+1 −
θi) = 2πm with m being an integer, 0 � m � N − 1, is
satisfied. The limitation on m is similar to that on the wave
vector in the Brillouin zone. For a given m the minimum of
the Josephson energy is achieved when all phase differences
are the same, θi+1 − θi = 2πm/N :

E
(m)
J = NJ

[
1 − cos

2π (m + φ)

N

]
. (4)

In the half-integer-fluxon case, φ = n + 1/2, this ground state
is degenerate, E

(−n)
J = E

(−n−1)
J = NJ (1 − cos π

N
). For 0 <

φ < 1/2 the ground and first excited states are m = 0, − 1,
their energy difference being

E
(−1)
J − E

(0)
J = 2NJ sin

π

N
sin

π (1 − 2φ)

N
. (5)

This and all other energy differences become small for
large N .
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FIG. 1. Josephson energy EJ vs the phase-slip angle �, Eq. (6).
(a) φ = 1/4. (b) φ = 1/2.

Consider the energy barrier for a phase slip. To change
m in a manner that requires minimum work, one has to
change the phase difference � between any pair of neighboring
grains from nearly zero to nearly 2π , keeping all other phase
differences small and constant, θi+1 − θi = �θ . Eliminating
�θ from the periodicity condition � + (N − 1)�θ = 2πm

yields the Josephson energy [16]

EJ (�) = NJ − J cos

(
� + 2πφ

N

)

− (N − 1)J cos

(
2πm − �

N − 1
+ 2πφ

N

)
(6)

shown in Fig. 1. For N � 1 the second cosine becomes
a parabola with superimposed oscillations due to the first
cosine. Transition from m to m′ = m − η with η = ±1 occurs
via changing � from �(m) = �θ (m) = 2πm/N to �(m′) =
�θ (m′) + 2πη. Here from the periodicity condition in the form
2πη + N�θ (m′) = 2πm one obtains �θ (m′) = 2πm′/N . In
particular, transition from m = 0 to m′ = −1 (η = 1) requires
the change in � from zero to 2π (1 − 1/N ). Analysis of EJ (�)

shows that for φ = 1/2 it is symmetric with the top of the
energy barrier between the two minima at �b = π (1 − 1/N ),
so that

B = EJ (�b) − EJ (0) = J

[
2 − N

(
1 − cos

π

N

)]
. (7)

The barrier varies from J/2 at N = 3 to 2J at N → ∞.
Classical equation of motion corresponding to Eq. (3)

reads

�
2

2U
θ̈i = −∂H

∂θi

. (8)

In terms of grain charge Qi = CVi = e�

U
θ̇i this becomes

continuity equation

Q̇i = −2e

�

∂H
∂θi

= −2π

�0

∂H
∂θi

= Ii,i+1 + Ii,i−1, (9)

where

Ii,i±1 = 2πJ

�0
sin

(
θi±1 − θi + 2πφ

N

)
(10)

is the current flowing into grain i from grain i ± 1. For the
chain current in the direction of increasing i we will use the
average over all junctions

I = 2πJ

�0

1

N

N∑
i=1

sin

(
θi+1 − θi + 2πφ

N

)
. (11)

This formula also can be obtained as I = ∂H/∂�.
In terms of the dimensionless momenta pi defined via θ̇i =√

2JU
�

pi , the kinetic energy in Eq. (3) becomes Ek = ∑
i

J
2 p2

i ,

and with the dimensionless time τ =
√

2JU
�

t equations of
motion become

dpi

dτ
= sin(θi+1 − θi) + sin(θi−1 − θi),

dθi

dτ
= pi. (12)

This system is equivalent to a closed chain of interacting
rotators, with the charging energy playing the role of kinetic
energy and the Josephson energy being potential energy.
Here we study the limit of negligible dissipation which
does not show up on the time scale of the experiment. We
used Wolfram Mathematica with compilation in C. As the
differential-equation solver we used the fifth order Butcher’s
Ruge-Kutta method that makes six function evaluations per
integration step. High precision of this integrator allows using
a larger integration step �τ = 0.2.

III. EQUILIBRIUM PROPERTIES

To consider equilibrium properties analytically at low
temperatures, it is convenient to introduce reduced phases θ̃i

according to θi = θ̃i + 2πm
N

(i − 1) (so that accumulation of the
reduced phases over the ring is zero). Thermal average of the
ring’s Josephson energy EJ ≡ 〈HJ 〉 is given by [15]

EJ = NJ

[
1 −

〈
cos

(
θ̃i+1 − θ̃i + 2π (φ + m)

N

)〉]

= NJ

[
1 −

〈
cos

(
2π (φ + m)

N

)〉
〈cos(θ̃i+1 − θ̃i)〉

]
, (13)
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where we have taken into account 〈sin (θ̃i+1 − θ̃i)〉 = 0 and
decoupled fluctuations of the winding number m and reduced
phases θ̃i . The latter describe harmonic fluctuations that are
similar to spin-wave theory for the equivalent system of the
two-component classical spins. Thus one can use the known
result for the XY classical spin chain in one dimension,

〈cos(θ̃i+1 − θ̃i)〉 = 1 − T

2J
. (14)

In a similar way, or just by I = ∂EJ /∂�, one obtains

I = 2πJ

�0

〈
sin

2π (φ + m)

N

〉(
1 − T

2J

)
. (15)

At T � J phase slips changing m are exponentially rare,
and one can discard averaging in Eq. (15). For φ = 0 the
ground state is m = 0, and the corresponding current is zero.
For φ = 1/2, there are two opposite I values in the degenerate
ground states m = 0, − 1. Equation (15) is valid within time
intervals between rare phase slips 0 � −1. However, the large-
time average of I is zero. To the contrary, in nondegenerate
cases, such as φ = 1/4, there is a robust thermal average value
of I .

At higher temperatures one has to take into account thermal
fluctuations of m that are especially pronounced at large
N since energy differences between states with different m

decrease with N [see Fig. 1(b)]. Averaging over m can be
done by

I = 2πJ

�0

(
1 − T

2J

)
1

Z

N−1∑
m=0

sin
2π (φ + m)

N
exp

(
−E

(m)
J

T

)
,

(16)

where Z is the corresponding partition function and

E
(m)
J = NJ

[
1 − cos

(
2π (φ + m)

N

)(
1 − T

2J

)]
, (17)

cf. Eq. (4). Harmonic corrections in this formula are important
in the intermediate temperature range for N � 1, where
m fluctuations have to be taken into account but harmonic
approximation still holds.

Equilibrium properties of the system can be computed
either by the Monte Carlo (Metropolis) routine for effective
two-component classical spins si = (sin θi, cos θi). Since at
T � J equilibration of winding numbers m becomes very
slow, standard Monte Carlo routine using trial changes of
directions of individual spins fails to reach equilibrium.
However, adding trial changes of m in the routine,

θi → θ
′
i ≡ θi + 2πm′(i − 1)

N
, 0 � m′ � N − 1 (18)

(one time before or after the full system update by individual
rotations) makes the system equilibrate fast in spite of energy
barriers shown in Fig. 1.

Thermal equilibrium values of the current for different
numbers of grains in the ring are shown in Fig. 2, setting
J = �0 = 1. Most of the numerical data were obtained by
Monte Carlo with trial m jumps added, that allows us to reach
equilibrium at any temperature. Analytical results of Eq. (16)
are in accordance with numerical data. In experiment it can
be difficult to reach equilibrium at low temperatures because

FIG. 2. Thermal averages of the current at φ = 1/4 for different
N . Numerical results (symbols) are obtained by Monte Carlo with m

jumps and analytical results (solid lines) are those of Eq. (16). Dashed
line is harmonic approximation, Eq. (15) without angular brackets,
and with m = 0.

of energy barriers. The required equilibration time can be
estimated using our dynamical results below.

IV. MAXWELLIZATION METHOD FOR
THERMODYNAMICS AND EQUILIBRIUM DYNAMICS

While Monte Carlo is a mainstream method at equi-
librium, it is not suitable for dynamical problems simply
because it is not based on real dynamics. We propose
here another numerical method for statics and equilibrium
dynamics of classical systems having kinetic energy, such
as arrays of Josephson junctions. In this method that we
call maxwellization, equations of motion, here Eq. (12), are
solved numerically over a long time interval (0,τmax) divided
into subintervals of length τ0 � τmax. At the end of each
subinterval the momenta pi , having the Maxwell distribution
fp ∝ exp (− Jp2

2T
) with the average kinetic energy T/2 per

particle at equilibrium, are generated anew with another
realization of the Maxwell distribution at the same temperature
T , leaving the phases θi unchanged. In such a way a statistical
ensemble is created in which the energy of the system is
fluctuating. Kinetic energy is converted into potential energy
during the microscopic time τ ∼ 1, thus the whole system
becomes quickly thermalized. After a short thermalization
time, one can begin measuring physical quantities by av-
eraging the solution of the equations of motion over large
times. Maxwellization method works for both equilibrium
and dynamic problems. We have checked that maxwelliza-
tion yields the same results with τ0 ∼ 1 and τ0 � 1.
Figure 3 shows that thermal Josephson energies EJ obtained
by Monte Carlo are the same as obtained by maxwellization,
the accuracy and computer time being comparable.

Maxwellization resuls are also shown in Fig. 2 for N = 16
with τmax = 108. For larger N maxwellization cannot reach
equilibrium, similar to standard Monte Carlo without m jumps.
Unlike Monte Carlo, maxwellization cannot be extended to
include m jumps since it is based on the realistic dynamics.
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FIG. 3. Josephson energies EJ vs T , obtained by Monte Carlo
and by maxwellization.

The background for the application of the maxwellization
method to equilibrium dynamics is the following. Dynamics
of underdamped systems of many superconducting grains
that are considered throughout this paper is predominantly
internal and it is nontrivial enough to generate phase slips.
Small coupling to the bath only slightly perturbs the dynamics
and can be neglected. The system serves as a bath for itself.
In the underdamped case one can use the microcanonical
approach and average the energy-dependent phase-slip rate
�(E), obtained for the isolated system as explained in the next
section, over the energies satisfying the Gibbs distribution as
follows:

�(T ) = 1

Z

∫
dEρ(E)e−E/T �(E). (19)

Here Z is partition function and ρ(E) is the density of states of
the system, while E is energy per grain above the ground-state
energy. �(E) vanishes for E < B/N , where B is given by
Eq. (7). For N � 1 the system is above the barrier in a wide
range of energies E and can cross the barrier via its internal
dynamics without any help of the bath. Practically, instead
of integrating with the poorly known ρ(E), one can sample
energy states with the help of the Monte Carlo procedure for
phases θi and Maxwell distribution for their time derivatives
θ̇i (both being statistically independent for classical systems),
that is

�(T ) = 1

Nsamp

Nsamp∑
i=1

�(Ei), (20)

where Nsamp is the number of sampled states that has to be
large, especially at low temperatures.

The microcanonical method was applied at the early stages
of the work and it gave the results perfectly consistent with
those obtained by the maxwellization that is nothing else than
its computational improvement. The computational difficulty
with the microcanonical method is that at low energies �(E)
is very small and one needs to run conservative dynamics
over very large time intervals to have a few phase slips. The
numerical integration method should be very accurate to avoid

FIG. 4. Time dependence of the current at φ = 1/4, showing
harmonic fluctuations and phase slips in states with two different
total energies E, generated at the same T .

energy drift that will spoil the results. In fact, in the present
computations energy corrections were introduced to ensure
conservation of the energy. To compute �(T ), the best strategy
is to precompute �(E) over a relevant range of energies, build
an interpolation function over these results, and than run Monte
Carlo for Eq. (20).

The microcanonical method is working well and it could
be used as the main method in this project. However, the
maxwellization method is more direct, robust, and elegant.
This method puts dynamics and statistics into one. There is
only one very long dynamical run, in the course of which
kinetic energies are reassigned according to the Maxwell
distribution at regular intervals τ0 � τmax. In this way, the
statistical ensemble is being built during the evolution of
the system, closer to what happens in reality. One does not
need to strictly ensure energy conservation in the numerical
integration of the equations of motion since the energy is
changing anyway. Results of the maxwellization method do

FIG. 5. Time dependence of the Josephson current at φ = 1/2,
showing harmonic fluctuations and phase slips.
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FIG. 6. Microcanonical superconducting current transition rate
�(E) of a ring of N Josephson junctions in the half-fluxon case.

not depend on τ0 and are exactly the same as those obtained
by the microcanonical method.

V. DYNAMICS OF PHASE SLIPS: NUMERICAL RESULTS

Typical time dependencies of I obtained by solving the
equation of motion, Eq. (12), and using Eq. (11) for a
quarter-fluxon threading the ring are shown in Fig. 4 in states
with two different dynamically conserved energies, generated
at the same temperature. In this illustrative computation, no
maxwellization has been done to show that fluctuations of
the current have mainly dynamic origin. Jumps correspond
to the transitions (phase slips) between different values of
m indicated in the figure. Small fluctuations between phase
slips are harmonic excitations. Dynamical fluctuations of I

are stronger in the states with a higher energy. Due to the lack
of symmetry [see Fig. 1(a)], there is a nonzero time average

FIG. 7. Numerically computed transition rates � with Arrhenius
fits for transitions between opposite directions of the current,
corresponding to m = 0 and m = −1, for rings of different length
in the half-fluxon case.

of the current, shown in Fig. 2 as the maxwellization result for
N = 16.

In the half-fluxon case the energy is degenerate and the
current averaged over long times is always zero. I (τ ) exhibits
jumps between opposite directions corresponding to m = 0
and m = −1, on top of harmonic fluctuations around these
states, see Fig. 5 (also without maxwellization). The rate of
transitions between the opposite values of I can be computed
as � = Njumps/τmax, where Njumps is the number of current
jumps within the time interval of length tmax.

Transition rate �(E) obtained from the conservative evolu-
tion of the system is shown in Fig. 6. For large N the results can
be fitted with the Arrhenius energy dependence. For smaller
N , the curves deviate downwards from straight lines since
�(E) = 0 for E < B/N , as argued above. These results can be
used to obtain �(T ) by statistical sampling at the temperature
T , see Eq. (20). The results are in agreement with the results
obtained by the maxwellization.

The results for �(T ) obtained directly by the maxwelliza-
tion, as explained in the preceding section, follows the law

FIG. 8. Thermal fluctuations of I at a half-fluxon. (a) Barrier
energies B extracted from the fits of � in Fig. 7, compared to
their analytical values from Eq. (7). (b) Prefactor A extracted from
numerical data.
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� = A exp(−B/T ). This is shown for closed chains of
different length in Fig. 7 (in terms of the dimensionless time
τ with τmax = 108). Numerically obtained exponents B(N )
are in excellent agreement with the analytical result given by
Eq. (7), as one can see from Fig. 8. The computed prefactor is
well approximated by A = 0.23(N − 3/2). Its proportionality
to N at large N agrees with the fact that the phase slip can
occur at any of the N sites of the chain. At higher temperatures,
T ∼ J , temporal behavior of the current becomes more chaotic
as it involves transitions between other values of m as well.

VI. DISCUSSION

We have considered equilibrium and dynamic properties of
Josephson-junction rings in the classical limit. It was shown
that for rings composed of many junctions, N � 1, one has
to take into account different values of the winding number m

in the thermodynamics of the persistent current caused by the
magnetic flux piercing the ring. Analytical results combining
harmonic approximation with averaging over different m

have been confirmed by a Monte Carlo routine allowing m

jumps (phase slips). Energy barriers for phase slips have been
obtained analytically and shown to increase with N .

Numerical method of “maxwellization” for solving ther-
modynamic and equilibrium dynamic problems has been
developed and applied to JJ rings. This method is based on
real dynamics and it is suitable for computation of quantities
such as transition rates at a given temperature. In particular,
we have obtained Arrhenius temperature dependence of the
inversion rate of the persistent current at a half-fluxon with the
barrier given by our analytical expressions.

By visualizing the temporal behavior of the current in
Josephson junction chains, our results provide guidance for
future experiments in this field. Similar numerical approach
can be tried to study open chains with a bias current.
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