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Superconducting vortices and phase slips are primary mechanisms of dissipation in superconducting, superfluid,
and cold-atom systems. While the dynamics of vortices is fairly well described, phase slips occurring in quasi-
one-dimensional superconducting wires still elude understanding. The main reason is that phase slips are strongly
nonlinear time-dependent phenomena that cannot be cast in terms of small perturbations of the superconducting
state. Here we study phase slips occurring in superconducting weak links. Thanks to partial suppression of
superconductivity in weak links, we employ a weakly nonlinear approximation for dynamic phase slips. This
approximation is not valid for homogeneous superconducting wires and slabs. Using the numerical solution of
the time-dependent Ginzburg-Landau equation and bifurcation analysis of stationary solutions, we show that the
onset of phase slips occurs via an infinite period bifurcation, which is manifested in a specific voltage-current
dependence. Our analytical results are in good agreement with simulations.
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I. INTRODUCTION

The motion of Abrikosov vortices is recognized as the main
cause of dissipation in type-II superconductors [1]. Conversely,
in thin nanowires, the motion of vortices is impeded, and
phase-slip events are responsible for the dissipation. Phase
slips, changing the phase difference of the superconducting
order parameter by 2π , may be caused by different physical
mechanisms. Thermally activated phase slips at high temper-
atures and small applied currents are well understood [2]. At
very low temperatures, phase slips can be caused by quantum
fluctuations (aptly called quantum phase slips) [3–5]. Phase
slips are not unique to superconductors. They also occur
in superfluid systems [6–8], and more recently, dissipation
due to phase slips was studied in cold-atom systems [9–11].
In particular, phase slips can be triggered in a superfluid
cold-atom system by a rotating weak link [12].

Even without thermal and quantum fluctuations, the phase-
slip phenomena and dissipative (or resistive) states can be
induced by an applied current [13,14]. A magnetic field
penetrates type-II superconductors in the form of Abrikosov
vortices. If an external current is applied, the Lorentz force
induces motion of the vortices. This motion is the main cause
of dissipation in two-dimensional (2D) and 3D superconduc-
tors. However, in quasi-one-dimensional nanowires with a
coherence length ξ (T ) and a penetration depth λ(T ) large
compared to the wire diameter, vortex motion is suppressed.
In this situation, the transition to the normal state was made
through successive voltage jumps, which are attributed to the
appearance of phase-slip centers [13,14]. A study of this
phenomenon was presented first by Kramer and Baratoff,
who found that slightly below the depairing current, there
is a dissipative state that consists of localized phase slips
occurring in the superconducting filament [15]. In a narrow
range of currents close to the depairing current, the material is
superconducting except in narrow regions where phase-slip
centers (PSCs) occur. The period of these PSCs diverges
as the external current approaches the lower bound in this

narrow region. It was also shown that random thermal
fluctuations allow for phase slips [16], but these did not persist
indefinitely. Further numerical study of the one-dimensional
time-dependent Ginzburg-Landau (TDGL) equation revealed
periodic phase slips existing in a narrow range of currents
close to the depairing current [17,18]. Follow-up numerical
studies of narrow two-dimensional superconducting strips
discovered a transition from a phase-slip line to vortex pairs
[19]. Periodic lattices of the phase-slip centers were studied in
the context of vortex penetration in thin superconducting films
near the third critical magnetic field [20]. Using a saddle-point
approximation for the Ginzburg-Landau energy in narrow
superconducting strips, the dependence of voltage drop versus
temperature and bias current (neglecting thermal fluctuations)
was studied in [21].

The situation is different, however, for spatially inhomo-
geneous systems, such as superconductors with macroscopic
defects or weak links [22]. Perhaps the most famous examples
are Dayem bridges and Josephson junctions [23,24]. The
mechanism for dissipation in these cases is the quantum
tunneling of Cooper pairs between the two superconductors,
which is caused by a phase difference between the weakly
linked superconductors. When the current is below some
threshold jc, the phase difference is fixed in time and a
stationary superconducting state persists. Above this threshold
the solution exhibits oscillations, which lead to a finite voltage.
In a review paper by Ivlev and Kopnin, inhomogeneities were
analyzed, but only with regard to the stability of the normal
state [25]. Thus, their analysis involved currents much closer
to the GL critical threshold jGL = 2/

√
27. A lower bound j1

at which the normal state was globally unstable (i.e., arbitrary
small perturbation led to instability of the normal state), and
above which there was a critical-sized perturbation that sep-
arated the normal and superconducting states, was estimated.
Also, an upper critical current j2 such that the normal state
was absolutely stable for an external current j0 > j2 was
found. An inhomogeneity much smaller than the coherence
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length, ξ (T ), was used and was approximated by a δ function,
simplifying the algebra. Here we consider a more realistic
situation for type-II high-temperature superconductors: an
inclusion on the scale of ξ (T ). The transition we are interested
in analyzing occurs between the nonuniform superconducting
state and the oscillatory state with phase slips. Therefore, the
steady state and linearization in this paper are much more
complex in analyzing the normal state. The authors of [26] have
shown experimental results of weak links with nonhysteretic
behavior.

The phase-slip state of homogeneous systems has recently
been analyzed in much greater detail [27]. Using bifurcation
analysis, Baranov et al. extracted the normal form of a saddle-
node bifurcation when the current is near the critical current.
They then correctly determined the characteristic scaling law
and showed its agreement with numerical simulations. The
period diverges in an infinite-period saddle-node bifurcation
as j0 → jc. These authors further expanded upon their analysis
by showing the important role that the material parameter u

plays in the type of bifurcation that can occur [28] (u is related
to the electric-field penetration depth). They observed that for
finite lengths and values of u above some critical threshold uc2,
numerical simulations showed hysteresis in the I -V curve.
However, our work focuses on analytical methods for the
inhomogeneous system, which, as stated previously, makes the
steady state and linearization much more difficult to handle.
We show that a simplified system can be obtained through
weakly nonlinear analysis, and that this system contains the
normal form obtained in [27] as the size of the weak link
shrinks to zero. We also demonstrate that in addition to the
infinite period bifurcation for small u, a hysteresis exists in our
system for large u values, similar to that in Ref. [27]. However,
in contrast to previous studies, our reduced two-dimensional
nonlinear system exhibits the evolution of periodic orbits and
a transition between superconducting and normal states that
are not properly captured by the one-dimensional model in
Ref. [27].

Michotte et al. [29] found that the condition in which PSCs
occur is based on the competition between two relaxation
times: the relaxation time for the magnitude of the order
parameter t|�| and the relaxation time for the phase of the order
parameter tφ . They observed that phase slips are possible only
when tφ < t|�|. A linearized Eilenberger equation in the dirty
limit was studied, resembling a generalized TDGL equation
with additional parameters related to inelastic electron-phonon
collisions, which was first derived in [30]. They derived
an approximate critical current via this equation, and their
results implied that there was a finite maximal oscillation
period for the order parameter. In contrast, for weak links
all oscillation periods diverged. The generalized GL equation
used contained an additional parameter γ characterizing the
relative superconducting phase relaxation time (for us, γ = 0).
For large γ values, hysteresis was observed in the I -V curve.
On a qualitative level, the effect of increasing parameter γ is
similar to an increase in parameter u [27]. Correspondingly,
we observed hysteresis when u � 1. The authors of [31]
performed a numerical analysis of a periodic array of weak
links using the generalized TDGL equation. They showed I -V
curves for different magnetic fields, however no analysis of the
divergence of the period of vortices was presented.

We focus on a 1D superconductor, separated by a normal or
weakly superconducting inhomogeneity. The complete system
is modeled by a spatially dependent critical temperature Tc(x).
The weak link is created by a lower transition temperature
inside an interval I = [−r,r], which leads to the suppression of
the order parameter. Here r is the inclusion radius. Below some
critical current, this system relaxes to a stationary supercon-
ducting state, but above it, the superconductor exhibits a finite
voltage with oscillatory behavior. Thermal fluctuations are
initially not considered in this model, and therefore they do not
cause a finite voltage in the superconducting state. The Joseph-
son junction analysis is not applicable here. Indeed, since
there is no dielectric contact between the two superconductor
pieces, the phase should always be the same, implying zero
voltage. We will show via simulations of the time-dependent
Ginzburg-Landau equation that the oscillations in the voltage
are caused by phase slips in the center of the inclusion. The
system approaches this state via a saddle-node bifurcation of
two superconducting states, which occur at the critical current
(at a saddle-node bifurcation, stable and unstable stationary
superconducting states annihilate and a periodic resistive state
appears). The suppression of the order parameter in and
near the weak link allows us to employ analytical methods
in the vicinity of the critical current. We derive a reduced
two-dimensional system governing the time evolution of the
phase-slip solution, and we describe a sequence of transitions
between superconducting and dissipative states.

The paper is organized as follows: Sec. II describes the
model and Sec. III deals with the stationary case and estimates
the critical current that is obtained from the saddle-node
bifurcation condition. Sections IV–VII deal with the time-
periodic solutions, extracting a time-dependent system via
weakly nonlinear analysis and then studying the simplified
model to show that it exhibits the same qualitative behavior.
In Sec. VIII, we interpret our analytical results, showing the
correspondence to the parameters of the superconductor and
its effects on the phase-slip state. Finally, Sec. IX contains
closing remarks and ideas for further study.

II. GOVERNING EQUATIONS

The time-dependent Ginzburg-Landau equations (TD-
GLEs) are obtained by minimization of the GL free energy
[32]. In the absence of a magnetic field, this results in

	

(
∂t + i

2e

�
μ

)
� = a0ν(x)� − b|�|2 + � + �

2

4m
∂2
x�,

(1)

where 	, a0, and b are phenomenological parameters that can
be found from the microscopic theory [33], e,m are the electron
charge and mass, μ is the scalar potential, and ν(x) is a spatially
dependent linear coefficient modeling inhomogeneities in the
system. Following Sadovskyy et al. [34], we define the +x

direction as the direction of the external current, and we obtain
the following dimensionless form:

u(∂t + iμ)� = ∂2
x� + [ν(x) − |�|2]� (2a)
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with the total current j0,

j0 = Im(�∗∂x�) − ∂xμ. (2b)

Here � is the complex order parameter, satisfying |�| = 1
in the purely superconducting state and |�| = 0 in the normal
state. The parameter u = 	/a0τGL with time τGL = 4πσλ2

0/c
2,

λ0 =
√

mc2

8πe2ψ2
0

is the magnetic penetration depth (c is the speed

of light), and ψ0 = √
a0/b is the equilibrium value of the order

parameter when spatial variations are neglected, i.e., ν(x) = 1.

The zero-temperature coherence length ξ0 =
√

�2

4ma0
is used for

the unit of length. For more details, see [34].
We apply periodic boundary conditions for �. Since μ is

on average an increasing function of x, there is necessarily a
discontinuity at the boundary. This is resolved by making the
following transformations:

� = �̃eiK(t)x, (3a)

μ = −Ax + μ̃. (3b)

Here, μ̃ is a periodic function in x. Essentially, we are moving
the growth of μ to the phase of �. The growth in K now
does not affect the magnitude. Indeed, this also allows us
to rewind K through K → K − (2π/�x)�K�x/2π�, which
will remove any error from rapid phase oscillations [34].
Inserting this into (2a) gives

u[∂t + ix(∂tK − A) + iμ̃]�̃

= (∂x + iK)2�̃ + [ν(x) − |�̃|2]�̃.

Setting ∂tK = A eliminates the linear term. Now inserting this
into (2b), we have

j0 = Im(�̃∗∂x�̃) + |�̃|2K + ∂tK − ∂xμ̃.

Averaging this equation over space and noting that 〈μ̃x〉 = 0
results in an ordinary differential equation (ODE) for K ,

∂tK + 〈|�̃|2〉K = j0 − Im〈�̃∗∂x�̃〉 ≡ jn.

For clearer notation, we now suppress the tildes, and we arrive
at our modified TDGLE,

u(∂t + iμ)� = (∂x + iK)2� + [ν(x) − |�|2]�, (4a)

μx = Im(�∗∂x�) + ∂tK + |�|2K − j0, (4b)

jn = ∂tK + 〈|�|2〉K. (4c)

The integration domain is periodic with the period L. For
the numerical integration, we generally took L = 20 and
u = 1, however this was relaxed to see if the qualitative
behavior changed. We verified that increasing L does not
affect the results, however changing u can have a large effect
(see Sec. VIII C). To make the analysis simpler, we placed
the weak link of length 2r symmetrically at the origin in the
interval I . The inclusion’s effect enters through the term ν(x)�
defined by

ν(x) ≡
{

1, x �∈ I,

−C, x ∈ I.
(5)

Numerical analysis has shown that for L � r there exists a
critical current jc, which is a function of r that separates the

dynamics of this system. For j0 < jc, the system goes to a
stationary superconducting state, while for j0 > jc the system
exhibits a dissipative state represented by periodic phase slips
occurring in the center of the inclusion via a stable limit cycle.
In the following sections, we explain these results analytically.
We first provide an analytical approximation of the critical
current. Next, we extract a coupled two-dimensional nonlinear
system of ODEs from (2a) that describes qualitatively the
correct behavior for suitable choices of the coefficients of the
simplified system.

III. THE STATIONARY CASE j0 < jc

In the superconducting state with an applied current of
j0 < jc, it can be shown that μ = 0 (see Appendix A 1 for
details). To proceed, we rewrite (2a) in terms of the amplitude
and phase of the order parameter, i.e., � = Feiφ . Inserting
this into (2a) and (2b) gives for the stationary equation

0 = ∂2
xF + [ν(x) − (∂xφ)2 − F 2]F, (6a)

j0 = F 2∂xφ. (6b)

Plugging (6b) into (6a) gives the nonlinear ODE,

0 = ∂2
xF + [

ν(x) − j 2
0 F−4 − F 2]F. (7)

A. Large-C approximation

We now assume a large-C approximation, that is, the weak
link strongly suppresses superconductivity in the inclusion
(i.e., C � j 2

0 F−4). This allows us to neglect the nonlinear
term and obtain a first-order approximation of the solution
of (6). From this we notice that (6a) has a first integral for
both the inclusion domain and the superconducting domain.
Asymptotic analysis of the size of these coefficients gives us
a condition for jc given by

jc = 1

2
√

C
e−2r

√
C ; (8)

for details, see Appendix A 2. Setting C = 1, we have that

jc = 1
2e−2r . (9)

Comparing this approximation with numerical simulations,
we see that the large-C approximation with C = 1 is in good
agreement with the numerical solution (see Fig. 1). Thus, we
derived that a weak link results in an exponential suppression
of the critical current as a function of the inclusion width 2r and
strength C. A similar result was obtained through a different
method in Ref. [18]. However, our method is appealing for the
simple generalization to multiple inclusions.

B. Multiple inclusions

Let r1, . . . ,rk be the radii of k inclusions in the domain. We
have k + 1 superconducting domains and k normal domains,
each with their own first integral constant. The analysis
from Appendix A 2 carries over, and we expect the inclusion
domain’s first integral constant EIk

to be approximately 0 for
each k. This holds at the center of each respective inclusion,
which each give different critical currents. However, when one
is no longer satisfied, the system will no longer be satisfied
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r
0.5 1 1.5 2 2.5 3

j c

10-3

10-2

10-1

100

One inclusion (simulation)
Two inclusions (simulation)
One inclusion (theory)
Two inclusions (theory)

FIG. 1. The critical current as a function of inclusion size using
(9) [e.g., C = 1 with (8)]. For the two inclusions, one inclusion is
held fixed at r = 2. Above the curves, the superconducting order
parameter � oscillates.

and the global jc is determined by the lowest local jc, which
appears at the longest inclusion:

jc ≈ 1
2e

−2 max
k

rk

. (10)

C. Linear stability analysis of the stationary state

Consider now a perturbation η of the stable state in the
form � = (F + η)eiφ . Inserting this into (2a) and (2b) and
linearizing in η, we obtain with (6a) and (6b)

u∂tη = ∂2
xη + [ν − (∂xφ)2 − 2F 2]η

+ i
(
2∂xφ∂xη + ∂2

xφη − uFμ
) − F 2η∗,

0 = Im(F∂xη + 2iF ∂xφη + ∂xFη∗) − ∂xμ.

Separating η(x,t) = (U + iV )eλt , we obtain the following
system (here λ is the growth rate):

0 = ∂2
xU + [ν − (∂xφ)2 − 3F 2 − λ]U

− (
2∂xφ∂xV + V ∂2

xφ
)
, (11a)

0 = ∂2
xV + [ν − (∂xφ)2 − F 2 − λ]V

+ (
2∂xφ∂xU + U∂2

xφ
) − uFμ, (11b)

∂xμ = F∂xV − V ∂xF + 2FU∂xφ. (11c)

This system along with (6a) and (6b) represents a seven-
dimensional boundary-value eigenvalue problem that must
be solved with appropriate boundary conditions. First, we
note from (6a) that replacing x → −x leaves the differential
equation unchanged. This, along with the reflection symmetry,
implies that F is an even function in x. This symmetry implies
from (2b) that ∂xφ and ∂xμ are even in x. Thus x → −x

changes � → �∗. The action of this must be retained in the
linearization, implying that η(−x) and η∗(x) are both solutions.
Hence U is even and V is odd in x. Furthermore, by symmetry
it suffices to solve the equations only on the half-interval
(0,L/2) with the obtained natural boundary conditions from

0 1 2 3 4 5 6 7 8 9 10
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x [ξ]

(a) |Ψ|
U
V
10µ

|Ψ
(0

)|
0.15

0.2

0.25

0.3
(b)

j
0

0.058 0.059 0.06 0.061 0.062 0.063 0.064

λ

-0.1

0

0.1 (c)

FIG. 2. (a) Amplitude |�| and linearized solutions U,V,μ with
j0 = 0.061 and r = 1. Parts (b) and (c) show the value of |�(0)| and
the location of the smallest eigenvalue, respectively, for stable (solid
line) and unstable (dashed line) solutions of Eqs. (7) and (11a)–(11c)
for varying current. At the critical current, the stable and unstable
stationary (i.e., superconducting) solutions merge and annihilate.

symmetry and the remaining conditions to be found by
the matching-shooting algorithm. To solve this, we used a
technique developed in [20,35]. To do so, we used a numerical
matching-shooting solver for ODEs by beginning with a
small domain (typically L ∼ 3). We extracted the appropriate
shooting boundary conditions and an approximation for λ,
and we used these as guesses for a larger system size. Iterating
this process, we continued to L sufficiently large until the
boundary conditions and λ were not changing significantly.
The results are plotted in Fig. 2. We note here that jc ≈ 0.0637
obtained by the solver is only 6% away from the value obtained
through direct numerical solution of the Ginzburg-Landau
model. The step size used in the dynamic simulations was
much larger (�x = 0.05 compared to the shooting solver
with �x = 0.001), and each had an associated numerical
error. Therefore, jc ≈ 0.0637 is more accurate. We checked
if the error is independent of the solvers by analyzing the
dynamic simulations jc as a function of �x in Appendix A 3.
We found that as �x → 0, we approached a similar value
to that found from shooting. Thus, from Fig. 2 one sees
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that at the critical current, when stable (λ < 0) and unstable
(λ > 0) solutions merge and annihilate, the corresponding
linear system becomes degenerate. At the critical point it
possesses two zero eigenvalues λ1,2 = 0. This degeneracy is
taken into account through weakly nonlinear analysis.

IV. ANALYSIS OF TIME-PERIODIC SOLUTIONS
FOR j0 > jc

When the current is above the critical threshold, the above
analysis breaks down. Numerical simulations indicate that the
superconductor exhibits oscillations in the order parameter,
where phase slips are now present [i.e., |�(0,t)| = 0 for some
t]. In Fig. 3 we have estimated the period of oscillation T

as a function of j0 − jc � 1. Numerical simulations indicate
that the period T ∼ O(|j0 − jc|−1/2), which is indicative of an
infinite-period bifurcation (IPB) at the point j0 = jc. In general
for a bifurcation parameter R (e.g., current j ), the period of
oscillations T ∼ O(|R − Rc|−1/2) for |(R/Rc) − 1| � 1 for
an IPB [36]. We can see from Fig. 3 that an IPB is occurring at
the critical value. In Sec. VIII C, we show that for u � 1 we
also observe hysteresis, behavior that is typical of a homoclinic
bifurcation, a different mechanism through which a limit cycle
can be destroyed [36].

Figure 4 shows time-voltage curves for j0 > jc. One clearly
sees the period diverging as we approach the critical value.
To calculate the current-period relationship, we ramped the
current from an initial amount (typically jinit < jc). If the
system was stationary for a certain number of iterations,
we increased the current. Once the system started oscillating,
we calculated peaks in voltage while skipping the first few
to account for system equilibration. Then we averaged over
the remaining peaks to obtain the period. We then used linear
extrapolation to find the new current. For example, at the nth

(R - R
c
)-1/2

0 50 100 150 200

T

0

100

200

300

400

500

600

700
Simplified system
TDGL equation

FIG. 3. IPB analysis with L = 20 and r = 1. The critical current
jc ≈ 0.067 was obtained via stable state calculation from Sec. II.
The simplified system derived in Sec. VII from a weakly nonlinear
analysis at γ = −0.13 with cIP ≈ −0.565 also exhibits an IPB. As
expected, period T ∝ 1√

R−Rc
near the bifurcation point in both cases.

Here R is current j in the TDGLE and parameter c in the simplified
system.

V

0
0.005
0.010
0.015

(b)

t [τGL]
0 100 200 300 400 500 600 700

V

0
0.005
0.010
0.015

(c)

V

0
0.005
0.010
0.015
0.020

(a)

FIG. 4. Parts (a)–(c) show the voltage dependence vs time above
the critical current where j0 = 1.045jc, j0 = 1.015jc, and j0 =
(1 + 10−6)jc, respectively, and jc ≈ 0.067. System size L = 20, with
an inclusion r = 1 in the center.

step we have the current jn and corresponding period Tn. Let
mn = �Tn/�jn, then suppose we want to find the current
corresponding to a new period Tn+1 = (1 + α)Tn, with α > 0.
This is given by jn+1 = jn + αTn

mn
. Figure 5 shows a similar

period divergence of the oscillations of � and the simplified
model (see Sec. VII).

V. WEAKLY NONLINEAR ANALYSIS

We now extract a coupled ODE system, which exhibits two
dynamical possibilities. In the case j0 < jc, we show that the
stationary (fixed) solution is stable, while in the opposite case a
stable limit cycle exists. It is of course possible that a bistability
region can exist, which would lead to hysteretic effects. Such
effects have been observed in homogeneous superconductors
[19,27,28]. For large u, we have also observed hysteretic I -V
curves, and we show that our extracted system contains both
possibilities. The process is standard and is broken into the
following steps:

(i) Find the stationary (basic) state �0 = Feiφ (it is already
shown in Fig. 2).

(ii) Perturb the solution and solve the linearized system.
(iii) Extract weakly nonlinear effects from the orthogonality

condition.
(iv) Show that certain conditions allow for a stable limit

cycle to exist.
Though standard, the difficulty in this problem is that the

basic state and linearization cannot be solved in closed form.
Though we can approximate it to a certain degree, its region
of validity is dependent on the radius of the inclusion r , the
current j0, and to a smaller extent the system size L. Indeed, it
is impractical to obtain it numerically since the solutions are
sensitive to these choices. However, our analysis will assume
that these are all known a priori and proceed through the
framework. The simplified system is then obtained generally,
and we show that the system exhibits the appropriate behavior
for certain values in parameter space.

We expand Eqs. (4a)–(4c) near the stationary solution
and near the critical point j0 = jc + ε with ε � 1. The
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FIG. 5. Parts (a)–(c) show the dependence of |�(0)| vs time
above the critical current where j0 = 1.045jc, j0 = 1.015jc, and
j0 = (1 + 10−6)jc, respectively, and jc ≈ 0.067. System size L = 20,
with an inclusion r = 1 in the center. Parts (d)–(f) correspond to the
simplified system Eqs. (16) where γ = −0.13 with cIP ≈ −0.565
is the IPB threshold, with c = 0.955cIP, c = 0.985cIP, and c =
(1 − 10−5)cIP.

first-order solution will be given by �0 = Feiφ (since K = 0,
there is no electric potential in the superconducting state),
in fact the initial transient would show exponential decay of
K → e−〈|�|2〉t and so μ = 0 as expected. Let � = (F + η)eiφ ,
where η and time will now both slowly vary and be controlled
by a small parameter 0 < δ � 1, whose size will be related
to ε. The proper scaling will be determined from the ODE for
K . Based on numerical simulations, we assume K = O(δ2).
We claim that we may regard K as constant in the relevant
order of the perturbation method by the following argument.
The perturbation η at first order is highly localized inside the
inclusion, and from this we argue that

〈|�|2〉 = 1

L

∫ L

0
F 2 + 2F (η + η∗) + O(η2) dx

≈ 1 − j 2
0

L
(L − r) + 1

L

∫ r

0
F 2 + 2F (η + η∗) dx

≈ 1 − j 2
0 + O

(
r

L

)
.

For L � r , we can regard 〈|�|2〉 as a constant. In a similar way,
all averaged quantities in the voltage equation can be neglected
in the large superconductor domain limit. This analysis shows

that the time dependence of the voltage is slaved to the
behavior of the order parameter �. Therefore, we set K to a
constant by

K = ε

1 − j 2
0

+ O

(
r

L

)
. (12)

From this we extract the relation ε = αδ2, where α =
±1. The linearized system at ε = 0 has a degenerate
eigenvalue, as was shown previously in Fig. 2. There-
fore, we expand η(x,τ ) = A(τ )η1(x) + √

δ[B(τ )η2(x) +
z1(x,τ )] + δz2(x,τ ), where Lη1 = 0, Lη2 = η1, and L is the
linear operator from (11). Using orthogonality conditions, we
arrive at the coupled system

uAτ = B + c1A
2, uBτ = c2AB + c3A

3, (13)

where the coefficients ck can be found through evaluating the
integrals (see Appendix A 4). We will show in Sec. VI why we
chose not to include the constant K at this order. The general
behavior is only captured correctly at ε = 0. When ε �= 0 (i.e.
K �= 0), we do not see a saddle-node bifurcation. To correct for
this deficiency, higher-order terms will be included. However,
we can still gain some insight by analyzing this simplified
system first.

VI. DYNAMICAL SYSTEM ANALYSIS

We begin with (13) by making a dimensionless system
to analyze it more easily. We introduce the dimensionless
variables

x = A

LA

, Y = B

LB

, t ′ = t

uLt

.

Inserting this into the system and defining the characteristic
variables

LA = 1

c2Lt

, LB = 1

c2L
2
t

,

we arrive at the dimensionless system

Ẋ = Y + aX2, Ẏ = XY + bX3, (14)

where a ≡ c1/c2 and b ≡ c3/c
2
2. The characteristic scale for

time is arbitrary and is a consequence of the degeneracy in the
system. The culprits are the X2 term and XY terms, whose
combination of characteristic scales vanish simultaneously.

A. Fixed points and stability

There is only one fixed point located at the origin, provided
that a �= b. In this case, there is a family of nonisolated fixed
points along the parabola Y = −aX2, however this case is not
physical so we omit it. Next, we note the symmetry t → −t

and X → −X of (14), which implies that the linearized center
located at the origin is robust. We wish to see if this system
exhibits closed orbits. The system is conservative if a = −1/2.
In this case, a first integral can be obtained,

H (X,Y ) = 1
2Y 2 − 1

2X2Y − 1
4bX4.

This has closed orbits provided that b < −1/2. So now that
we have established the existence of closed orbits, we seek to
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gain insight if a �= −1/2. We replace Y via the transformation

Y = U

2a + 1
− aX2,

and we rescale X → X
2a+1 and obtain

Ẋ = U, (15a)

U̇ = UX + b − a

(2a + 1)2
X3 ≡ UX + γX3. (15b)

This leaves us with one independent parameter γ . We have
already analyzed the case in which a = −1/2, which, if b <

−1/2, corresponds to γ → −∞ and has a family of closed
orbits. If b > −1/2, then γ → ∞, and we know this does not
have closed orbits. Therefore, there must be some critical value
of γ at which this behavior changes. We seek a solution of (15)
of the form X = C̃t−1 with C̃ to be determined. Plugging this
into the equation gives the condition

C̃ = 1 ± √
1 + 8γ

2γ
.

These two solutions form a saddle-type connection only when
they are equal, which occurs at γc = −1/8 or in the original
coefficients

bc = − 1
8 (2ac − 1)2.

This critical curve separates closed-orbit solutions in the
(a,b) parameter space. We have shown that the simplest (first-
order) system obtained demonstrates a saddle-type infinite
period bifurcation, however this creates an infinite family
of closed orbits, and a unique stable limit cycle is not
obtained. The bottleneck is created near the origin (see Fig. 6).
Additionally, it does not have a saddle-node bifurcation, which
we expect to occur at j0 = jc. We note also that introducing

x
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-1

0 (a)

x
-5 0 5

y

-2

-1

0 (b)

x
-5 0 5

y

-15

-10

-5

0

5

(c)

γ
-0.25 -0.2 -0.15

y(
x=

0)

10-10

10-5

100

(d)

FIG. 6. Parts (a)–(c) represent the solutions to (15) in the phase
plane (X,Y ) with γ = −0.25, −0.15, and −0.13, respectively. There
is a dimple near the origin where the trajectories are being squeezed
down due to the homoclinic orbit at γc = −1/8. In (d), we display
this dimple as a function of γ by taking 150 initial conditions and
taking the average maximum.

K at this order, which adds a nonzero constant term to the
second ODE, would still only have one fixed point, and a
constant at this order would destroy the degeneracy (and also
any closed orbits) in a degenerate Hopf-type bifurcation when
that constant crosses through zero. This should be corrected
by including the next higher-order cubic terms, which will
saturate and force the system to select one unique closed orbit.

The bottleneck created near the emergence of the saddle-
node bifurcation is apparent in both the physical and simplified
system (see Fig. 5). Note that the time scales need not be the
same, and careful treatment of the parameters in the simplified
system (see Sec. IV) would lead to the relation between the
GL time and the time scale of the simplified system.

VII. FULL DYNAMICAL SYSTEM

We modify the system to include the next-order cubic
terms. In principle, we could obtain the next-order terms by
continuing the perturbation expansion, however we chose to
include the generic next higher-order terms X3, X2Y , XY 2, and
so on. We then found that the removal of some cubic terms,
e.g., XY 2,Y 3, slightly shifts the transition boundaries but does
not qualitatively change the bifurcation sequence. Therefore,
we chose to keep the following system for our analysis:

Ẋ = Y + aX2 + w1X
3, (16a)

Ẏ = XY + bX3 + c + w2X
2Y, (16b)

where we have introduced the new coefficients c, w1, and
w2. We will enforce w1,w2 < 0 to ensure that the phase flow
cannot escape to infinity, which would be a nonphysical state
for this system.

A. Analysis

The fixed points cannot be found analytically in general
since the equation involves a quintic polynomial. Instead, we
look to find the two critical curves that correspond to our
system. We wish to find a saddle-node bifurcation curve and
an infinite-period bifurcation as the current is varied. The
saddle-node bifurcation involves the merging and annihilation
of the stable and unstable stationary solutions. An infinite-
period bifurcation is a saddle-node bifurcation that occurs on
the limit cycle in the phase plane [36].

We first find the fixed points of (16). Using (16a), we obtain
Y ∗ = −(X∗)2(a + w1X

∗), which leads to the quintic equation

f (X) ≡ w1w2X
5 + (w1 + aw2)X4 + (a − b)X3 − c = 0.

A saddle-node bifurcation occurs provided that f (X∗) =
f ′(X∗) = 0. The curve exists only if X∗ is real, which leads to
the requirement that

b � a − 4(w1 + aw2)2

15w1w2
.

To motivate our choice of parameters, we write this in terms
of γ ,

γ � − 4w1

15w2

( w2
w1

a + 1

2a + 1

)2

.
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If we set w2 = 2w1, we can eliminate a from the dependence
on γ . Thus, we have that the saddle-node bifurcation exists
only if γ � − 2

15 .
Writing the quintic now with a = −1 allows us to cast the

quintic function solely in terms of w1, γ , and c,

2w2
1X

5 − w1X
4 − γX3 − c = 0.

The saddle-node bifurcation then occurs along the curve

cSN(X∗) = 1
5 (X∗)3[2γ + w1(X∗)2],

where X∗ is given by

X∗ =
1 ±

√
1 + 15

2 γ

5w1
.

The Jacobian of this system is

J =
[

2aX∗ + 3w1(X∗)2 1
Y ∗ + 3b(X∗)2 + 2w2X

∗Y ∗ X∗ + w2(X∗)2

]
.

A necessary condition for a Hopf bifurcation to occur is for an
(un)stable spiral to change stability. This occurs when the trace
of the Jacobian τ = X∗[2a + 1 + (3w1 + w2)X∗] = 0 and the
determinant � > 0. For our analysis this implies that X∗ = 0
or X∗ = (5w1)−1. Of course our fixed point X∗ must also
satisfy the quintic equation. Inserting this gives a necessary
condition and curve in (γ,c) space for a Hopf bifurcation,

cHopf = − 1

125w3
1

(
γ + 3

25

)
or cHopf = 0.

The determinant is

� = − 1

125w2
1

(2 + 15γ ).

Thus, the first Hopf bifurcation curve exists only when γ <

−2/15. The second Hopf bifurcation is more complicated
since � = 0 and so nonlinear terms are important. The
existence of that curve was found numerically.

B. Phase diagram

In general, this system has many different ways in which a
limit cycle is destroyed. Numerical experiments indicate that
this can occur via a Hopf, cycle bifurcation, infinite period,
or homoclinic bifurcation. Slightly changing the parameters
can change which bifurcation we obtain. From the preceding
section, we motivated the choices w1 = −0.05, w2 = −0.1,
and a = −1 to keep our parameter space (γ,c). This leads to
a generalized phase diagram of Sec. VI. The Hopf and saddle-
node bifurcation curves of Fig. 7 were obtained analytically.
The IPB curve cIP = cIP(γIP) was found numerically, and for
comparison it is compared to the observed physical limit cycle
in Figs. 3 and 5. Additionally, it was found numerically that
the HB in region III did not exhibit the birth of a stable limit
cycle. Possible trajectories of the superconductor through this
phase diagram are shown with purple lines.

A more generic phase diagram with w2 �= 2w1 is given
in Fig. 8. Here, both an IPB and homoclinic bifurcation
can destroy the limit cycle. The existence of the homoclinic
bifurcation changes the morphology of the phase diagram to
now include a bistability region in which the limit cycle (phase

γ
-0.135 -0.13 -0.125 -0.12

c

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

I (phase slips)

II (normal)

II

III (superconducting)r

j

FIG. 7. Phase diagram with a = −1, γ = b + 1, w1 = −0.05,
and w2 = −0.1. There is a stable limit cycle, i.e., periodic phase
slips (green), only in region I. Region II has one stable fixed point
and region III has three fixed points. The saddle-node bifurcation
(SNB) is the boundary of the superconducting region. There is an IPB
occurring along the yellow line. Possible trajectories in phase space
are mapped with purple lines, and the dashed yellow line corresponds
to increasing r . Note that this phase diagram does not have a bistability
region (with u � 1 we observed hysteresis; see Sec. VIII C).

slips) and fixed point (superconducting state) coexist. This
is particularly encouraging since we also found hysteresis
for u � 1 (see Sec. VIII C). Possible trajectories of the
superconductor through this phase diagram are shown with
purple lines.

γ
-0.05 0 0.05 0.1

c

-3.5
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-2.5
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-1.5
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III
 (
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pe
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d.
)

u
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II
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FIG. 8. Phase diagram with a = −1, γ = b + 1, w1 = −0.09,
and w2 = −0.08. There is a stable limit cycle (green) in region I.
Region II has one stable fixed point and region III has three fixed
points. Region IV is a bistability region where a limit cycle and
distant attractor coexist. The limit cycle is destroyed along the yellow
line via a homoclinic bifurcation (a saddle point moving toward the
limit cycle), and the dashed yellow line corresponds to increasing u.
This homoclinic bifurcation line eventually merges with the SNB line
(boundary of region III) and becomes an IPB (similar to Fig. 7).
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VIII. DISCUSSION

A. Sensitivity to temperature

To test the sensitivity of these phase slips to small thermal
noise, we modified (4) to include a small random noise term
uniformly distributed between [−Tf ,Tf ] at each point in space.
Numerical simulations indicate that the system is stable to
small fluctuations. The qualitative change is the existence of
finite voltage in the superconducting state, however the critical
current at which phase slips begin is unchanged.

B. Effect of parameter u

The parameter u characterizes the penetration of the electric
field. In homogeneous wires, it has been found that hysteresis
of the phase-slip state exists for finite domains with u � 1
[28]. We analyzed u = 0.01, 1, 10, and 100 with L = 20
and r = 1 (see Fig. 9). Another important quantity not yet
discussed is that of the retrapping current jr . The authors of
[28] discuss the effect of u, numerically simulating the GL
equation and finding a curve separating the hysteresis region
of the I -V curve through some length-dependent critical curve
uc2(L). For our simulations of weak links, u small (for r = 1,
u < 30 is small enough), jr = jc. However for u � 1, jr < jc,
this leads to hysteresis in the I -V curve (see Fig. 10).

C. Physical quantities in the simplified system

The phase diagram is in (γ,c) space. We can relate
the important physical quantities u,r,j0,L to γ,c by using
Appendix A 4. The coefficient c is strongly affected by the
parameter u and the current j0. Consider j0 < jc and u → 0;
we know then that there is no voltage (i.e., K = 0), and
α = −1. This implies that c ∼ −uζ 2 for some ζ (r,j0,L) for
small u. At a significantly large enough u, we expect our initial
trajectory to begin from a region in Fig. 8 where hysteresis is
possible. Increasing the current j0 > jc switches α = 1 and
K �= 0; as j0 continues to increase, F decreases and we expect

j
0

0.066 0.067 0.068 0.069 0.07 0.071

 <
V

>
 

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

u = 0.01
u = 1
u = 10

FIG. 9. I -V curve with different u = 0.01, 1, and 10. The critical
current does not change, however the slope as j0 → jc increases as
u → 0. Additionally, jc = jr (the reentrance current) for all u shown
(no hysteresis).

j0
0.06 0.061 0.062 0.063 0.064 0.065 0.066 0.067 0.068

 <
V

>

×10-3

0

0.5

1

1.5

2

2.5
jr jc

FIG. 10. I -V curve for u = 100. Hysteresis is present, the saddle-
node bifurcation still occurs at jc ≈ 0.067, however jr ≈ 0.0614
below which the superconducting state reappears.

c to change sign as we continue to increase it, which explains
our motivation for the direction of trajectories. Increasing r

lowers jc, and so we expect the trajectories to spend more time
in the phase-slip state, which leads us to expect that c decreases.
A similar argument leads us to assume the same holds for γ

(see Figs. 7 and 8). The effects on γ are more complicated for
the current and probably nonmonotonous in a general case.
From physical arguments, we know that the trajectories must
begin in the superconducting state and move into the phase-slip
state via either an IPB or homoclinic bifurcation. Comparing
this to the phase diagrams, we see that as j0 increases, γ

must decrease. We also attempt to justify this from the terms
in Appendix A 4. We consider the scaling from Sec. VI,
which implied b = c3/c

2
2. We noted that F is decreasing

as j0 increases (where F ′ is relatively unchanged). Again,
employing Appendix A 4, we see that c3 is decreasing with the
current since the positive terms involve F and the negative
terms involve F ′. Finally, we use the fact that b = c3/c

2
2

to deduce that b must be decreasing, and since γ = (b −
a)/(2a + 1)2, we see that γ is also decreasing with the current.

IX. CONCLUSION

We have considered a weak-link superconductor that is
qualitatively similar to other weak-link systems but fundamen-
tally different in mechanism. We demonstrated the existence of
a superconducting state and a PSC periodic state separated by a
critical current jc. This current was calculated asymptotically
and agrees very well with numerical simulations. We then
extracted a coupled ODE system from the TDGL equations
using weakly nonlinear theory, and we showed that under
certain choices of parameters, an infinite period bifurcation
and homoclinic bifurcations can occur. This demonstrates that
the dynamics of phase-slip behavior in weak links described
by the TDGL equations can be correctly captured by a simpler
system of two coupled ordinary differential equations.

Further research will extend this analysis to two dimen-
sions. We anticipate additional transitions from phase slips
occurring instantly inside the weak link to a more complicated
dynamic regime involving phase slips and nucleation of vortex
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pairs, similar to that in [19]. Another interesting generalization
is to include disorder in the transverse direction inside the weak
link. Some of the vortices may be pinned in the weak link. This
may, in turn, lead to further suppression of the critical current.
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APPENDIX

1. No voltage in the superconducting state

We begin by multiplying (2a) by �∗, and we differentiate
(2b) with respect to x. This gives

u(i|�|2μ + �∗∂t�) = �∗∂2
x� + [ν(x) − |�|2]|�|2, (A1)

0 = Im
(
�∗∂2

x�
) − ∂2

xμ. (A2)

Taking the imaginary part of (A1) and substituting this result
into (A2), we obtain

∂2
xμ − u|�|2μ = u Im(�∗∂t�). (A3)

Far from the inclusion, all the applied current is supercurrent,
and so if L � r we expect j0 = Im(�∗∂2

x�|)x=±L, which im-
plies that ∂xμ(±L) = 0. Multiplying (A3) by μ and integrating
over the domain gives∫ L

−L

[(∂xμ)2 + u|�|2μ2] dx

= μ∂xμ|L−L + u

∫ L

−L

Im(�∗∂t�) dx.

Noting the boundary conditions for μ and the fact that ∂t� = 0
(stationary state), we see that μ ≡ 0.

2. Critical current calculation

We separate (7) by region (superconducting versus normal
metal) and then take the first integral to obtain the equations

ES = (∂xF )2 + F 2 + j 2
0 F−2 − 1

2F 4, x �∈ I, (A4)

EI = (∂xF )2 − CF 2 + j 2
0 F−2 − 1

2F 4, x ∈ I. (A5)

Now, far from the inclusion (near the boundary of the
superconductor), F → F∞ a constant. Assuming the rele-
vant approximation that j0 � 1, we see that F 2

∞ ≈ 1 − j 2
0 .

Inserting this into (A4) implies that ES ≈ 1
2 + j 2

0 . We now use
the large-C approximation that C � j 2

0 F−4. Proceeding, we
obtain

FI (x) = K1e
(|x|−r)

√
C,

where we have introduced the radius r of the inclusion. Solving
the outer region at first order is given by

FS(x) = tanh

( |x| − K2√
2

)
.

The two constants are determined by the continuity conditions
at the boundary of the inclusion. By symmetry, we may analyze
just one side of the boundary, and then our conditions are

K1 = tanh

(
r − K2√

2

)
, (A6a)

K1 = 1√
2C

sech2

(
r − K2√

2

)
. (A6b)

Solving for K1 and K2, we obtain

K1 = 1√
2C

+ O

(
1

C

)
, (A7a)

K2 = r − 1√
C

+ O

(
1

C

)
. (A7b)

Note the identity ES − EI = (1 + C)F 2(r) � 0. This im-
plies that

EI ≈ j 2
0 − 1

2C
� 1.

Motivated by this, we assume that EI is a small parameter. At
first order then EI = 0, and looking at x = 0 we see that

EI = 0 = −CF 2(0) + j 2
0 F−2(0) − 1

4F 4(0),

where the derivative has vanished by symmetry. Since F is
small in the inclusion, the last term can be neglected and we
are left with j0 ≈ √

CF 2(0). This leads to Eq. (8).

3. Numerical analysis of jc

To analyze the error associated with calculating jc nu-
merically, we took L = 20 and varied �x. The results are
shown in Fig. 11. Assuming the error is linear, we extrapolate
the critical current to be jc ≈ 0.063 66, which is in excellent
agreement with the linear system solved using the shooting
method with �x = 0.001. For fixed �x = 0.05, we measured
the sensitivity of L on jc and found no significant change for
L � r (typically L > 5r was sufficient).
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0.068

0.069

0.070

0.071

FIG. 11. Convergence of jc as a function of �x. As �x → 0,
jc approaches the true value. Dynamic simulations took place with
�x = 0.05.
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4. Weakly nonlinear calculation

To obtain the weakly nonlinear system, we analyze near
j0 = jc + ε, where |ε| � 1. Linearizing about the base state
near ε = 0 with � = (F + η)eiφ . From before, we saw that
ε = 0 leads to a degenerate zero eigenvalue implying that

the linearized system has a generalized eigenvector solution
where Lη1 = 0 and Lη2 = η1. We use ansatz η = Aδη1 +
δ2B(η2 + z) + δ3ζ , where ηk = (Uk

Vk
) and ε = αδ2. Inserting

this into (4a)–(4c) with the aid of MATHEMATICA, we obtain at
first order the ODE for A,

Lz=uη1∂τA−
(

BU1 − A2
[
F

(
3U 2

1 + V 2
1

) + uV1
∫ x

−L/2(F ′V1 − FV ′
1 − 2Fφ′U1) ds

]
BV1 − A2

[
uU1

∫ x

−L/2 FV ′
1 − F ′V1 + 2Fφ′U1 ds + F

(
2U1V1 + u

∫ x

−L/2

{
φ′(U 2

1 + V 2
1

)+U1V
′

1−U ′
1V1

}
ds

)]
)

.

At next order, we obtain the ODE for B (where we have already projected onto the eigenvector),

u∂τB〈U †
1 ,U2〉 =

〈
U

†
1 ,A3

{
uV1

∫ x

−L/2

[
φ′(U 2

1 + V 2
1

) + U1V
′

1 − U ′
1V1

]
ds − U 3

1 − U1V
2

1

}
− 2KFφ′

+AB

[
uV2

∫ x

−L/2
(2Fφ′U1 + FV ′

1 − F ′V1) ds

−uV1

∫ x

−L/2
(2Rφ′U2 + FV ′

2 − R′V2) ds − 2R(3U1U2 + V1V2)

]
,

〉

u∂τB〈V †
1 ,V2〉 =

〈
V

†
1 , − A3

{
U 2

1 V1 + V 3
1 + uU1

∫ x

−L/2

[
φ′(U 2

1 + V 2
1

) + U1V
′

1 − U ′
1V1

]
ds

}

−AB

{
U2

[
2FV1 + u

∫ x

−L/2
(FV ′

2 − F ′V2 + 2Fφ′U2) ds

]

+U1

[
2RV2 + u

∫ x

−L/2
(FV ′

2 − F ′V2 + 2Fφ′U2) ds

]

+uF

∫ x

−L/2
[U2V

′
1 − V2U

′
1 + U1V

′
2 − V1U

′
2 + 2φ′(U1U2 + V1V2)] ds

}

+K

(
2F ′ − uF

∫ x

−L/2
F 2 ds

)
+ uαxF

〉
.
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[29] S. Michotte, S. Mátéfi-Tempfli, L. Piraux, D. Y. Vodolazov,

and F. M. Peeters, Phys. Rev. B 69, 094512 (2004).

014518-11

https://doi.org/10.1103/RevModPhys.66.1125
https://doi.org/10.1103/RevModPhys.66.1125
https://doi.org/10.1103/RevModPhys.66.1125
https://doi.org/10.1103/RevModPhys.66.1125
https://doi.org/10.1038/nphys234
https://doi.org/10.1038/nphys234
https://doi.org/10.1038/nphys234
https://doi.org/10.1038/nphys234
https://doi.org/10.1103/PhysRevLett.87.217003
https://doi.org/10.1103/PhysRevLett.87.217003
https://doi.org/10.1103/PhysRevLett.87.217003
https://doi.org/10.1103/PhysRevLett.87.217003
https://doi.org/10.1103/PhysRevLett.88.256401
https://doi.org/10.1103/PhysRevLett.88.256401
https://doi.org/10.1103/PhysRevLett.88.256401
https://doi.org/10.1103/PhysRevLett.88.256401
https://doi.org/10.1103/RevModPhys.38.298
https://doi.org/10.1103/RevModPhys.38.298
https://doi.org/10.1103/RevModPhys.38.298
https://doi.org/10.1103/RevModPhys.38.298
https://doi.org/10.1103/PhysRevLett.19.560
https://doi.org/10.1103/PhysRevLett.19.560
https://doi.org/10.1103/PhysRevLett.19.560
https://doi.org/10.1103/PhysRevLett.19.560
https://doi.org/10.1103/PhysRevLett.64.1130
https://doi.org/10.1103/PhysRevLett.64.1130
https://doi.org/10.1103/PhysRevLett.64.1130
https://doi.org/10.1103/PhysRevLett.64.1130
https://doi.org/10.1038/nature06920
https://doi.org/10.1038/nature06920
https://doi.org/10.1038/nature06920
https://doi.org/10.1038/nature06920
https://doi.org/10.1103/PhysRevLett.113.125301
https://doi.org/10.1103/PhysRevLett.113.125301
https://doi.org/10.1103/PhysRevLett.113.125301
https://doi.org/10.1103/PhysRevLett.113.125301
https://doi.org/10.1103/PhysRevA.91.033621
https://doi.org/10.1103/PhysRevA.91.033621
https://doi.org/10.1103/PhysRevA.91.033621
https://doi.org/10.1103/PhysRevA.91.033621
https://doi.org/10.1103/PhysRevLett.110.025302
https://doi.org/10.1103/PhysRevLett.110.025302
https://doi.org/10.1103/PhysRevLett.110.025302
https://doi.org/10.1103/PhysRevLett.110.025302
https://doi.org/10.1007/BF00655865
https://doi.org/10.1007/BF00655865
https://doi.org/10.1007/BF00655865
https://doi.org/10.1007/BF00655865
https://doi.org/10.1007/BF00896936
https://doi.org/10.1007/BF00896936
https://doi.org/10.1007/BF00896936
https://doi.org/10.1007/BF00896936
https://doi.org/10.1103/PhysRevLett.38.518
https://doi.org/10.1103/PhysRevLett.38.518
https://doi.org/10.1103/PhysRevLett.38.518
https://doi.org/10.1103/PhysRevLett.38.518
https://doi.org/10.1103/PhysRev.156.396
https://doi.org/10.1103/PhysRev.156.396
https://doi.org/10.1103/PhysRev.156.396
https://doi.org/10.1103/PhysRev.156.396
https://doi.org/10.1007/BF00681200
https://doi.org/10.1007/BF00681200
https://doi.org/10.1007/BF00681200
https://doi.org/10.1007/BF00681200
https://doi.org/10.1007/BF00683370
https://doi.org/10.1007/BF00683370
https://doi.org/10.1007/BF00683370
https://doi.org/10.1007/BF00683370
https://doi.org/10.1007/BF00683522
https://doi.org/10.1007/BF00683522
https://doi.org/10.1007/BF00683522
https://doi.org/10.1007/BF00683522
https://doi.org/10.1103/PhysRevB.57.3073
https://doi.org/10.1103/PhysRevB.57.3073
https://doi.org/10.1103/PhysRevB.57.3073
https://doi.org/10.1103/PhysRevB.57.3073
https://doi.org/10.1103/PhysRevB.91.014514
https://doi.org/10.1103/PhysRevB.91.014514
https://doi.org/10.1103/PhysRevB.91.014514
https://doi.org/10.1103/PhysRevB.91.014514
https://doi.org/10.1103/PhysRev.164.498
https://doi.org/10.1103/PhysRev.164.498
https://doi.org/10.1103/PhysRev.164.498
https://doi.org/10.1103/PhysRev.164.498
https://doi.org/10.1016/0031-9163(62)91369-0
https://doi.org/10.1016/0031-9163(62)91369-0
https://doi.org/10.1016/0031-9163(62)91369-0
https://doi.org/10.1016/0031-9163(62)91369-0
https://doi.org/10.1103/PhysRevLett.13.195
https://doi.org/10.1103/PhysRevLett.13.195
https://doi.org/10.1103/PhysRevLett.13.195
https://doi.org/10.1103/PhysRevLett.13.195
https://doi.org/10.1080/00018738400101641
https://doi.org/10.1080/00018738400101641
https://doi.org/10.1080/00018738400101641
https://doi.org/10.1080/00018738400101641
https://doi.org/10.1063/1.328724
https://doi.org/10.1063/1.328724
https://doi.org/10.1063/1.328724
https://doi.org/10.1063/1.328724
https://doi.org/10.1103/PhysRevB.84.094527
https://doi.org/10.1103/PhysRevB.84.094527
https://doi.org/10.1103/PhysRevB.84.094527
https://doi.org/10.1103/PhysRevB.84.094527
https://doi.org/10.1103/PhysRevB.87.174516
https://doi.org/10.1103/PhysRevB.87.174516
https://doi.org/10.1103/PhysRevB.87.174516
https://doi.org/10.1103/PhysRevB.87.174516
https://doi.org/10.1103/PhysRevB.69.094512
https://doi.org/10.1103/PhysRevB.69.094512
https://doi.org/10.1103/PhysRevB.69.094512
https://doi.org/10.1103/PhysRevB.69.094512


GREGORY KIMMEL, ANDREAS GLATZ, AND IGOR S. ARANSON PHYSICAL REVIEW B 95, 014518 (2017)

[30] L. Kramer and R. J. Watts-Tobin, Phys. Rev. Lett. 40, 1041
(1978).

[31] G. Berdiyorov, A. d. C. Romaguera, M. Milošević, M. Doria, L.
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