
PHYSICAL REVIEW B 95, 014516 (2017)

Effects of strong disorder in strongly correlated superconductors
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We investigate the effect of strong disorder on a system with strong electronic repulsion. In the absence
of disorder, the system has a d-wave superconducting ground state with strong non-BCS features due to its
proximity to a Mott insulator. We find that while strong correlations make superconductivity in this system
immune to weak disorder, superconductivity is destroyed efficiently when disorder strength is comparable to
the effective bandwidth. The suppression of charge motion in regions of strong potential fluctuation leads to
the formation of Mott insulating patches, which anchor a larger nonsuperconducting region around them. The
system thus breaks into islands of Mott insulating and superconducting regions, with Anderson insulating regions
occurring along the boundary of these regions. Thus, electronic correlation and disorder, when both are strong,
aid each other in destroying superconductivity, in contrast to their competition at weak disorder. Our results shed
light on why zinc impurities are efficient in destroying superconductivity in cuprates, even though it is robust to
weaker impurities.
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Strong interparticle interactions and strong inhomogeneous
potentials both tend to localize fermions. Strong repulsion
can result in complete suppression of charge motion at
commensurate filling, leading to a Mott insulator [1], while
strong disorder causes decoherence of fermions, forming
Anderson insulators [2]. There is evidence that weak disorder
in the presence of strong interactions [3–7], as well as strong
disorder in the presence of weak interactions [8], compete with
each other, but the question of strong disorder in the presence of
strong repulsion remains unresolved. The complex interplay of
electronic interactions and disorder is crucial to understanding
novel phenomena [9–15] beyond the standard paradigm of
Fermi-liquid and BCS superconductivity.

A prototype of strongly interacting electronic systems is
the cuprate high-Tc superconductors (HTSCs), which show d-
wave superconductivity for a range of doping. Superconductiv-
ity in these systems is robust to disorder introduced by doping
the parent compound. This is manifested in weak disorder
dependence of Tc [16–18] and robust V-shaped low-energy
density of states [19–21]. However, small concentrations of Zn
impurities degrade Tc in these systems [22,23]. Zn provides
a strong impurity potential, which is believed to be attractive
[10,24], while dopant impurities are Born scatterers [25,26].
Thus a study of a strongly correlated superconductor in the
presence of strong disorder potential is required to explain this
discrepancy.

In this paper, we consider the effect of strong disorder on
the strongly interacting d-wave superconducting (SC) state
proximal to the Mott insulator. Our key findings are as
follows: (i) While the presence of strong correlations makes
superconductivity robust to weak disorder, at large disor-
der comparable to bandwidth, superconductivity is rapidly
suppressed. (ii) At large disorder, Mott insulating patches
anchor a surrounding region akin to Anderson insulator. With
increasing disorder strength, these islands grow at the expense
of local superconductivity. Thus at large disorder, strong
correlation and strong potential fluctuations help each other
in bringing about the sudden death of superconductivity. Our
results thus explain both the robustness of a HTSC to dopant

impurities and its sensitivity to Zn impurities within a single
theory.

The study of disorder in the d-wave SC phase has a long
history [27–29], with early treatment within inhomogeneous
mean-field theory (IMT) [29,30], which ignores the effects
of strong electronic repulsions. Strong Mott correlations and
the consequent projection of the low-energy Hilbert space
into states with no double occupancies [31–34] are, however,
crucial to understanding the non-BCS character of the d-wave
SC state in cuprates. A semianalytic approach, where the
effects of projection are kept in terms of renormalization
of Hamiltonian parameters, is the Gutzwiller approximation
[35], which is known [36] to match the more sophisticated
Monte Carlo results [33] for the homogeneous system. This
approach is easily extended to a renormalized inhomogeneous
mean-field theory (RIMT) [25,37–39], which captures the
effects of both strong correlations and disorder in the system.

A surprising result of these attempts is that in spite of the
d-wave nature of the order parameter, strong correlations make
superconductivity robust up to moderate disorders [25,37–40].
This is ascribed to the electronic repulsions that modify the
hopping amplitudes based on local density and smear out
charge accumulation near deep potential wells, leading to a
much weaker effective disorder [38]. The natural question
arises: How does Anderson localization [2] occur in this
system? Further, does the presence of strong repulsion, i.e., the
largest energy scale in the problem, compete with or aid the
localization of the electronic wave function for large disorder
strengths?

In RIMT, strong interactions are treated nonperturbatively
to obtain a low-energy effective Hamiltonian and disorder
potential is added to this description afterwards, which fails
to account for the fact that if the potential difference across a
bond is much larger than the hopping scale, it is energetically
unfavorable for the electron to hop across that bond. In this
paper, we consider an extension of RIMT which builds in the
absence of hopping across bonds with large potential differ-
ence across them, and thus includes the Anderson mechanism
of localization in a more direct way. This approximation, called
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FIG. 1. (a) �OP (normalized by its value at V = 0): Solid blue line represents c-RIMT results which cross over from its robust nature
(for V � 3) to its crashing down for 3 � V � 6. �OP continues to be far less sensitive to V within RIMT (dashed green line), and shows a
continuous fall starting right from small V within IMT scheme (dot-dashed red line). Thus, c-RIMT results interpolate between RIMT and
IMT findings. Inset: Superfluid stiffness Ds shows a similar trend of �OP, leading to its rapid destruction beyond Vc. (b) Evolution of �OP with
concentration of strong impurities in the c-RIMT method shows a better match with IMT than with RIMT results.

c-RIMT, allows us to smoothly interpolate between a robust SC
at weak disorder to a patchy system of Mott and Anderson-like
insulator at larger disorder strengths and shows the transition
from immunity to sudden death of the SC.

Model and methods. We work with the disordered Hubbard
model on a square lattice,

H = −t
∑
〈ij〉σ

(c†iσ cjσ + H.c.) + U
∑

i

ni↑ni↓
∑
iσ

(Vi − μ)niσ .

(1)

Here, t and U are hopping and on-site repulsion energies,
respectively, and c

†
iσ and niσ are the creation and number

operators for electrons on site i with spin σ . We work with U =
12t and an average density, ρ = 0.8, so that the homogeneous
system is a d-wave superconductor even in the presence of
strong correlations. The nonmagnetic impurity potential Vi is
taken from a uniform distribution between −V/2 and V/2. We
emphasize that while we focus on V � t , we always consider
V � U , so that the projection constraints remain valid in our
system [41].

At low energies, the homogeneous Hubbard model can be
reduced to an effective t − J model in the subspace where
double occupancies are projected out through P = ∏

i(1 −
ni↑ni↓), by using a canonical transformation [42] about a
local Hamiltonian. We carried out a similar procedure in the
disordered model by including the disorder potential nonper-
turbatively in the local Hamiltonian. In this case, the potential
difference across a bond provides an additional energy scale
(other than U ), which determines the effective Hamiltonian on
that link. For weak potential difference across a link 〈ij 〉 ∈ A,
�Vij = |Vi − Vj | < Vc, this gives the standard t − J model
with a superexchange scale Jij = (4t2/U )(1 − �V 2

ij /U 2)−1

[34,43–45] on that link. However, for �Vij > Vc ∼ t , the
electrons pay a large potential energy cost to hop across this
bond and hence hopping on the corresponding link 〈ij 〉 ∈ B is

frozen, i.e., the bond is cut off from the system. The effective
Hamiltonian is

Heff =
∑
〈ij〉

Jij

(
Si · Sj − ninj

4

)
+

∑
i

(Vi − μ)ni

− t
∑

〈ij〉∈Aσ

Pc
†
iσ cjσP +

∑
〈ij〉∈Bσ

t2

Vi − Vj

(njσ − niσ ).

(2)

The critical disorder Vc ≈ 2.8t is determined by balancing
the kinetic energy gain with the potential energy loss for a
single-impurity problem with a local potential V . We solve our
modified “t − J ” Hamiltonian within RIMT formalism, where
tij → gt

ij tij and Jij → gs
ij Jij with gt

ij = 2[xixj /(1 + xi)(1 +
xj )]1/2 and gs

ij = 4/(1 + xi)(1 + xj ). Here, xi is the local hole
doping which is determined self-consistently together with a
Fock shift (τij ) and a d-wave pairing amplitude (�ij ) on each
bond [see Supplemental Material (SM) [46] for details]. In
this paper, we will present results on a 30 × 30 lattice (with a
repeated zone scheme [38,47] used on 12 × 12 unit cells for
better resolution and statistics; see SM [46]).

Demise of superconducting correlations. To look at the
robustness of SC, we study the off-diagonal long-range
order, �2

OP = lim|i−j |→∞ Fδ,δ′(i − j ), where Fδ,δ′ (i − j ) =
〈B†

iδBjδ′ 〉. Here, B
†
iδ = (c†i↑c

†
i+δ↓ + c

†
i+δ↑c

†
i↓) is the singlet

Cooper-pair creation operator on the bond (i,i + δ). An IMT
calculation shows the demise of �OP, as shown in Fig. 1(a)
(dot-dashed line). Strong correlations in RIMT, where �OP ∼∑

〈ij〉 g
t
ij�ij , are known [25,38] to make superconductivity

immune to disorder, as shown in Fig. 1(a) (dashed line).
In this case, large local densities approaching unity lead to
a decrease in the kinetic energy around those sites due to
the renormalization factors. This nonlinear effect creates a
repulsive potential and leads to a weak effective disorder in
these systems, thereby making �OP robust.
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FIG. 2. Distribution of (a) �d and (b) ρ for V = 4.5–6.0. P (�d ) broadens with increasing V with a peak at �d = 0, while Mott sites show
up as a peak in P (ρ → 1) that sharpens with V . Color density plots of �d on the lattice are shown for (c) V = 4.5 and (e) V = 5.5. Increasing
V shrinks the blue regions forming superconducting “islands” in the matrix of nonsuperconducting regions. (d) Bare disorder profile. (f) The
cross correlation of density and order parameter. In this map, (i) blue dots correspond to superconducting regions [�d > 0.5�d (V = 0)], (ii) red
dots correspond to Mott regions (ρ > 0.97), and (iii) green dots correspond to non-SC, non-Mott region [�d < 0.3�d (V = 0) and ρ < 0.97].
White patches in (f) are the regions that do not qualify the criteria to be any of the three primary regions.

Our c-RIMT calculation is identical to RIMT for V � Vc as
there are no cut bonds. However, in the range Vc � V � 6.0,
up to 60% of kinetic links are frozen, and �OP depletes
by nearly 90%. In this case, local potential wells, where
the density is almost unity, are also accompanied by large
potential differences in bonds connected to the wells, i.e.,
to frozen bonds. Thus the renormalization of the disorder

potential around these wells is absent, leading to the formation
of Mott insulating sites which anchor regions of large potential
differences across bonds. In this region, hopping is severely
suppressed due to large fluctuations in potential, causing a
rapid destruction of coherence and superconductivity. Since
this physics of losing transport is the same as in an Anderson
insulator, we call these regions “Anderson insulating”. We have

014516-3



CHAKRABORTY, SENSARMA, AND GHOSAL PHYSICAL REVIEW B 95, 014516 (2017)

0.05

0.1

0.15

 

 

−0.2 −0.1 0.1 0.2
0

0.05

0.1

0.15

ω

N
(ω

)

 

 

−0.6 −0.2 0.2 0.6
0

0.02

0.06

ω

N
(ω

)

 

 

0.1

0.2

0.3

 

 

V=0
3.5
4.0
5.0

4.0
4.5
5.0
5.5

4.0
4.5
5.0
5.5

4.0
4.5
5.0
5.5

Site Averaged
DOS

(a)

ρ > 0.97

(b)

(d)

Δ
d
 > 0.0325

Δ
d
 < 0.02 and ρ < 0.97

V

(c)

V

V

FIG. 3. (a) Site-averaged DOS, N (ω) showing filling up of midgap states for strong V and depletion of coherence peaks. (b)–(d) N (ω) in
(b) superconducting regions, (c) Mott clusters, and (d) Anderson insulating region. The superconducting region shows a depleted coherence
peak at ω = ±0.26 for all V and Mott clusters show a spin gap at ω ∼ Jeff/2 ≈ ±0.58. The Anderson insulating region shows an otherwise
flat DOS, except for a sharp gap feature at |ω| � 0.05.

checked that a change in Vc merely gives a parallel shift to the
trace �OP(V ), without any qualitative modification.

The sudden demise of superconductivity for V > Vc is also
signaled by the decline of superfluid stiffness with V . The
stiffness Ds [shown in the inset of Fig. 1(a)] is defined by

Ds

π
= 〈−kx〉 − 	xx(qx = 0,qy → 0,ω = 0), (3)

where kx is the kinetic energy along the x direction and 	xx is
the long-wavelength limit of transverse (static) current-current
correlation function [48].

We have also examined a model of randomly located
impurities of strength V0 on the nimp fraction of sites, which
is more relevant to Zn doping of cuprate HTSCs [24,49,50].
Zn impurities in HTSCs have traditionally been treated as
strong repulsive potentials [51–53], although recent work has
shown these impurities to be attractive [10,24]. We show here
that for large repulsive V0 = 7.0 (> Vc), the nimp dependence
of �OP follows the weak-coupling IMT behavior, rather than
the strong-coupling RIMT trend, as shown in Fig. 1(b). In
contrast, a healthy �OP persists up to a considerably large
nimp (similar to RIMT) for weaker V0 � 3 [25,38,39]. In the
SM [46], we show that for strongly attractive V0 = −4.0, the
behavior interpolates between the RIMT and IMT findings.
Our results thus explain the loss of superconductivity in HTSCs
with Zn impurities for both repulsive and attractive strengths.

Distribution of local order parameters. The picture we have
painted above, i.e., at large V , disorder and interaction aid each
other in killing SC, is validated when we look at the distribution
of the local order parameter �d (i) = 1

4

∑
j=n.n.(−1)δj,i±ŷ gt

ij�ij

and the local density ρi as a function of V . This is plotted
in Figs. 2(a) and 2(b) for several values of V > Vc. P (�d )
broadens with increasing V , developing a peak at �d (i) ≈ 0,
similar to IMT results [54,55] and in stark contrast to RIMT

results [38], where the distribution forms narrow bands.
However, unlike IMT, the importance of correlations becomes
evident from Fig. 2(b) where the density distribution starts
showing a strong peak at ρ ≈ 1, indicating the importance of
the formation of locally Mott insulating regions in the demise
of superconductivity.

Our c-RIMT calculations afford us a granular view of the
system in terms of spatial arrangements of different types
of regions. To see this, the spatial distribution of �d (i) is
shown in Figs. 2(c) and 2(e) for V = 4.5 and V = 5.5,
respectively. This shows the formation of superconducting
and nonsuperconducting islands, with non-SC islands growing
with disorder. However, a clearer picture emerges if we cross
correlate the spatial distributions of order parameter and local
densities and divide the sites into three representative classes:
(i) Mott insulating sites, where local density ρ(i) > 0.97;
(ii) superconducting sites, where �d (i) > 0.033; and (iii)
sites with low order parameter (�d (i) < 0.02) and density
not close to 1 [ρ(i) < 0.97], the non-SC, and non-Mott
sites, which we will interpret as Anderson insulating patches.
Figure 2(f) presents this cross-correlated data corresponding
to the order parameter map in Fig. 2(e) for V = 5.5. Here
the superconducting sites are colored blue, the Mott insulating
sites are colored red, while the non-SC as well as non-Mott
insulating sites are colored green. Figure 2(f) clearly shows that
Mott insulating sites act as anchors around which the insulating
patches nucleate. With increasing disorder, these Anderson
insulating patches (green) form a network connecting the Mott
sites. The fraction of both the red and green sites grow with
disorder. Mott correlations and disorder potential aid each
other in the limit of strong disorder to localize the electrons
and kill superconductivity.

Local density of states. The three types of patches
discussed above leave their signatures in the local
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density of states (DOS) at these points, N (i,ω) =
gt

ii

∑
n {|ui,n|2δ(ω − En) + |vi,n|2δ(ω + En)} [25,38], where

(ui,n,vi,n) are the local Bogoliubov wave functions corre-
sponding to energy eigenstates with energy En. In Fig. 3(a),
we plot the DOS averaged over all sites in the system. At
weak disorder, the V-shaped low-energy DOS is robust to
disorder, which mainly affects the coherence peak at the gap
edge. At larger disorder, superconducting coherence peaks
deplete significantly and there is a filling of the d-wave gap,
although a narrow gap exists even at strong disorder strength
of V = 5.0.

The local density of states, averaged over the sites belonging
to the three categories mentioned above, show distinct features
of their own. In the superconducting regions [Fig. 3(b)], we
find that the density of states continue to show the low-energy
V-shaped feature characteristic of d-wave superconductors.
As disorder is increased, the slope of the DOS with energy
steepens at very low energy, indicating the transfer of spectral
weight from high energies at the gap edge to the low energies.
This is consistent with the fact that at strong disorder, the
quasiparticles become heavier with V and hence disorder-
averaged effective velocities vF and v� decrease. So the low-
energy spectral weight N (ω) ∼ ω/vF v� grows with V . In the
Mott regions [Fig. 3(c)], there is a clear gap in the low-energy
DOS with particle-hole symmetric sharp peaks at ω = ±0.58,
the location and line shape of which are robust to changes
in V . This is because the Mott clusters are described by an
effective Heisenberg Hamiltonian for localized spins in a basis
without any double occupancy. The difference between the
singlet and the triplet energies in this model is �spin ∼ Jeff , the
exchange coupling of that Hamiltonian, and is independent of
the disorder. This is the scale that shows up in the DOS of the
Mott regions, further confirming our association of these sites
with Mott insulating patches. In the third region [Fig. 3(d)], we
find a DOS which is flat at the energy scale of superconducting
coherence peaks (similar to Anderson insulators, and hence

the name), but features a tiny gap at very small |ω| � 0.05.
In these regions, the low-energy DOS first shows signs of gap
filling at intermediate V , but as the disorder increases, there
is a depletion of spectral weight at low energies, leading to
a fully formed gap by V = 5.0. A thin gap in disordered d-
wave SC had already been discussed in weak-coupling theories
[29,30,52,56,57]. In addition, Coulomb repulsions are known
to open up a gap in disordered systems [58–61]. Our results
emphasize the role of strong correlations in the low-energy
spectrum.

Conclusion. We have studied the effects of strong potential
disorder on strongly interacting d-wave superconducting states
in proximity to a Mott insulator. Using a c-RIMT method,
which explicitly freezes hopping on bonds with large potential
difference, we find that while strong correlations effectively
compete against weak disorder to make superconductivity
immune to disorder, at large disorder strengths, correlations
and disorder aid each other, leading to the sudden demise of
superconductivity. This is facilitated by the formation of Mott
insulating patches, which anchor Anderson insulating patches
around them.

We have not considered antiferromagnetic (AF) order [53]
in the present calculation, which is present in the Mott
insulating phase [62]. Short-range AF correlation, if generated,
will be confined to the Mott patches and these patches already
do not support SC. Hence this would not change the main
conclusions about superconductivity in the system. Similar
quantitative changes will occur with the inclusion of quantum
phase fluctuations. However, the evolution of intertwined
regions will survive and their distinct signatures in the DOS
can be picked up by scanning tunneling microscopy.
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