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Fully gapped two-dimensional superconductors coupled to dynamical electromagnetism are known to
exhibit topological order. In this work, we develop a unified low-energy description for spin-singlet paired
states by deriving topological Chern-Simons field theories for s-wave, d + id , and chiral higher even-wave
superconductors. These theories capture the quantum statistics and fusion rules of Bogoliubov quasiparticles and
vortices and incorporate global continuous symmetries—specifically, spin rotation and conservation of magnetic
flux—present in all singlet superconductors. For all such systems, we compute the Hall response for these
symmetries and investigate the physics at the edge. In particular, the weakly coupled phase of a chiral d + id

chiral state has a spin Hall coefficient νs = 2 and a vanishing Hall response for the magnetic flux symmetry.
We argue that the latter is a generic result for two-dimensional superconductors with gapped photons, thereby
demonstrating the absence of a spontaneous magnetic field in the ground state of chiral superconductors. It is
also shown that the Chern-Simons theories of chiral spin-singlet superconductors derived here fall into Kitaev’s
16-fold classification of topological superconductors.
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I. INTRODUCTION

Topological order is a cornerstone of contemporary
quantum condensed matter physics [1,2]. Rooted in the
discovery of the fractional quantum Hall effect, it arises
in numerous phases of matter such as spin liquids and
fractional quantum Hall liquids. Topological order mani-
fests itself in the fractionalization of low-energy excitations,
ground state degeneracy on closed manifolds, and long-range
entanglement [3].

The idea that two-dimensional superconductors, i.e., elec-
trically charged paired fermions that couple to a dynami-
cal two-dimensional electromagnetic field, are topologically
ordered has been appreciated for some time [4–8]. Due to
the Higgs mechanism, there are no Goldstone modes in the
energy spectrum and, at zero temperature, the superconductor
is fully gapped. There are two types of point excitations in a
two-dimensional superconductor: Bogoliubov quasiparticles
and vortices. At energies much lower than the gap, only
the topological properties of these low-energy excitations
(their braiding and fusion rules) and their symmetry quantum
numbers matter. This information can be effectively encoded
in a topological field theory. For an s-wave superconductor,
a topological Chern-Simons theory was elucidated and de-
scribed in detail in a beautiful paper by Hansson, Oganesyan,
and Sondhi [8].

More recently, attempts have been made to construct
topological theories for non-Abelian p + ip superconductors
[9,10]. These states are an important example in the field
of two-dimensional fermionic chiral superfluidity and super-
conductivity, which has been the focus of experimental and
theoretical condensed matter physics for decades. Today, chiral
p + ip pairing plays a central role in research fields as diverse
as the physics of 3He [11,12], quantum Hall physics [7],
unconventional superconductivity [13], cold atoms [14,15],
and topological quantum computation [16].

Our focus in this paper is on chiral spin-singlet paired
states which have also received some attention in the past. For
example, in the weakly coupled Abelian topological phase,
which falls into class C of the tenfold way classification [17], a
chiral d + id superconductor is predicted to exhibit a spin Hall
effect [7,18], support four protected chiral edge modes [19],
and have a nonuniversal edge mass current carried by unpaired
fermions [20,21]. Over the past few years, new physical
motivations necessitating further study of chiral d + id pairing
have emerged. Specifically, two-dimensional materials with
a hexagonal lattice symmetry necessarily have degenerate
dx2−y2 and dxy gaps [13], which makes them good candidates
for chiral d + id superconductors. Two well-known examples
where d + id pairing is currently believed to be relevant are the
pnictide SrPtAs [22,23] and graphene doped to the Van Hove
filling [24–26]. Chiral spin-singlet superconductors paired in
higher partial even waves are also theoretically interesting
and are likely to become experimentally relevant in the
future.

In a two-dimensional chiral superconductor, the sponta-
neous breaking of parity and time-reversal symmetries might
lead one to expect a spontaneous generation of a finite
magnetic field in the ground state, which originates from
the internal motion of fermions orbiting around each other in
Cooper pairs. For a type-II superconductor, this would result
in a finite density of quantum vortices in the ground state.
One might thus anticipate a relation between the density of
elementary fermions, nf , and the density of vortices, nv , of
the form nv = νvnf . An important question that motivated
this work is whether νv is a universal quantized number for
chiral paired states such as a d + id superconductor.

To answer this question and to extend the understanding
of superconductors as topologically ordered states, we present
a general framework for studying the low-energy physics of
spin-singlet superconductors. We start from the microscopic
theory of these states that are spin-rotationally invariant and
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conserve magnetic flux. From there, we derive topological
field theories for different gapped Abelian states, i.e., s-
wave, d + id, and chiral superconductors paired in higher
partial even waves. The virtue of this approach is that it
naturally encodes the braiding and fusion rules of low-energy
excitations, incorporates symmetries, and captures the physics
at the edge. In the case of chiral states, we reproduce the
known spin Hall effect [7,18]. Moreover, we investigate
the vortex Hall response associated with the magnetic flux
symmetry. The coefficient νv , introduced above, equals the
Hall coefficient for this response. Importantly, we demonstrate
explicitly that for all superconductors considered here, νv is
zero. As a result, we predict that there is no spontaneous
magnetic field, and thus no dense array of vortices in the
ground state of a chiral two-dimensional superconductor. By
merging the ideas discussed above, our work unifies topo-
logical order and symmetries in superconductors and firmly
establishes them as symmetry-enriched topological (SET)
phases [27].

It is worth remembering that in this work the electro-
magnetic field is assumed to be strictly confined to two
spatial dimensions. Is such flatland electromagnetism actually
realizable in an experiment? It is clear that without special
arrangements electromagnetism will penetrate into the third
dimension, and, as a result, one has to deal with a mixed
dimension problem where paired fermions are confined to two
spatial dimensions but electromagnetism is three-dimensional.
By embedding two dimensional electrons inside a specific
dielectric medium, however, electromagnetism can also be
made effectively two-dimensional. To this end, one can engi-
neer a two-dimensional logarithmic potential between electric
charges by surrounding the sample by a low-permittivity
medium with a dielectric constant εmedium � εsample [28].
Secondly, the magnetic field lines can be arranged to be trans-
verse to the boundary of the quasi-two-dimensional sample
by sandwiching it between a high-permeability (μmedium �
μsample) material. Thus, at least static electromagnetism can be
effectively confined to two dimensions.

The outline of our paper is as follows: In Sec. II, we first
introduce our framework—an Abelian Chern-Simons field
theory that captures the topological properties, symmetries,
and edge physics of Abelian gapped states. Next, in Sec. III, we
introduce topologically ordered spin-singlet superconductors
and identify their internal global symmetries. Then, in Sec. IV,
we derive the topological theories of s-wave and d + id

superconductors by starting from the low-energy model of
a nonrelativistic dx2−y2 paired state. In that section, we also
extend this derivation to chiral superconductors paired in
higher partial even waves. In Sec. V, we analyze the resulting
Chern-Simons theories. Here, we first devote Sec. V A to a
conventional (s-wave) superconductor. In Sec. V B, we then
investigate the effective theory of a d + id superconductor
and calculate its spin and vortex Hall responses. Next, in
Sec. V C, we describe the extension of our construction to
chiral spin-singlet superconductors paired in higher partial
even waves and demonstrate that these fall into the six-
teenfold way classification of chiral superconducting states
developed by Kitaev [29]. Section VI presents a general
argument that elucidates why chiral superconductors have a

zero vortex Hall coefficient. Finally, in Sec. VII, we close
with some open questions that go beyond the scope of this
paper.

II. ABELIAN TOPOLOGICAL FIELD THEORIES

The low-energy physics of a completely gapped two-
dimensional state of matter is encoded in a topological
field theory. Moreover, since the spin-singlet superconductors
studied in this paper are known to form only Abelian phases
[30], we propose that topological aspects of such phases can
be captured by an Abelian Chern-Simons field theory [31–33]

Lbulk = 1

4π
εμνρaI

μKIJ ∂νa
J
ρ − aI

μj
μ

I − 1

2π
tAI ε

μνρAA
μ∂νa

I
ρ.

(1)

Here aI is a multiplet (I = 1,2, . . . ,N ) of auxiliary statistical
gauge fields [34], KIJ is a symmetric integer-valued N × N

matrix that determines the self and mutual statistics of
excitations, and jI are quasiparticle currents. Note that aμ

are coupled to quantized charges carried by the currents jI .
As a result, the first-quantized current densities are j 0

I (r) =∑
n l

(n)
I δ(r − r(n)), characterized by an integer-valued gauge

charge vector l(n) and the position r(n) of the nth quasiparticle
excitation. The third term in Eq. (1) represents the coupling
to external sources AA of A = 1,2, . . . ,M global U(1)A
symmetries. The theory (1) has proven to be successful in
describing the low-energy properties of Abelian quantum Hall
fluids [35].

Importantly, topological order is simply encoded in the
effective theory (1). Indeed, the ground state degeneracy on a
torus, a direct manifestation of topological order, is fixed by
the determinant of the K matrix [35]:

number of ground states = |detK|. (2)

Moreover, this determinant also fixes the number of indepen-
dent anyon types (see, for example, [36]).

While the effective field theory (1) is quite an inefficient
formalism for encoding the fusion and braiding rules of
the bulk excitations [37], it is in fact very well suited for
understanding the physics of the edge. Following Wen [38], in
the absence of external sourcesAA, one finds a chiral Luttinger
theory of N chiral bosons φI propagating along the edge:

Ledge = 1

4π
[KIJ ∂tφ

I ∂xφ
J − VIJ ∂xφ

I ∂xφ
J ]. (3)

Here VIJ is a nonuniversal positive-definite real matrix that
depends on the microscopic properties of the edge.

Systems with a finite chiral central charge c at the edge have
a nonzero thermal Hall conductance and host c copropagating
bosonic edge modes that cannot be gapped by backscattering.
In particular, for chiral spin-singlet superconductors, with the
chirality parameter k to be defined in Eq. (10), one finds c = k.

A natural next question to ask is whether counterpropagat-
ing edge modes can be gapped without breaking any symme-
tries or whether they are symmetry-protected, i.e., are stable
against arbitrary symmetry preserving local perturbations. In
the rest of this section, we present a brief analysis of this
question.
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To understand the structure of a straight edge along the x

direction in the presence of external sources AA, we start from
Eq. (1) in the absence of quasiparticle currents j

μ

I . Following
[38], we first impose a gauge-fixing condition in the bulk,

aI
t + vI aI

x = 0. (4)

The Gauss law constraint (or incompressibility condition)

2π
δS

δaI
t

= KIJ bJ − tAIBA = 0, (5)

where bI = εij ∂ia
I
j and BA = εij ∂iAA

j , is automatically satis-
fied by

aI
i = ∂iφ

I + K−1
IJ tAJAA

i . (6)

Substituting Eqs. (4) and (6) into the bulk action (1), with
some manipulations, will result in the generalization of the
effective edge action (3) in the presence of sources AA. For
the purposes of understanding the fate of counterpropagating
edge modes in the presence of symmetries, however, it suffices
to work out the transformation properties of the edge fields φI .
Under a local U(1)A transformation parametrized by αA, the
background gauge fields and the edge multiplet transform as

δAA
μ = −∂μαA,

δφI = αAK−1
IJ tAJ .

(7)

The last equation follows from Eq. (6) and the U(1)A neutrality
of all statistical gauge fields aI . We consider now an edge
perturbation of the form∫

dx dt cos(lI φI ). (8)

First, the requirement of locality of this term enforces that
�l ∈ ZN must be bosonic (have trivial self and mutual statistics)
[36]. Moreover, it follows from Eq. (7) that these terms
(sometimes called “Higgs” terms) are invariant under all global
symmetries if lT K−1tA = 0 for all A = 1, . . . ,M . In addition,
according to the null vector condition of [39], such symmetry-
allowed Higgs terms can now gap a pair of counterpropagating
edge modes if and only if lT K−1l = 0 since the two fields can
then be rotated such that they form a single nonchiral Luttinger
liquid that is gapped by backscattering [40]. More generally,
for gapping n pairs of counterpropagating edge modes, we
will require n-independent (commuting) Higgs terms that can
simultaneously provide energy gaps to all of these edge modes.

In summary, in the presence of U(1) global symmetries, n

pairs of counterpropagating edge modes can be gapped if and
only if one can find �li ∈ ZN (i = 1, . . . ,n) such that

(1) the Higgs terms are constructed from elementary
bosonic excitations:

2πlTi K−1l′ = 0 (mod 2π ) ∀i,∀�l′ ∈ ZN; (9a)

(2) the Higgs terms are charge neutral under all global
symmetries:

lTi K−1tA = 0 ∀i,∀A; (9b)

(3) the null vector conditions are satisfied:

lTi K−1lj = 0 ∀i,j. (9c)

As shown later, all systems considered in this paper host at
least one pair of counterpropagating modes which are gapped
out by the Higgs terms satisfying the above conditions.

III. SPIN-SINGLET SUPERCONDUCTORS:
TOPOLOGICAL ORDER AND SYMMETRIES

In this paper, we consider two-dimensional electrically
charged spinful fermions which couple to a dynamical electro-
magnetic gauge field that is also confined strictly to two spatial
dimensions. We will assume that, due to electromagnetism and
some spin-independent short-range attractive interaction, the
fermions pair in a spin-singlet chiral channel with the gap


p = (px ± ipy)k
0, (10)

where the sign defines the chirality and k is an even integer due
to antisymmetry of the fermionic singlet pair wave function.
In fact, k is just the orbital angular momentum carried by a
Cooper pair.

We will discuss separately a conventional s-wave super-
conductor (k = 0), d + id superconductor (k = 2), and higher
partial even-wave chiral superconductors (k = 4,6, . . . ). The
explicit construction and analysis of the topological Chern-
Simons theories of these superconductors depends on the
chirality parameter, k, and will appear in separate sections
below. Here, we first highlight the generic properties that all
of these systems have in common:

(1) Topological order. Two-dimensional spin-singlet su-
perconductors with a dynamical gauge field exhibit topological
order. For an s-wave superconductor this has been emphasized
in [8], where the ground state degeneracy on a torus was
found to be equal to four. In fact, this result also holds for
the d + id superconductor [7] and can be easily extended to
higher partial wave spin-singlet chiral pairing. As a result,
all superconductors considered in this paper have |detK| = 4
and contain four independent anyons, which we call 1, e,
m, and ε, following a common convention. As we will see
in the following, topological order in superconductors leads
to fractionalization of the quantum numbers and statistics of
low-energy excitations.

(2) Internal continuous global symmetries. In a supercon-
ductor, electromagnetism, being a gauge redundancy, is not
a global symmetry. There are, however, two internal global
symmetries of spin-singlet superconductors to be considered
in this paper: First, the spin-singlet structure of the pairing
implies that a non-Abelian SU(2)s spin rotation is a global
symmetry. Since by construction the effective theory (1) can
couple only to Abelian sources, here we consider the Cartan
subalgebra of SU(2)s with the charge Qs ∼ Sz and introduce
in Eq. (1) an external Abelian spin source As that couples
to the z component of the spin current. We will see that
in superconductors, this charge is carried only by Bogoli-
ubov quasiparticles while vortices are spinless. Second, any
two-dimensional superconductor has a global Abelian U(1)v
magnetic flux symmetry with a charge Qv = ∫

d2xB [41]. The
conservation of this charge follows from the electromagnetic
Bianchi identity (Faraday’s law) εμνρ∂μFνρ = 0, which is

014508-3



MOROZ, PREM, GURARIE, AND RADZIHOVSKY PHYSICAL REVIEW B 95, 014508 (2017)

valid provided there are no magnetic monopoles. This appears
naturally in a model where the electromagnetic U(1) gauge
group is noncompact, which we consider in this paper. In a
type-II superconductor, a vortex carries one-half of a magnetic
flux quantum, i.e., a π flux, while a Bogoliubov quasiparticle
is neutral with respect to this symmetry. As a result, in a
superconductor the flux charge defined above is carried only
by vortices. Correspondingly, in the effective theory (1) we
introduce an external Abelian source,Av , which couples to the
charge Qv . It is worth emphasizing that due to the presence of
a gap, neither of the two global symmetries introduced above
are broken spontaneously in a superconducting ground state.

IV. DERIVATION OF CHERN-SIMONS TOPOLOGICAL
FIELD THEORIES OF SPIN-SINGLET

SUPERCONDUCTORS

We start from the low-energy model of a weakly coupled
nonrelativistic dx2−y2 superconductor and, by deforming it,
will derive the topological Chern-Simons theories for s-wave
and d + id superconductors. At the end of this section,
we will also extend this derivation to spin-singlet chiral
superconductors that are paired in higher partial even waves.

Before presenting the derivation, it is worth noting that
for a relativistic s-wave superconductor a topological Chern-
Simons theory was derived in [8]. In contrast to that construc-
tion, our derivation applies to all gapped spin-singlet non-
relativistic superconductors and includes coupling to external
magnetic flux and spin symmetry sources.

Our starting point is the Lagrangian of a gapless two-
dimensional dx2−y2 superconductor [42]

L0 = − 1

4
FμνF

μν − nsDtϕ + ns

2

1

c2
s

(Dtϕ)2 − ns

2
(Diϕ)2

− Aμjμ
ions + L0

qp(ψi,A;As) − 1

2π
εμνρÃv

μ∂νAρ,

(11)

where the covariant derivative Dμϕ = ∂μϕ − Aμ, ns is the
superfluid density, and cs is the speed of sound. The first
term [43] in Eq. (11) encodes the Maxwell dynamics of the
electromagnetic field A and the next three terms incorporate
the dynamics of the fluctuating part, ϕ, of the superconductor
phase. In addition, we have included the neutralizing ion
static background that carries the electromagnetic current
j

μ
ions = nf δμ0, where nf is the density of elementary fermions

that undergo pairing. L0
qp, specified later in this section, incor-

porates the low-energy physics of gapless spinful fermionic
quasiparticles that couple to electromagnetism, A, and to the
spin source, As . Finally, the last term in Eq. (11) describes the
coupling of the magnetic flux symmetry current to its external
source, Ãv . Its prefactor fixes the magnetic flux charge of
an elementary counterclockwise vortex to Qv = +1/2 (see
footnote [42]).

A. Vortices

In the presence of vortices the superconductor phase ϕ

can be split into the regular part ϕreg and the vortex part
ϕv, which has singularities at the positions of vortices. By
a suitable regular gauge transformation, the regular part ϕreg

ψ2α ψ1α

kx

ky

FIG. 1. Four Dirac fermions ψiα arising from the two pairs of
nodes (connected by dashed lines) at the Fermi surface of a dx2−y2

superconductor.

can be absorbed into the electromagnetic potential, Aμ (Higgs
mechanism). On the other hand, the singular part ϕv determines
the conserved vortex current

jμ
v = 1

π
εμνρ∂ν∂ρϕv. (12)

After introducing the statistical gauge field aμ ≡ ∂μϕv, which
is dual to the vortex current, the Lagrangian (11) becomes

L0 = − 1

4
FμνF

μν − bμ

(
jμ

v − 1

π
εμνρ∂νaρ

)
− ns(at − At ) + ns

2

1

c2
s

(at − At )
2 − ns

2
(ai − Ai)

2

− Aμjμ
ions + L0

qp(ψi,A;As) − 1

2π
εμνρÃv

μ∂νAρ,

(13)

where following [8] we introduced the (Lagrange multiplier)
statistical gauge field bμ, whose equation of motion enforces
the condition (12).

B. Bogoliubov quasiparticles

We now specify the quasiparticle Lagrangian, L0
qp. The

dx2−y2 superconductor has four nodes on the Fermi surface
(see Fig. 1), where Bogoliubov quasiparticles become gapless.
After linearizing near these nodes one finds four massless two-
component Dirac modes ψiα , where we introduced the nodal
index i = 1,2 and the spin index α = ↑,↓. The low-energy
Dirac Lagrangian of these quasiparticles was derived in [6,44]
and also discussed in [45]. In the absence of electromagnetism
it is given by

L0
qp = ψ

†
1 i∂tψ1 + ψ

†
1

(
ivF ∂Xτz + iv


∑
s=+,−

eisϕ∂Y eisϕτs

)
ψ1

+ (1 ↔ 2,X ↔ Y ), (14)

where τ± = (τx ± iτy)/2. Here we have introduced the
node-aligned spatial coordinates X = (x + y)/

√
2 and
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Y = (−x + y)/
√

2 and suppressed both the spin index α and
Dirac index in particle-hole space, where the Pauli matrices
τi operate. The gap terms proportional to τ+ and τ− contain
the coupling to the superconductor phase ϕ. Note that our
normalization of this phase differs from the normalization used
in [6,44] by a factor of two.

Since ψiα transforms as a doublet under the spin SU(2)s
symmetry, the quasiparticles couple to the spin source As

via the minimal coupling ∂μ → ∂μ + iσzAs
μ/2, where the

Pauli matrix σz acts in spin space. On the other hand, the
Bogoliubov quasiparticle spinor ψiα is a combination of a
particle and hole, and thus it is more subtle to introduce the
electromagnetic potential A into Eq. (14). In fact, A appears
only in the kinetic terms (but not in the gap term) in Eq. (14)
via the minimal coupling ∂μ → ∂μ + ieτzAμ, where we set
e = −1 (see footnote [42]). In the absence of vortices it is
customary at this point to transform to electrically neutral
fermions, ψ̃i = exp(−iϕτz)ψi , which eliminates the phase ϕ

from the gap term [6]. Importantly, in the presence of vortices
this transformation is not single-valued [46], and instead one
should perform a single-valued transformation [47] (see also
[48] for a general discussion)

ψ̃i = exp(−iϕτz ± iϕv)ψi. (15)

The presence of these neutral fermions, which braid trivially
with all other quasiparticles, will be reflected in the fermionic
nature of the K matrices discussed in Sec. V.

After performing the transformation with the minus sign in
Eq. (15), we find

L0
qp(ψ̃i,A;As) = ψ̃

†
1[iDt + τz(At − at )]ψ̃1

+ ψ̃
†
1vF [iDXτz + (AX − aX)]ψ̃1

+ ψ̃
†
1v
iDY τxψ̃1

+ (1 ↔ 2,X ↔ Y ),

(16)

where

Dμ = ∂μ + iaμ − iσzAs
μ/2. (17)

C. s-wave and d + i d deformations of dx2− y2 superconductor

Crucially for us, one can enter into the s-wave or d + id

gapped phase by adding appropriate masses to nodal Dirac
quasiparticles that were introduced above. In particular, the
terms [18]

Lδ
qp = −δ(ψ̃†

1τyψ̃1 ± ψ̃
†
2τyψ̃2)

(18)

add to the dx2−y2 superconductor some amount of is and idxy

pairing, respectively. Topologically, the resulting phases are
equivalent to the s-wave and d + id superconductors. We see
thus that that Eq. (18) is nothing but the mass term for the
nodal Dirac particles [49], with masses m1 = δ and m2 = −δ.
More generally, allowing arbitrary masses mi for the spinors
ψi , one can show that their signs are the same (m1m2 > 0)
for the d + id phase, while they are opposite (m1m2 < 0) for
the s-wave phase. The resulting phase diagram is summarized
in Fig. 2. Since the s-wave and the d + id superconductors

m1

m2

d + id

d − id

s

s

FIG. 2. Topological phase diagram of a deformed dx2−y2 super-
conductor as a function of masses mi of the Dirac modes ψi . The
origin represents the dx2−y2 superconductor.

differ only in the sign of the mass of the Dirac mode ψ̃2, in the
following we consider them in parallel.

D. Integrating out electromagnetism

Henceforth, we will assume that the Bogoliubov quasi-
particles ψi have a sufficiently large gap and thus carry
an electric density and current that are negligible compared
to the superfluid density and the supercurrent. As a result,
the superfluid density ns is equal to the density nf of the
elementary fermions. Given this, we first impose the charge
neutrality condition ns + j 0

ions = 0 in Eq. (13). Combining
now Eqs. (13), (16), and (18), we integrate out the massive
electromagnetic field Aμ, which to lowest order in derivatives
is equivalent to the substitutions Aμ → aμ. Keeping now only
the leading terms in derivatives, we find

L → − bμ

(
jμ

v − 1

π
εμνρ∂νaρ

)

− nsat + LD
qp(ψ̃i) − 1

2π
εμνρÃv

μ∂νaρ

(19)

with

LD
qp(ψ̃i) = ψ̃

†
1(iDt + ivF τzDX + iv
τxDY − δτy)ψ̃1

+ ψ̃
†
2(iDt + ivF τzDX + iv
τxDY ∓ δτy)ψ̃2,

(20)

where the covariant derivative Dμ was defined in Eq. (17).
Since in a superconductor an elementary fermion carries a

2π flux of the vortex magnetic field (see Appendix A), a finite
density of these fermions gives rise to a finite background
value of Bv . It thus seems natural at this point to absorb the
term −nsat in Eq. (19) into the source term. This indeed can be
done by writing nsat → εμνρĀv

μ∂νaρ/(2π ) with Āv
t = 0 and
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B̄v = 2πns . As the result, Eq. (19) simplifies to

L = 1

π
εμνρaμ∂νbρ − bμjμ

v − 1

2π
εμνρAv

μ∂νaρ

+ LD
qp(ψ̃i),

(21)

where Av = Āv + Ãv .

E. Topological field theory

Finally, we integrate out massive Dirac fermions in Eq. (20),
which are minimally coupled to the statistical gauge field a

and the spin source As . The resulting statistical and spin Hall
response is

LD
res = 1

8π

∑
i = 1,2
α = ↑,↓

mi

|mi |ε
μνρ

(
aμ∂νaρ + q2

s As
μ∂νAs

ρ

)
, (22)

where the unit of spin charge qs = 1/2. This can be encoded
within the Chern-Simons theories of two statistical gauge fields
c↑ and c↓.

Specifically, for the s-wave case, where
∑

i,α mi/|mi | = 0,
we use the zero-chirality theory

LD
qp → 1

4π
εμνρ(c↑

μ∂νc
↑
ρ − c↓

μ∂νc
↓
ρ )

+ 1

2π
εμνρaμ∂ν(c↑

ρ + c↓
ρ )

− 1

2π
εμνρAs

μ∂ν(c↑
ρ − c↓

ρ )

− c↑
μj

μ

↑ + c↓
μj

μ

↓ − 1

π
εμνρAs

μ∂νaρ,

(23)

which by construction has a vanishing Hall response. In
particular, integrating out c↑ and c↓ results in a term ∼As∂a

which is exactly canceled by the last term in Eq. (23).
On the other hand, for the d + id case with

∑
i,α mi/|mi | =

4 we employ the chiral theory

LD
qp → 1

4π
εμνρ(c↑

μ∂νc
↑
ρ + c↓

μ∂νc
↓
ρ )

+ 1

2π
εμνρaμ∂ν(c↑

ρ + c↓
ρ )

− 1

2π
εμνρAs

μ∂ν(c↑
ρ − c↓

ρ )

− c↑
μj

μ

↑ − c↓
μj

μ

↓ .

(24)

In Eqs. (23) and (24), we also included the coupling to
gapped spin-up and spin-down Bogoliubov quasiparticles that
are represented in the Chern-Simons field theory by bosonic
external currents j↑ and j↓, respectively [50]. Putting Eqs. (23),
(24) that capture the quasiparticle sector of the full Lagrangian
into Eq. (21) results in the completely topological four-
component (a,b,c↑,c↓) Chern-Simons theories for s-wave and
d + id superconductors which will be discussed in detail in
Secs. V A and V B, respectively.

F. Extension to higher partial waves

The above construction can be straightforwardly gener-
alized to chiral superconductors paired in the kth partial

1

e

m
(0,0,0,0) (0,1,0,0)

(0,1,1,0)(0,0,1,0)

FIG. 3. Integer-valued l vectors of 1, e, m, ε excitations for the
s-wave and d + id superconductor.

wave, for k ∈ 2Z/{0}. We start from a time-reversal-invariant
superconductor with a gap proportional to the real part of
(px ± ipy)k which has k pairs of nodes at the Fermi surface.
This leads to k massless Dirac spin doublets. We can deform
into the chiral (px + ipy)k state by adding masses of the same
sign to all Dirac modes. This procedure gives rise to the
Chern-Simons theory that will be investigated in Sec. V C,
following our presentation and analysis for the s-wave and
d + id cases.

V. TOPOLOGICAL FIELD THEORIES
OF SPIN-SINGLET SUPERCONDUCTORS

In this section we analyze the topological theories that were
derived in the previous section. In addition to summarizing the
braiding properties of quasiparticles, we investigate the role of
global symmetries in the bulk and at the edge of spin-singlet
superconductors.

A. s-wave superconductor

Having encoded the topological properties of vortices in
Eq. (21) and of the nodal Dirac quasiparticles in Eq. (23), we
combine these to arrive at the four-component Chern-Simons
theory of the form (1) with aI = (a,b,c↑,c↓). The resulting K

matrix characterizing the s-wave state is

K =

⎛
⎜⎝

0 2 1 1
2 0 0 0
1 0 1 0
1 0 0 −1

⎞
⎟⎠. (25)

This K matrix is fermionic (with two odd integers on
the diagonal) encoding the presence of an elementary [51]
fermionic excitation in the spectrum of the superconductor.
Notably, the K matrix (25) does contain the (toric code)
bosonic block (0 2

2 0), which, for the s-wave superconductor,
was derived previously in [8]. The l vectors, defining integer-
valued charges of independent excitations with respect to
statistical gauge fields a,b,c↑,c↓, are shown [52] in Fig. 3.
The self and mutual statistical angles can be extracted from
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the topological theory (1) as

θl = πlTK−1l, θl,l′ = 2πlTK−1l′. (26)

Thus, we find that e and m are bosons and ε is a fermion for
the s-wave superconductor. In addition, any mutual braiding
gives the statistical angle π .

Now we consider the symmetries: In a generic effective
theory (1) the charge QA of an excitation characterized by the
l vector is given by

QA
l = tTAK−1l. (27)

For the s-wave state, it follows from the derivation in Sec. IV
that the t vectors for the spin and magnetic flux symmetry
are tTs = (2,0,1, − 1), tTv = (1,0,0,0). This fixes the spin and
vortex charges of m, ε, and e to be

Qm
s = 0, Qε

s = 1, Qe
s = 1,

Qm
v = 1/2, Qε

v = 0, Qe
v = 1/2.

(28)

Since we previously defined that in a superconductor,
Bogoliubov particles carry only spin and vortices carry only
magnetic flux, we now must identify ε and m with the Bo-
goliubov quasiparticle and vortex, respectively. As expected,
the Bogoliubov quasiparticle ε is a fermion, while the vortex
m is a boson. Their composite e is a boson, which carries
the spin and vortex charge. The mutual π phase under the
braiding of ε around m is consistent with the well-known fact
that in a superconductor the Bogoliubov quasiparticle (despite
being electrically neutral [4]) accumulates a minus sign upon
encircling a vortex [53,54].

The s-wave pairing does not violate two-dimensional parity
P (x ↔ y) and time-reversal T (t → −t). As a result, the
effective theory (1) should be invariant under these discrete
symmetries. We specify the transformation properties of all
fields: First, under P and T the Bogoliubov quasiparticle
currents j↑, j↓ and the vortex current jv transform differently.
The definitions of the currents lead to the following nontrivial
transformations:

P : j 0
↑ ↔ j 0

↓, j x
↑ ↔ j

y

↓ , j 0
v → −j 0

v , j x
v ↔ −jy

v ,

T : j 0
↑ ↔ j 0

↓, j i
↑ ↔ −j i

↓, j 0
v → −j 0

v .
(29)

Given these, the statistical gauge fields c↑ and c↓ in Eq. (23)
transform as

P : c
↑
0 ↔ −c

↓
0 , c↑

x ↔ −c↓
y ,

T : c
↑
0 ↔ −c

↓
0 , c

↑
i ↔ c

↓
i ,

(30)

while the statistical gauge field b, the vortex source Av , and
the spin source As transform like the vortex current jv in
Eq. (29). Finally, under P and T the statistical gauge field a

transforms like the electromagnetic gauge potential A,

P : ax ↔ ay,

T : ai → −ai.
(31)

Using these transformation properties, it is straightforward to
check that the effective theory (1) is indeed invariant under P

and T .
In the absence of external quasiparticle currents in Eq. (1),

all statistical gauge fields can be integrated out resulting in the

Hall response

Lres = − 1

4π
tT
AK−1tB︸ ︷︷ ︸

νAB

εμνρAA
μ∂νAB

ρ . (32)

A simple calculation leads to νAB = 0. Thus the s-wave
superconductor reassuringly exhibits no Hall effects, which
is consistent with P and T invariance of this state.

Finally, we look at the edge, where there are two pairs
of counterpropagating chiral modes because the K matrix
has two pairs of eigenvalues of the opposite sign. Note,
however, that one is allowed to add to the edge Lagrangian
(3) two independent Higgs terms cos(2tsφ) and cos(2tvφ)
which satisfy the conditions Eq. (9). As a result, the two Higgs
terms completely gap out all four edge modes of the s-wave
superconductor, consistent with the expectation that this state
neither has gapless edge modes nor a Hall response. The above
arguments explicitly demonstrate that the low-energy physics
of the s-wave state cannot be completely characterized by the
toric code model since the edge of the toric code can be gapped
out in two physically distinct ways [55] whereas the edge of
an s-wave superconductor with U(1)s × U(1)v symmetry is
gapped by the unique mechanism presented above.

B. d + i d superconductor

In a chiral d + id superconductor, parity and time
reversal are broken spontaneously, which gives rise to anyon
self-statistics of excitations. In parallel with the s-wave case,
in Sec. IV we derived the fermionic K matrix for this state

K =

⎛
⎜⎝

0 2 1 1
2 0 0 0
1 0 1 0
1 0 0 1

⎞
⎟⎠. (33)

It describes a chiral state with a chiral central charge c =
k = 2. The l vectors are identical to the s-wave case and are
illustrated in Fig. 3 (also see footnote [52]). As a result, in the
weakly coupled topological phase of a d + id superconductor,
e and m excitations are semions [29]; i.e., they have the statis-
tical angle θe = θm = π/2. On the other hand, ε is a fermion
and has nontrivial mutual π statistics with e and with m.

The derivation undertaken in Sec. IV fixed the symmetry t

vectors for this state to be

tTs = (0,0,1,−1), tTv = (1,0,0,0). (34)

Using Eq. (27), we find that the spin and vortex charges of the
excitations equal

Qm
s = 0, Qε

s = 1, Qe
s = 1,

Qm
v = 1/2, Qε

v = 0, Qe
v = 1/2,

(35)

which are, in fact, identical to those for the s-wave case given in
Eq. (28). As a result, in this case ε and m will be still identified
with the Bogoliubov quasiparticle and vortex, respectively.
In contrast to the s-wave superconductor, the vortex here is
a semion. In fact, the semion statistics of the vortex can be
extracted from the Berry phase accumulated under exchange
of two identical vortices in a d + id superconductor, which can
be computed by a simple generalization of the computation
done for a p + ip superconductor in [48]. Alternatively, the
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semion phase follows from a qualitative argument presented
in [56] that views a d ± id superconductor as a stack of four
spinless p ± ip layers.

The effective theory (1) with the K matrix (33) is
PT invariant, but breaks separately P and T symmetries.
Consequently, we find a nontrivial Hall response

ν =
(

2 0
0 0

)
, (36)

with ν defined in Eq. (32). We thus showed here that in the
topological (weakly coupled) phase a chiral d-wave supercon-
ductor exhibits the spin Hall effects with νs = 2, but no vortex
(νv = 0) and mixed spin-vortex Hall (νvs = 0) responses.
For the spin part, this reproduces in appropriate units the
findings from [7,18]. In particular, in a d + id paired state
a position-dependent external magnetic Zeeman field B(x,y)
will give rise to the Hall current of the z-component of spin
j i
s = −σsε

ij ∂jB with the spin Hall conductivity σs = 1/(4π )
[57]. But what is the physical implication of the absence of
the vortex Hall effect? Since the density and current of the
elementary fermions fix the background values of Bv and Ev

i

(see Appendix A), a nontrivial vortex Hall effect would imply

nv = νv

2π
Bv = νvnf ,

j i
v = − νv

2π
εijEv

j = νvj
i
f ,

(37)

i.e., a linear relation between the densities of the elementary
fermions and vortices in the ground state of the d + id

superconductor. The fact that we found νv = 0 demonstrates
explicitly that zero magnetic field B (an thus zero density of
vortices) is generated in the ground state of the chiral d-wave
superconductor. At first sight it might seem surprising that
the unbroken magnetic flux symmetry has a vanishing Hall
response in the d + id paired state that breaks spontaneously
parity and time reversal. In Sec. VI we present a general
argument which independently supports this finding.

Consider now the edge of a chiral d-wave superconductor
(33), where two copropagating chiral bosons appear together
with a pair of counterpropagating chiral modes. For the
purpose of the upcoming discussion, it is convenient to
transform the Chern-Simons theory into a GL(4,Z)-equivalent
form (K,l,t) → (K̃,l̃,t̃), discussed in detail in Appendix B. In
this formulation, the K matrix is block-diagonal

K̃B =

⎛
⎜⎝

−2 2 0 0
2 0 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎠, (38)

the l vectors are

l̃Tm = (0,1,0,0) = lTm,

l̃Tε↑ = (−1,0,1,0), l̃Tε↓ = (−1,0,0,1),
(39)

and the t vectors are unchanged from Eq. (34): t̃s = ts ,
t̃v = tv . In this basis, the counterpropagating modes φ̃1 and
φ̃2 are gapped out by the Higgs term cos(2t̃vφ̃) that fulfils the
conditions (9) introduced at the end of Sec. II. On the other
hand, due to quantization of the thermal Hall conductance
[29,58], the remaining two copropagating chiral states φ̃3

and φ̃4 cannot be gapped by edge interactions or disorder.
These chiral states are neutral under the magnetic flux U(1)v
symmetry. This implies that there is no U(1)v gauge anomaly
at the edge, consistent with the vanishing vortex Hall effect
found above (see also Sec. VI). In contrast, the spin Hall effect
with νs = 2 implies that the edge theory must have a spin
gauge anomaly. In fact, the current associated with the spin
chiral boson l̃s φ̃ with

lTs = l̃Tε↑ − l̃Tε↓ = (0,0,1,−1) (40)

realizes the U(1)2 Kac-Moody affine algebra, where the
subscript denotes the level. From a standard argument [59],
the current affine algebra U(1)2 can be actually extended to a
larger affine algebra SU(2)1. The spin sector is thus described
by the chiral SU(2)1 Wess-Zumino-Witten edge theory [7]
that has the spin gauge anomaly. The complete bulk plus edge
theory is of course consistent because the edge anomaly is
canceled by the inflow of the bulk spin Hall current.

Curiously, the current associated with the orthogonal com-
bination lTtot = l̃Tε↑ + l̃Tε↓ = (−2,0,1,1) realizes another copy of
the U(1)2 → SU(2)1 Kac-Moody affine algebra. The above
arguments thus suggest that the edge theory of the chiral
d-wave superconductor has an extra SU(2)tot symmetry. As
discussed in [7], the SU(2)tot is emergent and does not have
a microscopic origin. In a d ± id superconductor, with the
spin and particle-hole symmetries, the velocities of the two
copropagating chiral modes are necessarily equal. Therefore
the edge supports an anomalous SO(4) ∼= SU(2)s ⊗ SU(2)tot

symmetry which rotates four edge Majorana modes; for more
details, see [7]. In the following subsection, we show how
this discussion generalizes to superconductors paired in higher
partial even waves.

C. Higher partial waves and the 16-fold way

So far, we have analyzed Chern-Simons theories for the
specific cases of conventional s-wave and chiral d-wave
superconductors, the latter being the simplest example of a
spin-singlet chiral state. At this point we extend the discussion
to include all chiral spin-singlet superconductors paired in
partial even waves.

In [29], Kitaev demonstrated that chiral superconductors
have a Z16 bulk classification. Using either the language of
axiomatic topological field theory or by considering stacked
p + ip layers [56], it can be shown that the statistical angle
acquired upon exchanging two e particles (or two m particles)
has a 16-fold periodicity. That is, given a chiral superconductor
with Chern number ν that hosts ν Majorana chiral modes at
the edge, the exchange angle of excitations [29]

θe = θm = 2πν/16, θε = π. (41)

Since every Majorana mode contributes a half unit of the
central charge, the total chiral central charge c = ν/2. Thus,
systems with c = 0 and c = 8 have identical bulk anyonic
excitations but have different edge theories manifested in
different thermal Hall conductivities. The 16-fold way is
diagrammatically depicted in Fig. 4, where the angle θ

represents θe for the different states. The states with half-
integer central charge (represented by dashed lines) are non-
Abelian whereas those with integer central charge (represented
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FIG. 4. Diagrammatic representation of the 16-fold way. The
Abelian states considered in this paper are represented by thick lines
and the other Abelian states by thin lines. Dashed lines indicate the
non-Abelian states. For each state, the angle θ equals the exchange
angle θe = θm.

by solid lines) are Abelian. Among the latter, the thick
lines indicate states with c ∈ 2Z, which are realized by the
spin-singlet superconductors studied in this paper. For these
superconductors, the chiral central charge c equals the chirality
parameter k.

From Sec. IV, it follows that the weakly paired chiral
superconductor paired in the even kth partial wave has the
(k + 2) × (k + 2) K matrix

K =
⎛
⎝ 0 2 1k

2 0 0k

1T
k 0T

k 1k×k

⎞
⎠, (42)

where we introduced the notation xk = (x,x, . . . ,x︸ ︷︷ ︸
k times

). In fact,

this K matrix has previously appeared in a somewhat different
context in [60]. The l vectors of the excitations are

lTm = (0,1,0k),

lTε = (0,0,1,0k−1).
(43)

It is straightforward to demonstrate that these spin-singlet
states k ∈ 2Z/{0} fall into the 16-fold way since they have
the chiral central charge c = k and lead to the statistics (41).
Interestingly, the states where c is an odd integer form a
different class of Abelian states which perhaps describe certain
phases of spin-triplet superconductors.

The charges of excitations are given by Eq. (35); i.e., they
are identical to the s-wave and d + id cases. These states are
fixed by the symmetry t vectors, which in this case are given
by

tTs = (0,0,±1k),

tTv = (1,0,0k),
(44)

where ±1k = (1,−1, . . . ,1,−1︸ ︷︷ ︸
k/2 times

). We thus again find the Bo-

goliubov quasiparticle to be the fermion ε, while the vortex
is the anyon m that has the statistical angle θm = πk/8. An
explicit calculation gives the spin Hall coefficient νs = k and
the vanishing vortex (νv = 0) and mixed vortex-spin (νvs = 0)

FIG. 5. A chiral superconductor with chirality k ∈ 2Z hosts 2k

Majorana modes at the edge. As indicated by the (↑↓) arrows, each
mode is doubly degenerate due to spin symmetry and modes with the
same color are related by particle-hole symmetry. Thus, the modes
within a quartet have the same velocity vi , while generically different
quartets will have different velocities.

coefficients. This result is a natural generalization of Eq. (36)
found for the d + id state.

One can better understand the edge theory of chiral paired
states by casting the K matrices (42) into two different
GL(k + 2,Z)-equivalent block-diagonal forms K̃B and K̃C

(see Appendix B for details). Generalizing the discussion in
Sec. V B, from the form

K̃B =
(−k 2

2 0

)
⊕ 1k×k, (45)

one finds that a pair of counterpropagating edge modes is
gapped out by the allowed Higgs term cos(2t̃vφ). Similarly to
the d + id case, the remaining gapless chiral theory is neutral
under the magnetic flux U(1)v symmetry. On the other hand,
symmetries of the edge appear naturally from the Cartan block-
diagonal form

K̃C = A
SO(2k)
k×k ⊕

(
1 0
0 −1

)
, (46)

where A
SO(2k)
k×k is the Cartan matrix of the Lie algebra SO(2k)

and is defined in Eq. (B8). For example, for the d + id

superconductor (k = 2), one finds K̃C = (2 0
0 2) ⊕ (1 0

0 −1),
with the SO(4) ∼= SU(2)s ⊗ SU(2)tot symmetry, discussed in
Sec. V B, manifest. In a similar fashion, following [59], we
can show that the current operators arising from the Cartan
block satisfy SO(2k)1 Kac-Moody algebra. This seems to
suggest that the chiral edge theory might have an internal
SO(2k) symmetry associated with rotations of the 2k multiplet
of Majorana modes. Generically, however, we expect this
symmetry to be broken by the velocity matrix. As illustrated in
Fig. 5, in a chiral superconductor of chirality k, 2k Majorana
edge modes split into n = k/2 quartets. The modes within each
quartet are related by the spin and particle-hole symmetry,
and thus have the same velocity. However, nothing prevents
different quartets from having different velocities. As a result
the nature of the residual symmetry at the edge of a chiral
superconductor depends on the velocity matrix and hence on
the microscopic details.
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FIG. 6. Feynman diagram for the kernel �μν(p): the bold wavy
line denotes the renormalized photon propagator iDγδ(p); the red
cross represents the vertex originating from the last term in Eq. (47).

From the Cartan form (46) of the K matrices, it is clear that
the fermionic block, σ z, is topologically trivial; i.e., it does not
effect the ground state degeneracy, chirality, and statistics of
the system. In other words, in the absence of symmetries these
K matrices are stably equivalent [61] to the Cartan matrices
ASO(2k) [62]. However, in the presence of coupling to the vortex
source Av , the fermionic block is essential because the vortex
symmetry vector tv (in this basis) has nonzero elements in this
sector.

VI. ABSENCE OF VORTEX HALL EFFECT
IN SUPERCONDUCTORS

In the previous section we found for all superconductors
that the vortex Hall effect for the magnetic flux symmetry is
zero. While for the s-wave state this is a completely expected
result, for chiral spin-singlet states it might seem surprising
since parity and time reversal are spontaneously broken and
one might expect that these unbroken symmetries should
exhibit nontrivial Hall responses. Here we will argue that the
vortex Hall effect should vanish in any superconductor due
to the finite mass of the photon field acquired via the Higgs
mechanism.

Consider a general two-dimensional superconductor cou-
pled to the magnetic flux source Av

L = LSC(f,A) − 1

2π
εμνρAv

μ∂νAρ, (47)

where the elementary fermions f undergo Cooper pairing and
thus generate a mass to the electromagnetic gauge potential A

via the Higgs mechanism. After integrating out f and A, the
vortex Hall effect can in principle appear from the quadratic
contribution to the effective action �[Av]. In a translation-
invariant system

�(2)[Av] = 1

2

∫
d3xd3yAv

μ(x)�μν(x − y)Av
μ(y)

= 1

2

∫
d3pAv

μ(−p)�μν(p)Av
μ(p),

(48)

where in momentum space the kernel �μν(p) is given by

�μν(p) ∼ εμαγ pαDγδ(p)ενβδpβ (49)

with iDγδ(p) a fully renormalized photon propagator. The
kernel is illustrated in Fig. 6 as a Feynman diagram.

Let us start in the s-wave phase which obviously has a
vanishing vortex Hall coefficient νv = 0. As in Sec. IV, by
tuning the Dirac masses of the Bogoliubov quasiparticles we
can enter into the chiral d + id phase (see Fig. 2). Importantly,
during this process the photon propagator always remains
gapped due to the Higgs mechanism. Since νv can only change
at a point where the photon gap closes, this shows that as we

enter the d + id phase νv remains zero. This result should
be contrasted to the spin Hall effect which arises from the
fermionic one-loop diagram [7,18]. It is clear from Fig. 2 that
after starting in the s-wave state the fermionic gap must close as
one enters the d + id phase, allowing the spin Hall coefficient
to jump from νs = 0 (s wave) to νs = 2 (d + id).

Clearly the argument above can be generalized to other
chiral superconductors that can be obtained by deformations of
a time-reversal-invariant superconducting state. In summary,
as long as the Higgs mechanism produces a finite gap for
the photon field (along the deformation trajectory), the Hall
coefficient for the magnetic flux symmetry should vanish.
This is in a stark contrast to the standard probes of time-
reversal breaking, such as the polar Kerr, spin Hall, and
Nernst/Ettingshausen effects that should give nonvanishing
signals in chiral superconducting states.

VII. OPEN QUESTIONS AND OUTLOOK

In this work we have developed a topological framework
for the low-energy physics of two-dimensional spin-singlet
superconductors. Here we discuss some open questions that go
beyond the scope of this paper and are left for future studies.

As emphasized throughout the paper, in this work the
electromagnetic field is strictly confined to two spatial di-
mensions. On the other hand, in thin-film superconductors
the mixed-dimensional problem of two-dimensional paired
fermions interacting with a three-dimensional electromagnetic
field is realized most naturally. For this reason, this system
deserves to be studied in detail. It also might fall into the
class of quasitopological phases introduced by Bonderson and
Nayak in [63].

Additionally, here we have considered a theory that allows
topological defects (vortices) of the matter field, but not topo-
logical defects (magnetic monopoles) in the electromagnetic
(noncompact) sector. It might be interesting to investigate a
two-dimensional superconductor with a compact electromag-
netism; in this version of the theory, magnetic monopoles are
allowed and appear in the form of spacetime instantons [64].
As a result, the magnetic flux symmetry is lost because a pair
of vortices can instantly disappear into a monopole. This rich
problem naturally arises in the physics of spin liquids and was
investigated in the seminal paper of Fradkin and Shenker [65].
In the future, it would be interesting to extend our work to this
model and to investigate the interplay of the unbroken SU(2)s
spin symmetry and topological order in it.

We have demonstrated in this paper that all superconductors
have a vanishing vortex Hall response due to the finite gap of
the photon field that arises from the Higgs mechanism. As long
as this gap can be closed, however, it seems possible that one
can enter a distinct phase of matter with νv �= 0. In contrast to
a superconductor, this phase is characterized by a finite flux
of magnetic field in the ground state, corresponding to a dense
collection of vortices. It will hence be of interest to find ways
of closing the photon gap in our problem.

Moreover, the realization of the magnetic flux symmetry
might be subtle in the problem studied here. For a bosonic
toric code model, for instance, it is known that it is impossible
to realize an internal global U(1) symmetry with the charges
Qe = Qm = 1/2 in a purely two-dimensional world. In fact,
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this realization of a symmetry can only appear on the surface
of a three-dimensional system. This is known as the statistical
anomaly and, for bosonic systems, is discussed in detail
in [66,67]. We believe that the fate of this anomaly in
two-dimensional fermionic superconductors deserves future
investigation.

Recently, it has also become clear that in a weakly paired
d + id superfluid (and also in chiral superfluids paired in
higher partial waves) not all fermions in the ground state
are paired in the presence of an edge [20]. These unpaired
fermions are localized close to the edge and carry a mass
current that partially compensates the angular momentum
L = lN/2 carried by the chiral Cooper pairs. This current
is nonuniversal since it depends on the structure of the edge.
It would be interesting to investigate the nature of this current
in the presence of a dynamical electromagnetism.

A limitation of the K-matrix formalism is that it allows
us to incorporate only the coupling to the Abelian subgroup
of the spin symmetry. Currently, the Chern-Simons field
theory does not allow coupling to the full non-Abelian spin
symmetry because we do not know how to fractionalize
representations of non-Abelian groups. Using an alternative
formalism that allows coupling to all non-Abelian SU(2)s
sources could thus generalize our work. In addition, since any
physical system breaks the spin symmetry due to spin-orbit
coupling, it would be useful to study the effects of (weakly)
breaking this symmetry.

Finally, it is known that two-dimensional chiral supercon-
ductors and superfluids exhibit a nonvanishing “shift” and Hall
viscosity [68–70]. Following the seminal work of Wen and Zee
[71], it should be possible to account for these phenomena by
coupling the spin connection to the topological Chern-Simons
theories developed here.
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APPENDIX A: RELATION BETWEEN “MAGNETIC
FIELD” Bv AND FERMION DENSITY n f

Here we demonstrate that in a superconductor the back-
ground vortex “magnetic field” Bv = εij ∂iAv

j is fixed by

the density of the elementary fermions nf . Indeed, in a
superconductor the Lagrangian of a single vortex located at
position Xi is given by [72]

Lv = −π

2
nf εijX

iẊj . (A1)

Alternatively, we can rewrite the same Lagrangian as a
minimal coupling of a vortex current to its gauge potential
Lv = −qvAv

j Ẋ
j with qv = 1/2 because in a superconductor

the vortex carries only a half of a unit flux quantum of
the magnetic field. As a result, we find that the density of
elementary fermions fixes the background value of Bv to be
Bv = 2πnf . At the same time the fermion current j i

f fixes
the background value of the “electric field” Ev

j via the relation

j i
f = − 1

2π
εijEv

j .

APPENDIX B: BLOCK-DIAGONAL FORMS OF K
MATRICES OF SPIN-SINGLET CHIRAL STATES

It is well known that different K matrices can represent the
same topological state in the Chern-Simons theory (1). Indeed,
one is allowed to relabel the statistical gauge fields aI

aI → ãI = XIJ aJ , (B1)

where X ∈ GL(N,Z) is a N × N matrix of integers with the
determinant ±1. Under such a transformation

K → K̃ = XT KX,

l → l̃ = XT l,

t → t̃ = XT t,

(B2)

and the theories defined by (K,l,t) and (K̃,l̃,t̃) are equivalent.
We demonstrate that the K matrix of a chiral spin-singlet

superconductor paired in the (even) kth partial wave can be put
into block-diagonal forms. The two distinct block-diagonal
forms used in the main text are highlighted here. We start
from the K matrix, l vectors, and t vectors that were derived
in Sec. V C and are given by Eqs. (42), (43), and (44),
respectively.

If one chooses now the X matrix

X =
⎛
⎝ 1 0 0k

0 1 0k

−1T
k 0T

k 1k×k

⎞
⎠, (B3)

one finds

K̃B =
(−k 2

2 0

)
⊕ 1k×k, (B4)

l̃Tm = (0,1,0, . . . ,0) = lTm,

l̃Tε = (−1,0,1,0, . . . ,0),
(B5)

t̃ Ts = (0,0,1,−1, . . . ,1,−1) = tTs ,

t̃Tv = (1,0, . . . ,0) = tTv .
(B6)

In Eq. (B4) the topological order and chirality is encoded in
the first and second factor, respectively.

Alternatively, one can find a GL(N,Z) transformation that
transforms the K matrix (42) into the Cartan block-diagonal
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form

K̃C = A
SO(2k)
k×k ⊕

(
1 0
0 −1

)
, (B7)

where we introduced the Cartan matrix of of the Lie algebra SO(2k)

A
SO(2k)
k×k =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 0 . . . 0

−1 2
. . .

. . .
. . . 0

0
. . . 2 −1 0 0

0
. . . −1 2 −1 −1

...
. . . 0 −1 2 0

0 0 0 −1 0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B8)

In the form (B7) both the topological order and chirality are encoded in the first factor, while the second factor is topologically
trivial. The X matrix for the d + id (k = 2) case is

Xk=2 =

⎛
⎜⎝

−1 −1 0 −1
−1 0 0 0
1 −1 0 0
1 1 1 1

⎞
⎟⎠. (B9)

X matrices for higher partial even waves can also be found. For k = 4, k = 6, and k = 8, for instance, we find

Xk=4 =

⎛
⎜⎜⎜⎜⎜⎝

−1 0 0 0 0 −1
−1 0 0 1 0 0
0 0 1 −1 0 0
0 1 −1 −1 0 0
1 −1 0 0 0 0
1 0 0 0 1 1

⎞
⎟⎟⎟⎟⎟⎠, (B10)

Xk=6 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 0 0 0 0 −1
−1 0 0 0 0 1 0 0
0 0 0 0 1 −1 0 0
0 0 0 1 −1 −1 0 0
0 0 1 −1 0 0 0 0
0 1 −1 0 0 0 0 0
1 −1 0 0 0 0 0 0
1 0 0 0 0 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B11)

Xk=8 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 0 0 0 0 0 0 −1
−1 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 −1 0 0
0 0 0 0 0 1 −1 −1 0 0
0 0 0 0 1 −1 0 0 0 0
0 0 0 1 −1 0 0 0 0 0
0 0 1 −1 0 0 0 0 0 0
0 1 −1 0 0 0 0 0 0 0
1 −1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B12)

While these X matrices are not unique, the ones presented here easily generalize to higher k.

[1] X. Wen, Quantum Field Theory of Many-Body Systems, Oxford
Graduate Texts (Oxford University Press, Oxford, 2004).

[2] E. Fradkin, Field Theories of Condensed Matter Physics
(Cambridge University Press, Cambridge, 2013).

[3] B. Zeng, X. Chen, D.-L. Zhou, and X.-G. Wen,
arXiv:1508.02595.

[4] S. A. Kivelson and D. S. Rokhsar, Phys. Rev. B 41, 11693
(1990).

[5] X.-G. Wen, Int. J. Mod. Phys. B 05, 1641 (1991).
[6] L. Balents, M. P. Fisher, and C. Nayak, Int. J. Mod. Phys. B 12,

1033 (1998).
[7] N. Read and D. Green, Phys. Rev. B 61, 10267 (2000).

014508-12

http://arxiv.org/abs/arXiv:1508.02595
https://doi.org/10.1103/PhysRevB.41.11693
https://doi.org/10.1103/PhysRevB.41.11693
https://doi.org/10.1103/PhysRevB.41.11693
https://doi.org/10.1103/PhysRevB.41.11693
https://doi.org/10.1142/S0217979291001541
https://doi.org/10.1142/S0217979291001541
https://doi.org/10.1142/S0217979291001541
https://doi.org/10.1142/S0217979291001541
https://doi.org/10.1142/S0217979298000570
https://doi.org/10.1142/S0217979298000570
https://doi.org/10.1142/S0217979298000570
https://doi.org/10.1142/S0217979298000570
https://doi.org/10.1103/PhysRevB.61.10267
https://doi.org/10.1103/PhysRevB.61.10267
https://doi.org/10.1103/PhysRevB.61.10267
https://doi.org/10.1103/PhysRevB.61.10267


TOPOLOGICAL ORDER, SYMMETRY, AND HALL . . . PHYSICAL REVIEW B 95, 014508 (2017)

[8] T. T. H. Hansson, V. Oganesyan, and S. S. L. Sondhi, Ann. Phys.
(NY) 313, 497 (2004).

[9] T. H. Hansson, A. Karlhede, and M. Sato, New J. Phys. 14,
063017 (2012).

[10] T. H. Hansson, T. Kvorning, V. P. Nair, and G. J. Sreejith, Phys.
Rev. B 91, 075116 (2015).

[11] D. Vollhardt and P. Wolfle, Superfluid Phases of Helium 3
(Taylor and Francis Ltd., Milton Park, 1990).

[12] G. E. Volovik, The Universe in a Helium Droplet (Oxford
University Press, New York, 2009).

[13] C. Kallin and J. Berlinsky, Rep. Prog. Phys. 79, 054502
(2016).

[14] V. Gurarie, L. Radzihovsky, and A. V. Andreev, Phys. Rev. Lett.
94, 230403 (2005).

[15] V. Gurarie and L. Radzihovsky, Ann. Phys. (NY) 322, 2
(2007).

[16] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. D. Sarma,
Rev. Mod. Phys. 80, 1083 (2008).

[17] S. Ryu, A. P. Schnyder, A. Furusaki, and A. W. W. Ludwig, New
J. Phys. 12, 065010 (2010).

[18] T. Senthil, J. B. Marston, and M. P. A. Fisher, Phys. Rev. B 60,
4245 (1999).

[19] J. C. Y. Teo and C. L. Kane, Phys. Rev. B 82, 115120
(2010).

[20] Y. Tada, W. Nie, and M. Oshikawa, Phys. Rev. Lett. 114, 195301
(2015).

[21] G. E. Volovik, JETP Lett. 100, 742 (2014).
[22] Y. Nishikubo, K. Kudo, and M. Nohara, J. Phys. Soc. Jpn. 80,

055002 (2011).
[23] M. H. Fischer, T. Neupert, C. Platt, A. P. Schnyder, W. Hanke,

J. Goryo, R. Thomale, and M. Sigrist, Phys. Rev. B 89, 020509
(2014).

[24] R. Nandkishore, L. Levitov, and A. Chubukov, Nat. Phys. 8, 158
(2012).

[25] A. M. Black-Schaffer and C. Honerkamp, J. Phys. 26, 423201
(2014).

[26] M. L. Kiesel, C. Platt, W. Hanke, D. A. Abanin, and R. Thomale
Phys. Rev. B 86, 020507(R) (2012).

[27] X. Chen, Z. C. Gu, Z. X. Liu, and X. G. Wen, Phys. Rev. B 87,
155114 (2013).

[28] L. V. Keldysh, JETP Lett. 29, 658 (1979).
[29] A. Kitaev, Ann. Phys. (NY) 321, 2 (2006).
[30] An Abelian phase is characterized by a unique anyon resulting

from the fusion of any two excitations. On the other hand, non-
Abelian anyons can fuse into different outcomes.

[31] N. Read, Phys. Rev. Lett. 65, 1502 (1990).
[32] X.-G. Wen and A. Zee, Phys. Rev. B 46, 2290 (1992).
[33] J. Frohlich and A. Zee, Nucl. Phys. B 364, 517 (1991).
[34] A remark regarding compactness: The statistical fields dual to

global conserved currents are noncompact which ensures ab-
sence of instanton magnetic monopoles and strict conservation
of these currents. On the other hand, compact statistical gauge
fields are also present sometimes, but these do not encode any
strict conservation laws.

[35] X.-G. Wen, Adv. Phys. 44, 405 (1995).
[36] Y. M. Lu and A. Vishwanath, Phys. Rev. B 86, 125119

(2012).
[37] Indeed, the number of entries of the K matrix might be much

larger than the number of independent braiding phases.

[38] X.-G. Wen, Int. J. Mod. Phys. B 06, 1711 (1992).
[39] F. D. M. Haldane, Phys. Rev. Lett. 74, 2090 (1995).
[40] M. Levin, Phys. Rev. X 3, 021009 (2013).
[41] A. Kovner, B. Rosenstein, and D. Eliezer, Nucl. Phys. B 350,

325 (1991).
[42] For simplicity we set the mass of an elementary fermion to

unity. Its electric charge e is set to minus unity, which fixes
the magnetic flux carried by an elementary (counterclockwise)
vortex ϕ(x) = arg(x)/2 to +π , i.e., a half of a magnetic flux
quantum.

[43] Here the indices are raised and lowered with the Minkowski
metric.

[44] L. Balents, M. P. A. Fisher, and C. Nayak, Phys. Rev. B 60, 1654
(1999).

[45] M. Hermanns, arXiv:0804.1332.
[46] Indeed, across the vortex branch cut, the phase of every Dirac

component of the spinor ψ̃i = exp(−iϕτz)ψi changes by ±π .
[47] P. W. Anderson, arXiv:cond-mat/9812063.
[48] D. Ariad, E. Grosfeld, and B. Seradjeh, Phys. Rev. B 92, 035136

(2015).
[49] To this end, perform the following transformation of the last term

in Eq. (16): first rotate by a π/2 angle, i.e., X→−Y , Y→+X,
and second apply a unitary rotation U = exp(iπτz) to ψ̃2.

[50] It would be instructive to derive Eqs. (23), (24) rigorously by
using the functional bosonization approach developed in [73].

[51] By definition, an elementary excitation has trivial mutual
statistics with all anyons.

[52] Specifically, in Fig. 3 we chose to identify ε with the spin-up
Bogoliubov quasiparticle with the corresponding current j↑ in
Eq. (23). Alternatively, in the s-wave case one can choose lε↓ =
(0,0,0,−1) which corresponds to the spin-down Bogoliubov
quasiparticle. The latter identification gives the same braiding
and fusion rules as the former, but obviously differs by the sign
of the spin charge. Note that for the d + id state, Eq. (24) leads
to lε↓ = (0,0,0,1).

[53] B. Reznik and Y. Aharonov, Phys. Rev. D 40, 4178 (1989).
[54] A. S. Goldhaber and S. Kivelson, Phys. Lett. B 255, 445 (1991).
[55] S. B. Bravyi and A. Y. Kitaev, arXiv:quant-ph/9811052.
[56] A. Bernevig and T. Neupert, arXiv:1506.05805.
[57] Restoring �, in our convention the unit of the spin charge is

equal to �/2 and thus σs = νs(�/2)2/h = �/(4π ) .
[58] C. L. Kane and M. P. A. Fisher, Phys. Rev. B 55, 15832

(1997).
[59] P. Ginsparg, Physics (College Park, MD), 88, 90 (1988);

arXiv:hep-th/9108028.
[60] Y.-Z. You, Z. Bi, A. Rasmussen, M. Cheng, and C. Xu, New J.

Phys. 17, 075010 (2015).
[61] J. Cano, M. Cheng, M. Mulligan, C. Nayak, E. Plamadeala, and

J. Yard, Phys. Rev. B 89, 115116 (2014).
[62] Incidentally, these purely bosonic Cartan K matrices have also

been proposed for describing s-wave superconductors strongly
proximity-coupled to topological Chern insulators in [74].

[63] P. Bonderson and C. Nayak, Phys. Rev. B 87, 195451 (2013).
[64] A. M. Polyakov, Gauge Fields and Strings, Contemporary

Concepts in Physics (Taylor & Francis, Milton Park, 1987).
[65] E. Fradkin and S. H. Shenker, Phys. Rev. D 19, 3682 (1979).
[66] M. A. Metlitski, C. L. Kane, and M. P. A. Fisher, Phys. Rev. B

88, 035131 (2013).
[67] C. Wang and T. Senthil, Phys. Rev. B 87, 235122 (2013).

014508-13

https://doi.org/10.1016/j.aop.2004.05.006
https://doi.org/10.1016/j.aop.2004.05.006
https://doi.org/10.1016/j.aop.2004.05.006
https://doi.org/10.1016/j.aop.2004.05.006
https://doi.org/10.1088/1367-2630/14/6/063017
https://doi.org/10.1088/1367-2630/14/6/063017
https://doi.org/10.1088/1367-2630/14/6/063017
https://doi.org/10.1088/1367-2630/14/6/063017
https://doi.org/10.1103/PhysRevB.91.075116
https://doi.org/10.1103/PhysRevB.91.075116
https://doi.org/10.1103/PhysRevB.91.075116
https://doi.org/10.1103/PhysRevB.91.075116
https://doi.org/10.1088/0034-4885/79/5/054502
https://doi.org/10.1088/0034-4885/79/5/054502
https://doi.org/10.1088/0034-4885/79/5/054502
https://doi.org/10.1088/0034-4885/79/5/054502
https://doi.org/10.1103/PhysRevLett.94.230403
https://doi.org/10.1103/PhysRevLett.94.230403
https://doi.org/10.1103/PhysRevLett.94.230403
https://doi.org/10.1103/PhysRevLett.94.230403
https://doi.org/10.1016/j.aop.2006.10.009
https://doi.org/10.1016/j.aop.2006.10.009
https://doi.org/10.1016/j.aop.2006.10.009
https://doi.org/10.1016/j.aop.2006.10.009
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1088/1367-2630/12/6/065010
https://doi.org/10.1088/1367-2630/12/6/065010
https://doi.org/10.1088/1367-2630/12/6/065010
https://doi.org/10.1088/1367-2630/12/6/065010
https://doi.org/10.1103/PhysRevB.60.4245
https://doi.org/10.1103/PhysRevB.60.4245
https://doi.org/10.1103/PhysRevB.60.4245
https://doi.org/10.1103/PhysRevB.60.4245
https://doi.org/10.1103/PhysRevB.82.115120
https://doi.org/10.1103/PhysRevB.82.115120
https://doi.org/10.1103/PhysRevB.82.115120
https://doi.org/10.1103/PhysRevB.82.115120
https://doi.org/10.1103/PhysRevLett.114.195301
https://doi.org/10.1103/PhysRevLett.114.195301
https://doi.org/10.1103/PhysRevLett.114.195301
https://doi.org/10.1103/PhysRevLett.114.195301
https://doi.org/10.1134/S0021364014230155
https://doi.org/10.1134/S0021364014230155
https://doi.org/10.1134/S0021364014230155
https://doi.org/10.1134/S0021364014230155
https://doi.org/10.1143/JPSJ.80.055002
https://doi.org/10.1143/JPSJ.80.055002
https://doi.org/10.1143/JPSJ.80.055002
https://doi.org/10.1143/JPSJ.80.055002
https://doi.org/10.1103/PhysRevB.89.020509
https://doi.org/10.1103/PhysRevB.89.020509
https://doi.org/10.1103/PhysRevB.89.020509
https://doi.org/10.1103/PhysRevB.89.020509
https://doi.org/10.1038/nphys2208
https://doi.org/10.1038/nphys2208
https://doi.org/10.1038/nphys2208
https://doi.org/10.1038/nphys2208
https://doi.org/10.1103/PhysRevB.86.020507
https://doi.org/10.1103/PhysRevB.86.020507
https://doi.org/10.1103/PhysRevB.86.020507
https://doi.org/10.1103/PhysRevB.86.020507
https://doi.org/10.1103/PhysRevB.87.155114
https://doi.org/10.1103/PhysRevB.87.155114
https://doi.org/10.1103/PhysRevB.87.155114
https://doi.org/10.1103/PhysRevB.87.155114
https://doi.org/10.1016/j.aop.2005.10.005
https://doi.org/10.1016/j.aop.2005.10.005
https://doi.org/10.1016/j.aop.2005.10.005
https://doi.org/10.1016/j.aop.2005.10.005
https://doi.org/10.1103/PhysRevLett.65.1502
https://doi.org/10.1103/PhysRevLett.65.1502
https://doi.org/10.1103/PhysRevLett.65.1502
https://doi.org/10.1103/PhysRevLett.65.1502
https://doi.org/10.1103/PhysRevB.46.2290
https://doi.org/10.1103/PhysRevB.46.2290
https://doi.org/10.1103/PhysRevB.46.2290
https://doi.org/10.1103/PhysRevB.46.2290
https://doi.org/10.1016/0550-3213(91)90275-3
https://doi.org/10.1016/0550-3213(91)90275-3
https://doi.org/10.1016/0550-3213(91)90275-3
https://doi.org/10.1016/0550-3213(91)90275-3
https://doi.org/10.1080/00018739500101566
https://doi.org/10.1080/00018739500101566
https://doi.org/10.1080/00018739500101566
https://doi.org/10.1080/00018739500101566
https://doi.org/10.1103/PhysRevB.86.125119
https://doi.org/10.1103/PhysRevB.86.125119
https://doi.org/10.1103/PhysRevB.86.125119
https://doi.org/10.1103/PhysRevB.86.125119
https://doi.org/10.1142/S0217979292000840
https://doi.org/10.1142/S0217979292000840
https://doi.org/10.1142/S0217979292000840
https://doi.org/10.1142/S0217979292000840
https://doi.org/10.1103/PhysRevLett.74.2090
https://doi.org/10.1103/PhysRevLett.74.2090
https://doi.org/10.1103/PhysRevLett.74.2090
https://doi.org/10.1103/PhysRevLett.74.2090
https://doi.org/10.1103/PhysRevX.3.021009
https://doi.org/10.1103/PhysRevX.3.021009
https://doi.org/10.1103/PhysRevX.3.021009
https://doi.org/10.1103/PhysRevX.3.021009
https://doi.org/10.1016/0550-3213(91)90263-W
https://doi.org/10.1016/0550-3213(91)90263-W
https://doi.org/10.1016/0550-3213(91)90263-W
https://doi.org/10.1016/0550-3213(91)90263-W
https://doi.org/10.1103/PhysRevB.60.1654
https://doi.org/10.1103/PhysRevB.60.1654
https://doi.org/10.1103/PhysRevB.60.1654
https://doi.org/10.1103/PhysRevB.60.1654
http://arxiv.org/abs/arXiv:0804.1332
http://arxiv.org/abs/arXiv:cond-mat/9812063
https://doi.org/10.1103/PhysRevB.92.035136
https://doi.org/10.1103/PhysRevB.92.035136
https://doi.org/10.1103/PhysRevB.92.035136
https://doi.org/10.1103/PhysRevB.92.035136
https://doi.org/10.1103/PhysRevD.40.4178
https://doi.org/10.1103/PhysRevD.40.4178
https://doi.org/10.1103/PhysRevD.40.4178
https://doi.org/10.1103/PhysRevD.40.4178
https://doi.org/10.1016/0370-2693(91)90792-O
https://doi.org/10.1016/0370-2693(91)90792-O
https://doi.org/10.1016/0370-2693(91)90792-O
https://doi.org/10.1016/0370-2693(91)90792-O
http://arxiv.org/abs/arXiv:quant-ph/9811052
http://arxiv.org/abs/arXiv:1506.05805
https://doi.org/10.1103/PhysRevB.55.15832
https://doi.org/10.1103/PhysRevB.55.15832
https://doi.org/10.1103/PhysRevB.55.15832
https://doi.org/10.1103/PhysRevB.55.15832
http://arxiv.org/abs/arXiv:hep-th/9108028
https://doi.org/10.1088/1367-2630/17/7/075010
https://doi.org/10.1088/1367-2630/17/7/075010
https://doi.org/10.1088/1367-2630/17/7/075010
https://doi.org/10.1088/1367-2630/17/7/075010
https://doi.org/10.1103/PhysRevB.89.115116
https://doi.org/10.1103/PhysRevB.89.115116
https://doi.org/10.1103/PhysRevB.89.115116
https://doi.org/10.1103/PhysRevB.89.115116
https://doi.org/10.1103/PhysRevB.87.195451
https://doi.org/10.1103/PhysRevB.87.195451
https://doi.org/10.1103/PhysRevB.87.195451
https://doi.org/10.1103/PhysRevB.87.195451
https://doi.org/10.1103/PhysRevD.19.3682
https://doi.org/10.1103/PhysRevD.19.3682
https://doi.org/10.1103/PhysRevD.19.3682
https://doi.org/10.1103/PhysRevD.19.3682
https://doi.org/10.1103/PhysRevB.88.035131
https://doi.org/10.1103/PhysRevB.88.035131
https://doi.org/10.1103/PhysRevB.88.035131
https://doi.org/10.1103/PhysRevB.88.035131
https://doi.org/10.1103/PhysRevB.87.235122
https://doi.org/10.1103/PhysRevB.87.235122
https://doi.org/10.1103/PhysRevB.87.235122
https://doi.org/10.1103/PhysRevB.87.235122


MOROZ, PREM, GURARIE, AND RADZIHOVSKY PHYSICAL REVIEW B 95, 014508 (2017)

[68] N. Read, Phys. Rev. B 79, 045308 (2009).
[69] N. Read and E. H. Rezayi, Phys. Rev. B 84, 085316 (2011).
[70] C. Hoyos, S. Moroz, and D. T. Son, Phys. Rev. B 89, 174507

(2014).
[71] X. G. Wen and A. Zee, Phys. Rev. Lett. 69, 953 (1992).

[72] N. R. Cooper, Adv. Phys. 57, 539 (2008).
[73] A. M. Chan, T. L. Hughes, S. Ryu, and E. Fradkin, Phys. Rev.

B 87, 085132 (2013).
[74] J. C. Y. Teo, T. L. Hughes, and E. Fradkin, Ann. Phys. 360, 349

(2015).

014508-14

https://doi.org/10.1103/PhysRevB.79.045308
https://doi.org/10.1103/PhysRevB.79.045308
https://doi.org/10.1103/PhysRevB.79.045308
https://doi.org/10.1103/PhysRevB.79.045308
https://doi.org/10.1103/PhysRevB.84.085316
https://doi.org/10.1103/PhysRevB.84.085316
https://doi.org/10.1103/PhysRevB.84.085316
https://doi.org/10.1103/PhysRevB.84.085316
https://doi.org/10.1103/PhysRevB.89.174507
https://doi.org/10.1103/PhysRevB.89.174507
https://doi.org/10.1103/PhysRevB.89.174507
https://doi.org/10.1103/PhysRevB.89.174507
https://doi.org/10.1103/PhysRevLett.69.953
https://doi.org/10.1103/PhysRevLett.69.953
https://doi.org/10.1103/PhysRevLett.69.953
https://doi.org/10.1103/PhysRevLett.69.953
https://doi.org/10.1080/00018730802564122
https://doi.org/10.1080/00018730802564122
https://doi.org/10.1080/00018730802564122
https://doi.org/10.1080/00018730802564122
https://doi.org/10.1103/PhysRevB.87.085132
https://doi.org/10.1103/PhysRevB.87.085132
https://doi.org/10.1103/PhysRevB.87.085132
https://doi.org/10.1103/PhysRevB.87.085132
https://doi.org/10.1016/j.aop.2015.05.012
https://doi.org/10.1016/j.aop.2015.05.012
https://doi.org/10.1016/j.aop.2015.05.012
https://doi.org/10.1016/j.aop.2015.05.012



