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8π-periodic dissipationless ac Josephson effect on a quantum spin Hall edge
via a quantum magnetic impurity
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Time-reversal invariance places strong constraints on the properties of the quantum spin Hall edge. One such
restriction is the inevitability of dissipation in a Josephson junction between two superconductors formed on such
an edge without the presence of interaction. Interactions and spin-conservation breaking are key ingredients for
the realization of the dissipationless ac Josephson effect on such quantum spin Hall edges. We present a simple
quantum impurity model that allows us to create a dissipationless fractional Josephson effect on a quantum spin
Hall edge. We then use this model to substantiate a general argument that shows that any such nondissipative
Josephson effect must necessarily be 8π periodic.
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I. INTRODUCTION

The Josephson effect [1–3], which was originally a direct
manifestation of macroscopic quantum coherence in super-
conductors, has turned out to be one of the most reliable ways
of diagnosing the topological properties of a junction. Topo-
logical superconductors (TSCs) supporting Majorana modes
have been shown to demonstrate a 4π -periodic Josephson
effect [4–10], which is doubled period compared with the
conventional Josephson effect. This phenomenon, which is
known as the fractional Josephson effect, has been observed
in quite a few devices [11,12] including the quantum spin Hall
edge [13,14]. At first this is quite counterintuitive given that
the Hamiltonian itself is 2π periodic. The fractional Josephson
effect in this case arises because the topological property of
the superconductor forces the local fermion parity (FP) of
the junction to change with each rotation of the phase by
2π . If one assumes contact with a bath that equilibrates the
system to the ground state of the appropriate FP [15] then the
topological nature of the superconductor is precisely reflected
in the fractional Josephson effect. Interestingly, the addition
of interaction can often modify the topological classification
qualitatively [16,17]. In fact, some of the states such as
parafermion states in superconductors [18] are already known
to be characterized by exotic Josephson effects.

While several topological superconducting phases involv-
ing interactions have been proposed [18–20], not many of
them are within experimental reach. On the other hand, an
interesting 8π -periodic Josephson effect, which relies on the
combination of interaction and topology that has recently been
proposed [21] certainly appears to be within the realm of
experimental possibility. Ideally, one could just obtain this
effect by studying a Josephson junction (JJ) on an interacting
two-dimensional topological insulator (TI) edge [21].

However, as we discuss in this paper, the 8π Josephson
effect turns out to be the only possible nondissipative Joseph-
son effect that a quantum spin Hall edge can support. To
understand what we mean by nondissipative Josephson effect
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consider a finite-voltage-biased Josephson junction as is used
to study the ac Josephson effect. The ideal response of such a
Josephson junction to a voltage bias is to create an ac current
that can be measured as radiation. However, at large finite
voltages, a typical Josephson junction dissipates part of its
energy through processes that generate quasiparticles in the
bulk [22]. The dissipation in turn leads to a dc current in
addition to the ac current, which is parametrized by the shunt
resistance of the junction. In this paper, we will be interested
in understanding the conditions under which such effect shunt
resistances can be avoided in TI junctions.

As we review in more detail later, even though a noninteract-
ing TI edge with a ferromagnetic insulator (FI) is predicted to
have a 4π -periodic fractional Josephson effect [6,7], removing
the FI qualitatively modifies this effect. In the absence of a
relaxation mechanism or for a short junction, the JJ on the
TI edge has a 2π periodicity characteristic of conventional
Josephson junctions. The dissipation, which is observable as
a parallel shunt resistance across the junction [22], arises here
from ejection of quasiparticles into the conduction band.
The addition of a relaxation mechanism also leads to a dissi-
pative but 4π -periodic fractional Josephson effect [15]. Thus,
one can say that the Josephson effect on a noninteracting TI
edge with time-reversal symmetry (TRS) is always dissipative
and fundamentally accompanied by a shunt resistance. As
shown by Zhang and Kane [21], the addition of interaction
qualitatively changes this story and introduces a topologically
protected 8π -periodic fractional Josephson effect, which is
nondissipative (i.e., free of the shunt resistance). It is worth
noting that this effect, unlike the 4π -, 8π -, and 12π -periodic
Josephson effect that can arise from fine-tuning in conventional
systems [23], is indeed topologically protected in the sense
that it is completely robust against all perturbations of the
Hamiltonian that preserve time-reversal symmetry.

In this paper, we study the effect of a strongly interacting
quantum dot (QD) in a quantum spin Hall Josephson junction.
By considering a simple model of such a QD that acts like a
spin coupled to Andreev bound states (ABSs) [24], we show
that such a junction would show an 8π -periodic fractional
Josephson effect, in contrast with the 4π periodicity expected
from time-reversal breaking topological junction. We then
argue that the generic low voltage periodicity of the quantum
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FIG. 1. (a) The system with a short Josephson junction whose
Andreev state is tunnel coupled to a quantum dot. The quantum dot
is coupled to another localized spin [Eq. (1)]. (b) Schematic diagram
showing the 8π cycle of states. | ↑ , ↓〉 represent the states of the spin
and d

†
↑,↓ represents the electron in the quantum dot. J, JA represents

the spin-symmetric and -asymmetric exchange interactions inside the
dot, respectively. In each 2π cycle of phase shown by the bold arrow a
spin-up electron is pumped into or a spin-down hole leaves the edge.

spin Hall Josephson junction is 8π as opposed to the 4π

periodicity for time-reversal-breaking topological junctions. In
fact, while higher frequencies could lead to 2π - or 4π -periodic
Josephson effects, such ac Josephson effects are necessarily
dissipative, i.e., accompanied by a finite dc current.

II. JUNCTION WITH A QUANTUM DOT

While the nondissipative 8π -periodic Josephson effect is
generic, we start by demonstrating its origin through the simple
device shown in [Fig. 1(a)]. This model incorporates the key
ingredients for a nondissipative Josephson effect; namely,
a topological quantum spin Hall edge, spin-conservation
breaking, and interaction. The device in [Fig. 1(a)] consists of
a JJ on a quantum spin Hall (QSH) edge laterally coupled to a
strongly interacting multi-orbital quantum dot. The interaction
is chosen to be large enough so that the quantum dot admits
at most two electrons. Furthermore, the Hund’s coupling is
also assumed to be strong so that one of the levels is always
occupied by one electron, which can thus be considered to
be a local moment with spin S. The resulting spin −1/2 is
exchanged coupled to the dot electron with spin s via the
Hund’s coupling through a Hamiltonian

Hd−s = J S · s + JA(S+s+ + S−s−) + εd (d†
↑d↑ + d

†
↓d↓),

(1)

where the spin of the dot electron d
†
σ=↑,↓ can be written

as s = 1
2

∑
αβ d†

ασ αβdβ . In addition, a projection constraint
ensures no double occupancy of the electron level d†

σ . The
term proportional to J is the Heisenberg interaction between
the dot and the spin, while JA represents the process in which
spin conservation is broken.

The QD with Hamiltonian Eq. (1) is tunnel coupled to the
QSH edge [25] through a Hamiltonian [26,27]

Hj−d = t[a†
↑(x = 0)d↑ + a

†
↓(x = 0)d↓ + H.c.], (2)

where a†
σ (x = 0) creates electrons on the QSH edge. A time-

reversal-breaking impurity on the QSH edge is expected to
produce a 4π -periodic Josephson effect because of the flip of
fermion parity with each 2π shift of the phase φ. While the spin
in the QD acts as a magnetic impurity, as illustrated in Fig. 1(b),

this only works in the case of odd fermion parity of the JJ
where, by the Kramers theorem, the ground state is twofold
degenerate. As will be shown, while the QD returns to an
odd-FP state each 4π period (as in the time-reversal-breaking
case), the spin in the QD is flipped over each such period. This
leads to the generic 8π periodicity of the current as a function
of phase.

To quantitatively illustrate the mechanism in Fig. 1(b), we
consider the limit of weak tunnel coupling t , the quantum dot
electron can only tunnel to a low-energy ABS in a Josephson
junction on the edge written as γ † = ∑

σ

∫
dx(uσ a†

σ + vσ aσ )
with an energy E(φ), which depends on the phase difference
across the Josephson junction. The effective Hamiltonian of
the edge ABS is written as

Hj = E(φ)(γ †γ − 1/2). (3)

The wave function of the ABS γ and its energy are solved
from the Bogoliubov–de Gennes (BdG) Hamiltonian of the JJ:

HBdG = τz(−ivF sz∂x − μ) + � cos φ(x)τx + � sin φ(x)τy,

(4)

where s and τ are Pauli matrices on spin and Nambu spaces,
respectively, and φ(x) = φθ (x). Since [HBdG,sz] = 0, the
solutions are labeled with the eigenvalues of sz, where the
solution with sz = +1 have E(φ) = −� cos φ

2 , u↑(x = 0) =
v↓(x = 0)∗ = √

sin(φ/2)/(2ξ )e−iφ/4, and u↓ = v↑ = 0 in the
interval 0 � φ � 2π , while its particle-hole-conjugated part-
ner is the other branch of solution with sz = −1. With this
explicit form of quasiparticle solution, we can therefore rewrite
Hj−d as

Hj−d = t(u↑d
†
↑γ + v↓γ d↓ + H.c.), (5)

where we have dropped the position arguments of u↑ and v↓.
The simplified form of the effective coupling allows us

to describe the cycle of the QD shown in Fig. 1(b) as the
phase φ is varied. During each cycle of advancing φ by 2π

forward, a quasiparticle is “pumped” from the bulk occupied
states towards the conduction states through the edge states.
The excitation of a bulk conduction-band electron must be
avoided to prevent dissipation. This can be accomplished by
adding a spin-up electron or removing a spin-down electron
from the QD (and releasing a Cooper pair). Starting with the
state | ↓〉 at φ = 0, i.e., with the dot empty and localized
spin at Sz = −1. During an increment of 2π of φ, a spin-up
electron is added to the dot from the bulk, which due to the
hybridization term Eq. (1) forms a singlet with the localized
spin (d†

↑| ↑〉 − d
†
↓| ↓〉)/√2. In the next cycle a spin-down

electron is removed from the dot, leaving the localized spin at
Sz = +1(| ↑〉). The electron leaving the dot can combine with
the next electron coming from the bulk and exit as a Cooper
pair. The next two cycles proceed similarly, with JA breaking
spin conservation to result in a triplet state after the third cycle
(d†

↑| ↑〉 − d
†
↓| ↓〉)/√2 and returning to the original state | ↓〉

at φ = 8π .
The above process can be put on quantitative footing by

projecting the Hamiltonian into the low-energy Hilbert space
and solving for the energy-phase relation (E�R), as detailed
in Appendix A. Typical results with JA being zero or nonzero
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(a)

(b)

FIG. 2. The (many-electron) energy spectrum of a coupled SC
junction/QD/spin system [Eqs. (1)–(3)] as a function of supercon-
ducting phase φ with J = 0.2� and εd = 0.5� and (a) JA = 0
(spin-conserving case) and (b) JA = J (spin-anisotropic case). The
solid lines represent odd total fermion parity (Kramers degenerate)
states and the dashed lines represent even total fermion parity states.
The fermion parity changes with each 2π cycle of φ and the color
represents the curves corresponding to various eigenstates. Following
the spectrum in panel (a) we find that the ground state necessarily
couples to the bulk states. In the spin-conservation breaking in panel
(b), the spectrum is isolated from the bulk states and 8π periodic.

are shown respectively in Figs. 2(a) and 2(b). In the absence
of the term proportional to JA, the full 8π cycle could not be
completed nondissipatively because the dot-spin triplet state
could not be formed. Figure 2(a) illustrates that the state is
eventually driven into the continuum, thereby dissipating away
the Josephson current. Alternatively, dissipation of the excess
energy into a phonon might lead to a dissipative 4π -periodic
process. With nonzero JA [Fig. 2(b)], a full cycle of states fully
gapped from other excited states can be obtained. We also
note that JA breaks spin conservation along the z direction.
The connection of the absence of spin conservation with the
prevention of dissipation will be elaborated below.

III. CONDITIONS FOR DISSIPATIONLESS
JOSEPHSON EFFECT

We now discuss in general the necessary conditions to
realize a topological TRS Josephson junction without dissi-
pation. We first review how this is accomplished in the case
where time-reversal symmetry is broken by a FI element in a
topological junction with only one ABS [see Fig. 3(a)]. The
E�R is shown in Fig. 3(c). At φ �= 2πp, where p is an integer,
a particle-hole pair of ABS is present in the junction. Without
the FI which breaks TRS, these states are required to join
the continuum modes (|E| = �) at the time-reversal-invariant
points φ = 2πp in order to satisfy the Kramers theorem
(black lines). This requirement corresponds [see Fig. 3(d)]
to the adiabatic change of the phase φ connecting the ground

FIG. 3. (a) A short Josephson junction on a one-dimensional TI
edge. (b) Equivalent construction where now the phase difference
is controlled by threading a flux through the center of the Corbino
disk. (c) The single-particle Andreev spectrum for the junction with
(blue thin lines) or without (black thick lines) the FI element. (d) The
many-body E�R with (blue thin lines) or without (black thick lines)
the FI element, where solid (dotted) lines indicate states with even
(odd) parity.

state at φ = 0 with the continuum at φ = 2π . This creates
quasiparticle excitations in the bulk that lead to dissipation in
the Josephson junction. On the other hand, with the FI that
breaks TRS even at φ = 2πp, the ABSs remain disconnected
from the continuum modes [blue lines in Fig. 3(c)], and thus
the many-body state remains gapped from the continuum [blue
lines in Fig. 3(d)]. The full 4π cycle of Josephson current could
then be completed without dissipation if the temperature and
rate of change of φ are low enough.

As seen in Fig. 4(a), the ABS levels in the noninteracting
case connect the valence bands to the conduction bands [6].
This is a necessary consequence of the Kramers degener-
acy and the time-reversal (i.e., φ → −φ) properties of the
eigenvalues shown in Fig. 4(a). This leads us to conclude

FIG. 4. (a) E�R for a junction with length L = πvF /�0. The
solid (dotted) lines are solutions with eigenvalues sz = ±1 (b) Many-
body spectrum for the same noninteracting junction. Black (dotted)
lines are states with even (odd) parity. The labels indicate which
of the ABSs are occupied. (c) Many-body spectrum for a junction
with sz-conserving interactions. Detailed calculations are presented
in Appendix B.
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that interactions are necessary to avoid dissipation in TRS
topological Josephson junctions. Next we argue that spin-
conservation breaking is crucial to avoid dissipation in the TI
Josephson junction. To understand this, consider a Josephson
junction built from a Corbino geometry [shown in Fig. 3(b)],
in which the phase difference φ between the two sides of
the junction is controlled by threading a flux �flux = φ

2π
�0

through the center of the setup, where �0 = h
2e

is the SC flux
quantum. For the sake of the argument, we first take out the SC
and FI elements, leaving behind a Corbino disk made of TI. It
is known that, if spin is conserved along the polarization axis
of the TI, the system exhibits quantized spin Hall conductance
and, by Laughlin’s argument [28], threading a flux quantum
has the effect of pumping a pair of spins with sz = ±1 to
opposite edges. This effect still holds with the introduction of
SC, since s-wave superconductivity preserves sz conservation.
In this scenario, the portion of the TI edge not in contact
with the SC can provide a finite number of ABSs (say, nA) to
accommodate the pumped spins. After threading nA SC flux
quanta (corresponding to an incrementation of φ by 2πnA), the
ABSs fail to accommodate all of the pumped spins, leading
to the occupation of the other continuum modes on the edges,
which corresponds to a dissipation in the Josephson junction.
The way to avoid this is to break sz conservation, which would
then destroy the quantized spin Hall conductance of the system.
Threading a flux quantum would then flip the fermion parities
(FPs) of the two edges [6].

Based on these two observations, we expect that a dissi-
pationless Josephson junction in a TI requires an interaction
term that breaks sz conservation to a junction. This agrees
with what we found in the Josephson junction coupled with a
quantum dot as described above, where the term JA provides
the necessary breaking of spin conservation, without which
dissipation could not be avoided.

IV. ROLE OF SPIN ANISOTROPY

To gain further insight into the necessity of breaking
spin conservation to obtain a dissipationless TRS topological
junction, we look into another example, first studied in
Ref. [21]. Consider a SC-N-SC junction on a TI edge
where the normal (N) portion is long enough with multiple
ABSs present. The Hamiltonian is almost identical to our
previous example [Eq. (4)] except that � is chosen to
represent a long junction as �(x) = �0θ (|x| − L

2 ). When
L = πvF /�, three ABSs are present for all values of φ,
and the single-particle and many-body E�R are shown in
Figs. 4(a) and 4(b), respectively. The key feature in Fig. 4(b),
which is needed to understand the Josephson behavior, is the
fourfold degeneracy at φ = π . As discussed in Ref. [21],
splitting this degeneracy by Coulomb interactions into two
twofold Kramers degenerate crossings. However, as seen in
Fig. 4(c), the states still continue to reach the continuum in
the absence of spin-conservation-breaking interactions. This
forbids a dissipationless ac Josephson effect in this case. To
understand this, we note that the four states have different
number of quasiparticles: {|0〉,γ †

2 |0〉,γ †
3 γ

†
1 |0〉,γ †

3 γ
†
2 γ

†
1 |0〉}, and

therefore have different values of sz. Once the fourfold
degeneracy is lifted we are left with twofold degeneracies at
level crossings. These crossings are, however, between states

of different sz. In accordance with our general arguments
presented above, we find that sz-conserving interaction terms
[e.g.,

∫
dx(a†

↑a↑ + a
†
↓a↓)2] in the Hamiltonian cannot split

these crossings and the ground state necessarily reaches the
continuum simply by adiabatic evolution. Adding sz-breaking
interactions such as

∫
dx(a†

↑a↑a
†
↓∂xa↑ − a

†
↓a↓a

†
↑∂xa↓) + H.c.,

which were assumed to be comparable to the Coulomb
interactions in Ref. [21], are required to split the crossings
to avoid dissipation.

V. GENERAL THEOREM FOR 8π PERIODICITY

The two examples of dissipationless TRS topological
junctions above both exhibit 8π periodicities. We now argue
that this is directly a consequence of TRS present in the
junction. To see this, consider a TRS junction described locally
by the Hamiltonian H (φ) where φ is the phase difference of
the constituent SCs. This Hamiltonian satisfies

H (φ) = H (φ + 2π ) = �H (−φ)�−1, (6)

where the first condition follows from the 2π periodicity
of the phase of SC. The second condition, where � is the
time-reversal operator, follows from the time-reversal of the
magnetic flux that creates the superconducting phase φ. Let us
suppose that |n〉φ is the nth excited many-body state at phase φ

satisfying H (φ)|n〉φ = En(φ)|n〉φ and FP |n〉φ = λn(φ)|n〉φ ,
where FP is the fermion parity operator and En and λn are,
respectively, its energy and FP eigenvalues with λn(φ) = ±1
when there are even or odd number of fermions in the system,
respectively. It then follows from Eq. (6) that

En(φ) = En(φ + 2π ) = En(−φ). (7)

Finally, we stipulate that the FP must switch as φ is advanced
by 2π , i.e.,

λn(φ + 2π ) = −λn(φ), (8)

which describes the topological property of the TI. More
specifically, threading a flux through the TI Corbino disk [see
Fig. 3(b)] changes the Z2 “time-reversal polarization” [29],
which can be identified with the FP of each of the edges [6].
We remark that this property is not captured by the local
Hamiltonian (6) of the junction.

FIG. 5. The path of an adiabatically followed even-parity state.
Blue (red) and light blue (light red) lines are time-reversed paths of
each other. The crucial point is n �= 0, because otherwise |0〉0 would
join to |m̃〉2π and |m〉2π simultaneously.
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The proof of 8π periodicity for a state with even FP is
illustrated in Fig. 5, and the mathematically rigorous proof is
given in the Appendix C. Let us start with a nondegenerate
state |0〉0. Tuning φ forward and backward by 2π reaches the
degenerate states |m〉2π and |m̃〉−2π [recall that, by Eq. (8),
|m〉0 and |m̃〉0 are odd-parity states and is a Kramers pair at
φ = 0]. Further increasing or decreasing φ by 2π , the state
|n〉±4π is reached. From Eq. (7) we know that |n〉4π �= |0〉0

because |0〉0 cannot be adiabatically connected to both |m〉2π

and |m̃〉2π at the same time (compare, e.g., light red and deep
blue lines in Fig. 5). The proof for a state with odd FP proceeds
in a similar way and is discussed in the appendix.

In summary, interactions and spin-conservation breaking
are the two key ingredients that are required to permit a
dissipationless ac Josephson effect in a TRS topological
Josephson junction. In this paper, we have given a general
proof that the E�R of such a dissipationless TRS topo-
logical Josephson junction is 8π periodic in φ. The 8π

periodicity arises from the combination of the flip of FP
and spin over each 2π period. We have shown that these
ingredients can be incorporated naturally in a model of a
quantum dot coupled to a Josephson junction on a TI edge.

Note added. During the preparation of the manuscript we
became aware of a related recently published work by Peng
et al. [30].
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APPENDIX A: LOW-ENERGY HAMILTONIAN FOR THE
JUNCTION-DOT SYSTEM

Since the Hamiltonian (1) conserves the parity of electron
number, we expand it in odd- and even-parity subspaces. We
also take the limit U → ∞, which projects out the states where
the quantum dot is doubly occupied. The basis states for the
odd-parity subspace are {γ †| ↑〉, γ †| ↓〉, d†

↑| ↓〉, d†
↓|↑〉, d†

↑|↑〉,
d
†
↓|↓〉}, where |↑/↓〉 satisfies Sz|↑/↓〉 = ±|↑/↓〉 and γ |↑/↓〉 =

dσ |↑/↓〉 = 0. The Hamiltonian in this basis is

H (o) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

E(φ)
2 0 0 0 tu∗

↑ 0
0 E(φ)

2 tu∗
↑ 0 0 0

0 tu↑ −E(φ)
2 − J

2 + εd J 0 0
0 0 J −E(φ)

2 − J
2 + εd 0 0

tu↑ 0 0 0 −E(φ)
2 + J

2 + εd JA

0 0 0 0 JA −E(φ)
2 + J

2 + εd

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (A1)

while in the even subspace with basis {| ↑〉, | ↓〉, γ †d†
↑| ↓〉, γ †d†

↓| ↑〉, γ †d†
↑| ↑〉, γ †d†

↓| ↓〉}, the Hamiltonian is expanded as

H (e) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−E(φ)
2 0 0 −tv↓ 0 0

0 −E(φ)
2 0 0 0 −tv↓

0 0 E(φ)
2 − J

2 + εd J 0 0
−tv∗

↓ 0 J
E(φ)

2 − J
2 + εd 0 0

0 0 0 0 E(φ)
2 + J

2 + εd JA

0 −tv∗
↓ 0 0 JA

E(φ)
2 + J

2 + εd

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (A2)

Finally, we note that at φ = 2nπ , v↓ = u↑ = 0 which enables us to reach the simple forms of eigenstates shown in Figs. 1(c)
and 1(d).

APPENDIX B: BOGOLIUBOV–DE GENNES SOLUTION FOR A LONG TOPOLOGICAL JUNCTION

Since sz commutes with HBdG, the solutions to HBdGψn = Enψn are labeled by the “spin” index sz = ±1. The sz = +1
solutions, denoted by ψ (+)

n , have u
(+)
n↓ = v

(+)
n↑ = 0 and

u
(+)
n↑ = Ane

sgn(x)iθEn /2 exp

[
i
φ(x)

2
+ iμ̄x̄ −

√
1 − Ē2

n

∣∣∣∣|x̄| − L̄

2
|
]
, (B1a)

v
(+)
n↓ = Ane

−sgn(x)iθEn /2 exp

[
−i

φ(x)

2
+ iμ̄x̄ −

√
1 − Ē2

n

∣∣∣∣|x̄| − L̄

2
|
]
, (B1b)

for |x| > L
2 , and

u
(+)
n↑ = Ane

−iθEn /2 exp

[
iμ̄x̄ + iĒn

(
x̄ + L̄

2

)]
, (B1c)

v
(+)
n↓ = Ane

iθEn /2 exp

[
iμ̄x̄ − iĒn

(
x̄ + L̄

2

)]
, (B1d)
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otherwise. Here the normalization factor is An = [2L +
2ξ/(1 − Ē2

n)1/2]−1/2, and Ē = E
�0

, μ̄ = μ

�0
, x̄ = x

ξ
= x

vF /�0
,

L̄ = L
ξ

, e±iθEn = Ēn ± i(1 − Ē2
n)1/2, where Ēn satisfies

√
1 −

(
En

�0

)2

cos

(
EnL

vF

− φ

2

)

− En

�0
sin

(
EnL

vF

− φ

2

)
= 0. (B2)

The sz = −1 solutions ψ (−)
n with energy −En are related

to ψ (+)
n by particle-hole conjugation, ψ (−)

n = �ψ (+)
n , where

� = syτyK . With the solutions to HBdG we can expand the
Hamiltonian in quasiparticle operators as

H0(φ) =
∑

n

En(φ)

(
γ †

n γn − 1

2

)
, (B3)

where En are determined from Eq. (B2) and γ
†
n =∑

σ=↑/↓
∫

dx(u(+)
nσ a†

σ + v(+)
nσ aσ ). Since only the branch of solu-

tions with sz = +1 are summed, the number of quasiparticles
in a many-body state coincide with the value of sz for that
state.

APPENDIX C: MATHEMATICALLY RIGOROUS PROOF
OF 8π PERIODICITY

Let Uφ2,φ1 = exp [−i
∫ φ2

φ1
H (φ)dφ] be the operator that

adiabatically changes the phase from φ1 to φ2. The
conditions

|m〉φ2 = Uφ2,φ1 |n〉φ1 ⇔ |n〉φ1 = Uφ1,φ2 |m〉φ2 (C1a)

⇔ |m〉2pπ+φ2 = U2pπ+φ2,2pπ+φ1 |n〉2pπ+φ1 , (C1b)

for all integers p follows directly from the unitarity of U

and Eq. (7).
We first consider the case where the ground state at φ = 0,

|0〉0, has even FP, i.e., λ0(0) = 1 (Fig. 5). Starting with |0〉0,
as the phase is adiabatically tuned to 2π and 4π , the state is
brought to the mth and nth excited states, respectively, i.e.,

U2π,0|0〉0 = |m〉2π , (C2a)

U4π,2π |m〉2π = |n〉4π . (C2b)

Now we know m �= 0 because, from Eqs. (8), λ0(2π ) =
−λ0(0) = −1, i.e., the FP of the ground state at φ = 2π is
odd. The state that |0〉0 transforms into must be even in FP, i.e.,
λm(2π ) = λ0(0) = 1, and from Eq. (8) we have λm(0) = −1,
i.e., |m〉0 is odd in FP. Since H (0) is TRS, the Kramers theorem
guarantees that there is an orthogonal state |m̃〉0 = �|m〉0 with

FIG. 6. For an odd-parity state we define m and n as the states
that Kramers pair {|00〉,|0̃0〉} traverses as a flux quantum is inserted
in either direction. Here again, deep-colored and light-colored lines
are time-reversed paths of each other. Use Eq. (7) to shift the light
blue and light red lines by 4π , we get the dashed path, completing
the full 8π -periodic path that the state follows.

the same energy: Em̃(0) = Em(0). Apply � to Eqs. (C2) we
have

U−2π,0|0〉0 = |m̃〉−2π , (C3a)

U−4π,−2π |m̃〉−2π = |n〉−4π . (C3b)

We have thus obtained an energy-phase relation (E�R)
schematically shown in Fig. 5 which is 8π periodic if n �=
0 (and assuming no accidental degeneracy En �= E0). To
establish this, we use Eq. (C1) to derive from Eq. (C3b)

U2π,0|n〉0 = |m̃〉2π , (C4)

which can be compared with Eq. (C2a). Since U0,2π |m〉2π =
|0〉0, we know U0,2π |m̃〉2π �= |0〉0 (as |0〉0 cannot be adiabati-
cally connected to two states at φ = 2π ) and from Eq. (C4) this
means n �= 0. The 8π -periodic E�R is therefore established.

The case of λ0(0) = −1 can be considered in a similar
fashion (Fig. 6). Let |0〉0 and |0̃〉0 be the Kramers pair of
degenerate ground states at φ = 0. Define |m〉2π and |n〉−2π

be, respectively, the states that |0〉0 transforms into as φ is
tuned from 0 to ±2π , respectively. We have

U2π,0|0〉0 = |m〉2π , U−2π,0|0〉0 = |n〉−2π , (C5)

U2π,4π |0̃〉4π = |m〉2π , U−2π,−4π |0̃〉−4π = |n〉−2π , (C6)

where the second line is obtained by applying � and Eq. (C1b)
subsequently on the first line. Finally, we use Eq. (C1b) to
derive, from the last relation above,

U2π,0

∣∣0̃〉
0 = |n〉2π . (C7)

Upon comparison with the first relation of Eq. (C5), this shows
that n �= m and hence the full 8π -periodic cycle of E�R shown
in Fig. 6 (with En �= Em) is established.
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