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Momentum of superconducting electrons and the explanation of the Meissner effect
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Momentum and energy conservation are fundamental tenets of physics, which valid physical theories have
to satisfy. In the reversible transformation between superconducting and normal phases in the presence of a
magnetic field, the mechanical momentum of the supercurrent has to be transferred to the body as a whole and
vice versa, the kinetic energy of the supercurrent stays in the electronic degrees of freedom, and no energy is
dissipated nor entropy is generated in the process. We argue on general grounds that to explain these processes
it is necessary that the electromagnetic field mediates the transfer of momentum between electrons and the body
as a whole, and this requires that when the phase boundary between normal and superconducting phases is
displaced, a flow and counterflow of charge occurs in a direction perpendicular to the phase boundary. This flow
and counterflow does not occur according to the conventional BCS-London theory of superconductivity, therefore
we argue that within BCS-London theory the Meissner transition is a “forbidden transition.” Furthermore, to
explain the phase transformation in a way that is consistent with the experimental observations, requires that
(i) the wave function and charge distribution of superconducting electrons near the phase boundary extend into
the normal phase, and (ii) that the charge carriers in the normal state have holelike character. The conventional
theory of superconductivity does not have these physical elements, the theory of hole superconductivity does.
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I. INTRODUCTION

Experiments [1,2] and theory [3] show that under ideal
conditions the superconductor to normal transition in the pres-
ence of a magnetic field is a reversible phase transformation
[4] between equilibrium states of matter that occurs without
energy dissipation and without increase in the entropy of
the universe. In this paper, we argue that the conventional
BCS-London theory of superconductivity [5,6] cannot explain
how mechanical momentum is conserved in this transition, and
for this reason BCS-London theory as it stands is not a viable
theory of superconductivity for any superconductor. In other
words, BCS theory predicts that the Meissner transition is a
“forbidden transition” [7], in contradiction with experiment
[1,2]. Instead, we point out that the alternative theory of hole
superconductivity [8] explains how the transition occurs in a
reversible way conserving mechanical momentum. The key
issue of reversibility and how it is addressed experimentally is
discussed in Appendix B.

We restrict ourselves to nonrelativistic electrons, which is
sufficient for most solids. In the absence of electric current,
the average mechanical momentum of electrons at any point
in space is zero. In the presence of an electric current, the
mechanical momentum density of electrons at position �r is
[9,10]

�P(�r) = me

e
�J (�r), (1)

where �J (�r) is the current density at position �r, me is the bare

electron mass, and e (<0) is the electron charge. Consider
a cylinder of radius R and height h in a uniform magnetic
field �H parallel to its axis pointing in the ẑ direction, hanging
from a thread of negligible torsion coefficient. Assume the
material is a type-I superconductor with a thermodynamic
critical field Hc and London penetration depth λL, initially in
the normal state, and the body is at rest. When it is cooled into
the superconducting state, the magnetic field is expelled from

the interior [1] (assuming H < Hc) through the development
of a surface current

I = c

4π
hH. (2)

I flows within a London penetration depth of the surface, so
the current density is

�J = − c

4πλL

Hθ̂ (3)

as follows from Ampere’s law �∇ × �H = (4π/c) �J and the
requirement that �B = 0 inside the superconductor. Therefore
the electrons acquired a nonzero momentum. The momentum
density of the supercurrent is, from Eqs. (1) and (3),

�P = − mec

4πλLe
H θ̂ (4)

in a volume 2πRλLh, hence the total angular momentum of
the supercurrent is

�Le = −mec

2e
hR2Hẑ. (5)

Note that Le is proportional to the bare electron mass [10].
Le is a macroscopic angular momentum carried by the

supercurrent. For example, for R = 1 cm, h = 5 cm, and
H = 200 G, Le = 2.84 mg mm2/s. From angular momentum
conservation, we conclude that the body as a whole must rotate
carrying equal and opposite angular momentum, since the total
angular momentum before the system was cooled was zero and
no angular momentum was imparted to the system as a whole
upon cooling. Measurement of the body’s angular momentum
was never done this way, but instead by applying a magnetic
field to an already superconducting body, which will develop
a screening current with angular momentum equal to those
given by Eqs. (3) and (5). Indeed, the body is found to rotate
with angular momentum given by Eq. (5) with opposite sign
[11–13]. This is called the “gyromagnetic effect.”
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FIG. 1. Process I: a magnetic field is applied to a superconductor
at rest. The body acquires angular momentum �Li antiparallel to the
applied magnetic field. The supercurrent acquires angular momentum
�Le = −�Li parallel to the magnetic field. EF is the Faraday electric
field that exists during the process, which is clockwise as seen from
the top, in the same direction as the body rotation.

Thus we cannot doubt that supercurrents carry mechanical
momentum and angular momentum. Momentum conservation
is a universal law of physics, hence when the state of the
system changes so that the supercurrent changes, the change in
the angular momentum of the supercurrent must be accounted
for. Quantitatively, this momentum is certainly non-negligible.
Consider that a typical current density in superconductors is
of order 108 A/cm2, much higher than current densities in
normal metals. It is well known that for normal state current
densities of order 106 A/cm2 one begins to see significant
electromigration effects [14], where the momentum of the
conduction electrons is transferred to individual ions causing
actual displacement of the ions. Such effects are not seen
in superconductors. Moreover, no Joule heat is dissipated in
the superconductor to normal transition in a magnetic field
[2,15–18], indicating that there are no irreversible collision
processes that also transfer momentum to the body as in
normal conduction. Therefore superconductors need to have
a way to transfer the large momentum of the supercurrent to
the body as a whole that is different from the way normal
electrons do it. A theory of superconductivity that cannot
describe this momentum transfer process cannot account for
momentum conservation and hence cannot be a valid theory
of superconductivity.

II. WHAT NEEDS TO BE EXPLAINED

Consider three different processes in which a supercon-
ducting cylinder hanging from a thread will acquire angular
momentum, shown in Figs. 1–3. We assume, consistent
with the conventional theory of superconductivity and with
experiment, that all processes are reversible [4].

Process I. The body is at rest at temperature T < Tc, and a
magnetic field H < Hc(T ) is applied (Fig. 1). A clockwise
supercurrent develops to prevent the magnetic field from
penetrating its interior, and the body starts to rotate in the
clockwise direction (as seen from the direction where the
magnetic field is pointing).

FIG. 2. Process II: a superconductor at rest in a magnetic field
turns normal. The body acquires angular momentum �Li parallel to
the applied magnetic field, which equals the angular momentum �Le

initially carried by the supercurrent. EF is clockwise as in Fig. 1,
body rotation is counterclockwise.

Process II. The body is at rest in a magnetic field H and
has a clockwise supercurrent preventing the magnetic field
from entering its interior. Electrons in the supercurrent are
moving counterclockwise. The temperature is raised to slightly
above Tc(H ), the body enters the normal state, the supercurrent
stops and the body starts rotating in counterclockwise direction
(Fig. 2).

Process III. The body is at rest in a uniform magnetic
field and initially at temperature T > Tc(H ). The temperature
is lowered, the body enters the superconducting state and
expels the magnetic field from its interior and starts rotating in
clockwise direction (Fig. 3), while electrons in the generated
supercurrent move in counterclockwise direction.

All these processes conserve total mechanical angular
momentum (of the electrons in the supercurrent plus the ions
in the body). Since there are no electric fields in the initial
and final states, there is no momentum in the electromagnetic
field. We also assume that the processes are slow enough that
no momentum is carried away by electromagnetic radiation.
We will argue that only process I can be explained by the
conventional theory of superconductivity. Note that only in
process I is the direction of the Faraday electric field that
develops in the process, EF , parallel to the motion of the ions,
in processes II and III it is antiparallel. In the following, we
discuss these three processes.

A. Process I

As the magnetic field is applied, an azimuthal Faraday
electric field develops in the region within λL of the surface of
the cylinder in clockwise direction, given by

EF = λL

c

∂H

∂t
(6)
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FIG. 3. Process III: a normal metal in the presence of a magnetic
field is cooled into the superconducting state. The body acquires
angular momentum �Li antiparallel to the applied magnetic field, and
a supercurrent develops with angular momentum �Le = −�Li parallel
to the applied magnetic field. EF is counterclockwise, body rotation
is clockwise.

assuming the magnetic field penetrates a distance λL. We have
for the velocity of a Bloch electron

�vk = 1

�

∂εk

∂ �k , (7)

where εk is the band energy. Within semiclassical transport
theory the equation of motion is

d �vk

dt
= 1

�2

∂2εk

∂ �k∂ �k
d(��k)

dt
= 1

�2

∂2εk

∂ �k∂ �k (e �EF ). (8)

Assuming an isotropic band and defining

1

m∗
k

= 1

�2

∂2εk

∂ �k∂ �k (9)

the equation of motion is

d �vk

dt
= 1

m∗
k

(e �EF ) = 1

m∗
k

eλL

c

∂H

∂t
(10)

and the change in velocity of the electron when the magnetic
field increases from 0 to H is

�vk = 1

m∗
k

eλL

c
H. (11)

The change in electronic momentum is me�vk , so the total
change in electronic momentum is

Pe ≡
∑
k occ

me�vk =
∑
k occ

me

m∗
k

eλL

c
H, (12)

where the sum over k here and in what follows is over the
occupied states in the band. The current density that develops
is

J = 1

V

∑
k occ

e�vk = 1

V

∑
k occ

1

m∗
k

e2λL

c
H (13)

and using Eq. (3) yields for the penetration depth

1

λ2
L

= 4πe2

c2

(
1

V

∑
k occ

1

m∗
k

)
. (14)

Using the expression for the current density Eq. (13) to replace
the sum over k in Eq. (12) and the expression for the current
density Eq. (3) yields for Eq. (12)

Pe = V
mec

4πλLe
H (15)

with V = 2πRλLh, in agreement with Eq. (4), and yields
Eq. (5) for the total angular momentum acquired by the
electrons.

Now the equation of motion for a Bloch electron is

me

d �vk

dt
= e �EF + �Fk

latt, (16)

where �Fk
latt is the force exerted by the ionic lattice on the

electron of wave vector k. Using Eqs. (8) and (9), we obtain

�Fk
latt =

(
me

m∗
k

− 1

)
e �EF (17)

and the total force exerted by the lattice on the electrons is

�Flatt =
∑
k occ

(
me

m∗
k

− 1

)
e �EF . (18)

By Newton’s third law, the total force exerted by the electrons
on the lattice is then

�Fon-latt = − �Flatt = −
∑
k occ

(
me

m∗
k

− 1

)
e �EF . (19)

The Faraday electric field also exerts a force on the positive
ions. Assuming charge neutrality we have the same number of
positive ions (charges) as negative electrons in the band, and
the total force exerted on the ions (labeled by i) is∑

i

�Fi =
∑

i

mi

d �vi

dt
=

∑
i

|e| �E + �Fon-latt (20)

and using Eq. (19),∑
i

�Fi =
∑

i

mi

d �vi

dt
= −

∑
k occ

me

m∗
k

e �EF , (21)

yielding for the total change in ionic momentum

Pi ≡
∑

i

mi�vi = −
∑
k occ

me

m∗
k

eλL

c
H = −Pe, (22)

hence the total angular momentum acquired by the ions is

Li = mec

2|e|hR2H = −Le. (23)

Thus, for a charge neutral system, the electrons and ions
acquire equal and opposite momenta and angular momenta,
as one would expect. The way the ions acquire momentum
and angular momentum is partly from the Faraday field itself
and partly from the force exerted by the electrons on the
ions, as seen from Eq. (20). Irrespective of this, the total
angular momentum acquired by the body (and the electrons)
is independent of m∗ and hence of the interactions between
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electrons and ions, as seen from Eq. (23). The interactions
between electrons and ions only enter in determining the
magnitude of the London penetration depth as seen from
Eq. (14).

Note that this contradicts the conclusions of Frenkel and
Rudnitsky [19], who argued that the fact that gyromagnetic
experiments [11–13] agree with Eq. (23) with me rather than
m∗ is by itself evidence that electrons carrying the supercurrent
are completely “free” from interactions with the lattice. Later
in this paper, we will argue that Frenkel and Rudnitsky’s
conclusion still was correct, albeit for different reasons.

B. Process II

In process II (Fig. 2), the angular momentum of the
supercurrent Le given by Eq. (5) in direction parallel to the
applied field has to be transferred in its entirety to the body
as a whole when the system goes normal. In other words, the
angular momentum of the electrons has to go from Le to zero
and that of the ions from 0 to Le. The angular momentum
of electrons and ions will change due to (i) electromagnetic
forces, and (ii) interaction between electrons and ions. Let us
examine them in turn.

1. Electromagnetic forces

As the magnetic field lines enter the body, a Faraday electric
field pointing clockwise is generated throughout the interior
of the cylinder (Fig. 2), that tries to prevent the magnetic
field from entering (Lenz’s law). This electric field imparts
momentum to electrons in counterclockwise direction and to
ions in clockwise direction. Thus this momentum transfer is in
a direction exactly opposite to what is needed to reach the final
state, where the counterclockwise electron current has stopped
and the ions rotate in counterclockwise direction.

Can there be a magnetic Lorentz force in the azimuthal
direction? It can result from radial motion of charge. Since
the ionic charge cannot undergo radial motion, a magnetic
Lorentz force cannot be the source of angular momentum
for the ions. For the electrons there could in principle be
radial motion, however, there is no such motion within the
conventional theory of superconductivity.

2. Electron-ion forces

The Coulomb interaction between electrons and ions can
transfer momentum between the two subsystems. Initially,
the momentum of the supercurrent is carried by electrons
bound in Cooper pairs. As the system becomes normal,
Cooper pairs unbind and become normal quasiparticles, and
the supercurrent stops. Within the conventional theory this
process has been discussed by Eilenberger [20] using the
time-dependent Ginzburg-Landau (TDGL) formalism. A term
in the current density describes the current carried by normal
electrons stemming from the momentum transferred to the
normal electron fluid when the superfluid electron density
decreases. Eilenberger states that “this momentum then decays
with the transport relaxation time τ .” However, such decay
would necessarily lead to Joule heat dissipation and hence
irreversibility, therefore this approach cannot be correct [4].
More generally, any approach that assumes that the momentum

of the Cooper pair is transferred to normal quasiparticles
cannot be correct since in normal metallic transport, decay of
electric current is necessarily associated with thermodynamic
irreversibility [21] and even electromigration for high current
densities.

As already recognized by Keesom [16], “it is essential
that the persistent currents have been annihilated before the
material gets resistance, so that no Joule-heat is developed.”
The annihilation of the supercurrent has to be accompanied by
transfer of the supercurrent momentum to the body as a whole
in order to satisfy momentum conservation, with no energy
transfer and no energy dissipation. In its 60 years of existence,
the conventional theory of superconductivity has offered no
clue as to how this happens.

One may speculate that transfer of momentum from the
supercurrent to the body may occur through phonon emission
or scattering by impurities. However, these are not reversible
processes: in the reverse transformation from normal to
superconducting, the body would not be able to transfer its
momentum to the supercurrent by reversing the time arrow
in these processes. For further discussion of the reversibility
issue, see Appendix B.

C. Process III

Process III, shown in Fig. 3, is even more puzzling than
process II. Here one has to explain not only how ions acquire
momentum opposite to the direction of the force exerted by
the Faraday electric field on ions, but also how electrons
acquire momentum in direction opposite to the direction of
the force exerted by the Faraday electric field on electrons,
all without energy dissipation. Within the conventional theory,
the Eilenberger formalism can be applied to describe how
electrons acquire their momentum, but no mechanism exists
for the body to acquire a compensating momentum in the
opposite direction.

In summary, we have pointed out that no valid explanation
exists in the literature of conventional superconductivity for
how momentum is conserved in the processes shown in Figs. 2
and 3. We argue that any explanation of the momentum transfer
between electrons and the body as a whole that involves
collisions between electrons and ions, or impurities, or defects,
or phonons, is necessarily a source of irreversibility, which is
not observed [2], hence is invalid [22,23]. The only other way
we know to transfer the momentum between the supercurrent
and the body is mediated through the electromagnetic field, as
discussed in the next section.

III. MOMENTUM TRANSFER MEDIATED BY THE
ELECTROMAGNETIC FIELD

A key aspect of process II is that the momentum of the
supercurrent gets transferred to the body, but its kinetic energy
is not: the kinetic energy of the supercurrent remains in the
electronic degrees of freedom, where it is used to pay the price
of the condensation energy in rendering the superconducting
electrons normal [4,24].

In most physical interactions, momentum transfer is ac-
companied by energy transfer. An exception is when magnetic
fields are involved. A charge moving in a magnetic field
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will change its momentum but not its kinetic energy: the
magnetic field does not do work on moving charges since the
magnetic Lorentz force �v × �H is perpendicular to the particle’s
velocity �v. The momentum change of the particle is compen-
sated by momentum change of the electromagnetic field. The
momentum density of the electromagnetic field is given by

�Pem(�r) = 1

4πc
�E × �H (24)

with �E, �H electric and magnetic fields.
Thus we argue that the process of transfer of momentum

of the supercurrent to the body without energy transfer must
involve the electromagnetic field in an essential way. It is
natural to conclude that the transfer has to happen in two steps:
the first step would transfer the momentum of the supercurrent
to the electromagnetic field, and the second step would transfer
the momentum from the electromagnetic field to the body as
a whole. Even though both processes may occur concurrently,
it is useful to think of them as separate processes.

At first sight, Eq. (24) does not appear to help, since the
electric and magnetic fields at play in Figs. 2 and 3 are
azimuthal and in the z direction, respectively, resulting in
an electromagnetic momentum �Pem in the radial direction.
However,n the momentum of the supercurrent and the body are
in the azimuthal direction. This then suggests that in processes
II and III, an electric field in the radial direction exists. An
electric field in the radial direction and a magnetic field in the
z direction will give an azimuthal �Pem.

Consider process II, the annihilation of the supercurrent
when the system goes normal. The momentum of the super-
current, carried by negative electrons, is in counterclockwise
direction (Fig. 2). Assume that in the process of the supercur-
rent disappearing an electric field �E pointing radially inward is
created, thus creating a counterclockwise electromagnetic field
momentum according to Eq. (24). This could be a “storage
box” for the momentum of the supercurrent. In a subsequent
step, this momentum of the electromagnetic field would be
transferred to the body in a separate process.

What we have just described would occur if the process of
inward motion of the N-S phase boundary would also involve
inward motion of negative charge, creating a transitory inward-
pointing electric field, followed by inward motion of positive
charge to retrieve the momentum stored in the field and pass
it on to the body. We show the steps in this process in Fig. 4,
where the counterclockwise and inward directions in Fig. 2
corresponds to the leftward and downward directions in Fig. 4,
respectively.

In the process shown in Fig. 4, the momentum initially
carried by the negative charge is transferred to the positive
charge. There is no assumption on the masses of negative and
positive charges, they could be the same or different. If the
mass of the positive charge is much larger than that of the
negative charge, its speed and kinetic energy will be much
smaller.

In exactly the same (reversed) fashion process III can then
be explained, as shown in Fig. 5, namely: if the outward motion
of the phase boundary is associated with outward motion
of negative charge, this would create a transitory radially
outgoing electric field and hence a clockwise electromagnetic

FIG. 4. Illustration of momentum transfer from a negative to a
positive charge through the electromagnetic field, corresponding to
process II, stopping of a supercurrent. Left and down directions
correspond to counterclockwise and radially inward directions in
Fig. 2. Magnetic field H points out of the paper. Initially, the negative
charge has momentum Pe pointing to the left, the positive charge is
at rest. In step 1, the negative charge moves down, the Lorentz force
FH imparts momentum to the right cancelling Pe. After step 1, the
two charges are at rest, and an electric field E exists giving rise to
momentum of the electromagnetic field Pem = Pe. The mechanical
momentum of the negative charge resides now in the electromagnetic
field. In step 2, the positive charge moves down and the Lorentz force
FH imparts momentum to it to the left, which is being transferred
out of Pem. After step 2, the positive charge carries the momentum
Pi = Pe originally carried by the negative charge, and the momentum
of the electromagnetic field is zero again since E = 0.

field momentum that would compensate the counterclockwise
mechanical momentum acquired by the outward-moving
electron due to the Lorentz force. In a subsequent step, positive
charge would move outward and the clockwise momentum of
the electromagnetic field would be transferred to the positive
charge through the Lorentz force. The end result is negative and
positive charges moving with the same momentum in opposite
directions, as shown in the rightmost panel of Fig. 5.

A problem with these explanations is of course that in a
solid, positive ions cannot move radially inward nor outward.
We will show in the next sections how superconductors get
around this problem, through the remarkable properties of
holes. Specifically, in Figs. 4 and 5, the negative charges
correspond to superconducting electrons, and the positive
charges correspond to normal holes. We will show that radially
moving normal holes transfer azimuthal momentum to the
body without energy dissipation.

IV. HOW SUPERCURRENT CARRIERS ACQUIRE AND
LOSE THEIR MOMENTUM WITHOUT ENERGY

DISSIPATION

The radial motion of negative carriers hypothesized in
Figs. 4 and 5 is in the same direction as the motion of

FIG. 5. Similar to Fig. 4 for process III, the Meissner effect.
Left and up directions correspond to counterclockwise and radially
outward directions in Fig. 3. Magnetic field H points out of the paper.
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FIG. 6. The normal region is shaded in grey. The magnetic field
Hc points out of the paper and the Meissner current J flows clockwise,
corresponding to counterclockwise motion of electrons. (a) When
the phase boundary moves inward, the magnetic Lorentz force on
a superelectron moving radially inward as it becomes normal is
clockwise, thus slowing the superelectron down as it becomes normal.
(b) When the phase boundary moves outward, the magnetic Lorentz
force on a normal electron moving radially outward as it becomes
superconducting is counterclockwise, in the direction of motion of
superelectrons in the Meissner current. In both cases the Faraday field
EF imparts a force in opposite direction.

the phase boundary in the respective situations, as shown in
Fig. 6. The momentum parallel to the phase boundary acquired
by a negative charge moving a distance �x in direction n̂

perpendicular to the phase boundary with radial speed vr due
to the Lorentz force imparted by the magnetic field is

� �p‖ =
∫

e

c
�vr × �Hdt = e�x

c
n̂ × H. (25)

We assume that the momentum imparted by the Faraday
electric field (in the opposite direcction) is much smaller and
hence can be ignored. We will justify this assumption in a later
section.

The speed of electrons at the normal-superconductor phase
boundary in an applied magnetic field H is, according to
Eq. (11)

vs = eλL

mec
H (26)

provided we can replace m∗
k by the bare electron mass me

in Eq. (11). We have recently argued [9] that BCS theory
itself is inconsistent unless the dynamics of electrons in
the supercurrent is governed by the bare mass me rather
than the effective mass, and we will assume hereafter that
this is the case. Another argument for this will be given in
Sec. VI. A typical value for the superfluid velocity Eq. (26)
for λL = 400 Å and H = 500 G is vs = 35 225 cm/s.

The momentum of the electron is mevs , hence Eqs. (25)
and (26) indicate that electrons making the transition from
normal to superconducting or from superconducting to normal
advance in the direction of the phase boundary motion a
distance λL. For process II, this motion brings the velocity
of the electron in the supercurrent from vs to zero and
stores its momentum in the electromagnetic field as shown
in Fig. 4. For process III, this motion gives to the electron
the momentum needed to carry the supercurrent and stores
momentum of opposite sign in the electromagnetic field as

shown in Fig. 5. Thus this accounts for the transfer of
momentum from electrons to the electromagnetic field without
energy dissipation, “step 1” in Figs. 4 and 5. Next, we need to
understand how this momentum gets transferred back to the
body, i.e., the processes denoted “step 2” in Figs. 4 and 5,
through a “backflow process,” which is necessary to preserve
local charge neutrality.

V. HOW MOMENTUM IS TRANSFERRED TO THE BODY
WITHOUT ENERGY DISSIPATION

After step 1 in Figs. 4 and 5 the momentum is stored in the
electromagnetic field and needs to be retrieved and transferred
to the body in step 2. This is achieved through the motion of
normal holes in direction perpendicular to the phase boundary.

Consider the two Hall bars shown in Fig. 7. They are
identical except one has negative and the other positive Hall
coefficient RH . The Amperian force on the bar is given by

�FAmp = I

c
�L × �H, (27)

where L = | �L| is the length of the sample and the vector
�L points in the direction of the flow of current I. The
Amperian force is of course independent of the sign of the
Hall coefficient.

For the bar in Fig. 7(a) the Hall coefficient RH is negative,
the carriers are electrons. The current density is given by

�Jx = −nevx̂ = Jxx̂ (28)

flowing in the positive x̂ direction (e < 0), where v is the
magnitude of the drift velocity and n is the density of electron
carriers. An electric field pointing to the right (negative ŷ

direction) exists, given by

�Ey = −v

c
Hŷ = −Eyŷ (29)

that equals the magnetic Lorentz force pointing to the left, so
that the forces on electrons in the y direction are balanced.
Assuming the system is charge neutral, for every conduction
electron there is a positive charge |e| belonging to an ion that
is not moving. The force on this ionic charge is

�Fion = |e| �Ey = eEyŷ, (30)

pointing to the right. The total force on all the ions is

�Fion,tot = nAL|e| �Ey = nALe
v

c
Hŷ = −JxA

c
LHŷ, (31)

FIG. 7. Hall effect in metal bars with negative and positive Hall
coefficients RH . The Amperian force on the body is the same
independent of the sign of the Hall coefficient. However, the physical
interpretation is very different, as discussed in the text.
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where A is the cross-sectional area of the sample, so the total
current is I = JxA. Hence in this case,

�Fion,tot = �FAmp. (32)

For the electrons, electric, and magnetic forces are balanced
and the electrons move along the x̂ direction, hence no other
force in the x̂ direction is acting on electrons. The Amperian
force results from the action of the Hall electric field Ey on
the ions.

The situation is different for the Hall bar with RH > 0
shown in Fig. 7(b). Here the Hall electric field is of opposite
sign to the previous case,

�Ey = v

c
Hŷ = Eyŷ (33)

pointing in the positive y direction. The current flows in the
x direction, hence the net force in the y direction on current
carriers has to be zero. The force on the ions from the electric
field is now

�Fion = |e| �Ey = |e|Eyŷ (34)

pointing to the left, i.e., in opposite direction to the Amperian
force. How does the Amperian force come about?

The answer is, the electrons flowing in the x direction exert
a force on the ions, given by

�Fe-i = 2eEyŷ, (35)

so that the total force on the ion is

�Fion,tot = �Fion + �Fe-i = eEyŷ (36)

just as in Eq. (30). The total force on the ions is again given
by Eq. (32), the Amperian force.

The reason the electrons exert a force on the ions is that the
ions exert a force on the electrons that are moving carrying the
current. According to the semiclassical equations of motion
for Bloch electrons the motion of electrons in solids results
from the combined action of the external force and the force
exerted by the ions on the electrons. A detailed analysis is
given in Appendix A.

This then implies that in a Hall bar with a positive Hall
coefficient where the drift velocity of current carriers (holes)
is �vd in the direction of current flow, for each hole that
moves a distance d, it takes a time interval �t = d/vd and
the momentum transferred in that time from the electrons to
the ions is

� �Pion = −2
e

c
�vd × �H�t = 2

ed

c
v̂d × �H. (37)

This momentum transfer from electrons to ions occurs without
any irreversible scattering processes, and can only occur when
the carriers are holes.

We can now understand how the momentum transfers
between the supercurrent and the body shown in Figs. 4 and 5
occur in the context of the superconductor to normal transition
and normal to superconductor transition, i.e., processes II and
III. We will describe it for the Meissner effect, process III,
Fig. 5. In the cylindrical geometry, the process is shown in
Fig. 8.

We assume the superconductor-normal phase boundary is
moving radially outward at speed ṙ0. An azimuthal electric

FIG. 8. Expansion of the superconducting phase (grey region)
in a magnetic field pointing out of the paper. Electrons acquire
counterclockwise momentum as they thrust outward through the
action of the magnetic Lorentz force. A hole current flows outward
in a boundary layer of thickness λL (light grey ring). The Amperian
force on this current FAmp transfers momentum to the body as a whole
in clockwise direction, just like for the Hall bar in Fig. 7(b).

field pointing counterclockwise is generated at and near the
phase boundary [25]:

�EF = ṙ0

c
Hcθ̂. (38)

(1) Step 1. As the phase boundary advances into the normal
region, electrons that were in the normal state become
superconducting. We assume that the electron becoming
superconducting thrusts radially outward (up in Fig. 5) at a high
speed vr a distance λL. In the process, it acquires through the
action of the magnetic Lorentz force an azimuthal momentum
in counterclockwise direction (to the left in Fig. 5):

� �pe = −eλL

c
Hcθ̂ + e

ṙ0

c
H�tθ̂ . (39)

The second term in Eq. (39) arises from the action of the
Faraday field (38). �t is the time it takes the electron to move
a distance λL at speed vr , �t = λL/vr . Under the condition

ṙ0 � vr, (40)

the second term in Eq. (39) is much smaller than the first term
and we assume it can be neglected, so that Eq. (39) gives
the required momentum of the electron in the supercurrent,
Eq. (26).

(2) After step 1. The outward motion of electrons in step
1 creates a radially outward electric field in a boundary layer
of thickness λL in the normal region, and stores azimuthal
momentum in the electromagnetic field, as shown in the second
panel in Fig. 5. The radial electric field drives a radial outflow
of current in this boundary layer of thickness λL (Fig. 8, light
grey ring) that moves at the same speed as the phase boundary
motion.

(3) Step 2. We assume that the normal current is carried
by hole carriers. Normal current flows radially outward in the
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boundary layer and exerts a force on the body. This force is the
Amperian force �FAmp shown in Figs. 7(b) and 8. It transfers
the momentum stored in the electromagnetic field to the body
as a whole, without energy dissipation, so the body acquires
rotational velocity in the clockwise direction.

(4) After step 2. The momentum acquired by the electron
going superconducting in the counterclockwise direction is
exactly compensated by the momentum transferred to the body
in the clockwise direction.

The fact that the momenta are exactly compensated does
not need proof, it follows from the fact that the backflow
propagation of the holes is exactly radial because of the
balance of forces: the total azimuthal force acting on the
outflowing hole with speed ṙ0 is the sum of the clockwise
magnetic Lorentz force and counterclockwise Faraday force,
which equals zero:

�Fhole = −|e| ṙ0

c
Hcθ̂ + |e| �EF = 0. (41)

Nevertheless, let us verify that the momentum conservation
holds. The momentum acquired by an electron going super-
conducting and thrusting radially outward a distance λL is

� �pe = −eλL

c
Hcθ̂ (42)

neglecting the second term in Eq. (39) under the assumption
that vr � ṙ0. The “backflow” normal holes move at speed ṙ0 in
the +r̂ direction and traverse the boundary layer of thickness
λL in time �t = λL/r̂0. The net force per carrier exerted on
the lattice during that time is given by Eq. (36), where Ey is
the Faraday field EF and the ŷ direction is the θ̂ direction

�Fion,tot = e �EF = e
ṙ0

c
Hcθ̂, (43)

which is the same as the Amperian force in Fig. 7(b). Hence
the net momentum transferred to the ions per electron going
superconducting is

� �pi = �Fion,tot�t = eλL

c
Hcθ̂ (44)

equal and opposite to Eq. (42), as expected.
Exactly the same steps in reverse explain how as the

superconducting region shrinks the mechanical momentum
of an electron in the supercurrent that becomes normal is
transferred to the body through a radially inward flow of holes
in a boundary layer of thickness λL.

Returning to the case of the expanding superconducting
phase in Fig. 8, we also need to consider the effect of the
Faraday field in the superconducting region within λL of the
phase boundary, where the supercurrent flows. Its effect on
the electrons in the supercurrent is to slow them down (force
acts in clockwise direction), so that they eventually come to a
stop when the boundary has moved beyond a distance λL, as
discussed in Ref. [25]. Its effect on the body is to impart
momentum in counterclockwise direction, which partially
compensates the momentum transfer, Eq. (44), resulting in a
net transfer of momentum which generates the body’s rotation,
as discussed in the next section.

VI. MACROSCOPIC TORQUE

Let us now analyze how the macroscopic rotation of the
body comes about. The Amperian force per unit volume
exerted on a radially outgoing current Jr in the presence of
magnetic field H is

�FAmp = −H

c
Jr θ̂, (45)

where θ̂ is positive in counterclockwise direction. The radial
hole current is given by

�Jr = ns |e|ṙ0r̂, (46)

and this current occupies a boundary layer of thickness λL,
with volume V = 2πr0λLh, with h the height of the cylinder.
Hence the torque exerted by the Amperian force on the
boundary layer of thickness λL flowing outward with speed
ṙ0 is

�τ1 = Hc

c
2πr2

0 λLhnseṙ0ẑ (47)

pointing in the −ẑ direction, i.e., opposite to the direction of
the magnetic field.

There is also a countertorque due to the clockwise
force exerted by the Faraday electric field EF on the ions
in the superconducting region within distance λL of the
superconductor-normal phase boundary, where supercurrent
flows. The Faraday field in that region is given by [25]

�EF (r) = Hc

c
ṙ0e

(r−r0)/λL θ̂ , (48)

and it exerts a torque

�τ2 = −2πnseh

∫ r0

0
EF (r)r2drẑ (49)

on the body. Doing the integral and assuming r0 � λL yields

�τ2 = −Hc

c
2πnsehλL

(
r2

0 − 2r0λL + 2λ2
L

)
θ̂ , (50)

so that the net torque on the body is (neglecting the higher
order term proportional to λ3

L)

�τ = �τ1 + �τ2 = Hc

c
4πλ2

Lhnser0ṙ0ẑ. (51)

By conservation of momentum, the ionic angular momentum
is minus the electronic angular momentum, Eq. (5),

�Li = −�Le = mec

2e
hr2

0 Hcẑ (52)

and the associated torque is

�τi = d �Li

dt
= mec

e
hr0ṙ0Hcẑ. (53)

Equating Eq. (53) to the net torque exerted on the body,
Eq. (51), we find

1

λ2
L

= 4πnse
2

mec2
. (54)

This is the well-known expression for the London penetration
depth [5]. On the other hand, we find from our formula for
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Bloch electrons, Eq. (14), for either a band close to empty or
close to full,

1

λ2
L

= 4πnse
2

m∗c2
, (55)

where ns is

ns = 1

V

∑
k occ

1 (56a)

for a band close to empty, or

ns = 1

V

∑
k unocc

1 (56b)

for a band close to full, and m∗ = m∗
k at the bottom of the band

for an almost empty band, or m∗ = −m∗
k at the top of the band

for an almost full band.
In deriving the expression (55) for the London penetration

depth, we assumed that superconducting carriers respond to
the induced Faraday field as if they were Bloch electrons with
effective mass m∗

k , Eq. (9). However, to satisfy momentum
conservation, we found here that the London penetration
depth has to be given by Eq. (54) with the bare electron
mass me. The implication of this is inescapable: our original
assumption, Eq. (10), leading to Eq. (55) was incorrect. Unlike
normal Bloch electrons, superconducting carriers respond
to an external field with their bare electron mass, in other
words they are completely “undressed” from the electron-ion
interaction. We recently reached this same conclusion through
a completely different path, by examining inconsistencies
within conventional BCS-London theory [9].

In summary, the macroscopic rotation of the body when
the superconducting region expands results from the torque
exerted by the radially outgoing hole current, Eq. (46), on
the body in the clockwise direction exceeding the counter-
torque (50) exerted by the Faraday electric field on the ions
in the counterclockwise direction in the region where the
supercurrent flows by the amount given by the net torque (51).
For a shrinking superconducting region all the signs are simply
reversed.

VII. NEW PHYSICS OF SUPERCONDUCTIVITY

In the previous sections, we have described a plausible
way to explain the momentum transfer between the electronic
degrees of freedom and the body as a whole in a reversible way
in processes II and III. We do not know any other possible way
to do this, and no other way has been proposed in the literature.
Next, let us consider what is required of a microscopic theory
of superconductivity to allow this to occur. We argue that the
following are necessary conditions. (i) The wave function and
charge distribution of superconducting electrons close to the
phase boundary extend into the normal state. (ii) The charge
carriers in the normal state that are condensing to give rise to
the supercurrent in the superconducting state are holes.

Requirement (i) follows from the fact that we assumed in
the previous sections that when electrons go from normal to
superconducting they “thrust” into the normal region a finite
distance λL, thereby acquiring the momentum needed for the
supercurrent through the magnetic Lorentz force. Within BCS

theory, it is assumed that the superconducting order parameter
does leak into the normal region, leading, e.g., to Josephson
effects and proximity effects, however, BCS theory does not
predict that the order parameter has any charge associated
with it. This is because charge has to have a sign (negative
or positive), and BCS theory is intrinsically electron-hole
symmetric, so the order parameter is not associated with either
negative or positive charge. Therefore BCS theory does not
satisfy this requirement. BCS theory also does not satisfy
requirement (ii), since within BCS the normal state carriers
may be electronlike or holelike.

Therefore we conclude that BCS theory does not have the
physical elements required to explain the reversible momen-
tum transfer between electrons and the body that takes place
in the superconductor-normal and normal-superconductor
transitions in a magnetic field. Instead, the theory of hole
superconductivity [8] does have those physical elements, as
discussed in earlier papers [22,25,26] and recounted briefly in
what follows.

(i) Within the theory of hole superconductivity, electrons
in the condensate reside in mesoscopic orbits of radius 2λL

[27], while they reside in microscopic orbits of radius k−1
F

in the normal state. Thus, when electrons go from normal to
superconducting they expand their orbits to radius 2λL, and
since they are at the normal-superconductor phase boundary
this is associated with negative charge leaking into the normal
region. The azimuthal velocity acquired by expanding the orbit
to radius 2λL is given by Eq. (26), the same as in a linear
thrust over length λL in a direction perpendicular to the phase
boundary [28]. (ii) Within the theory of hole superconductivity,
as discussed in numerous papers and for numerous reasons [8],
the normal state carriers are necessarily holes.

The essential physics of the Meissner effect within the
theory of hole superconductivity is orbit expansion driven
by lowering of the quantum kinetic energy [29,30]. Instead,
in conventional BCS theory, superconductivity is driven by
lowering of the potential energy. We have argued that no theory
that explains superconductivity as driven by the potential rather
than the kinetic energy can explain the Meissner effect [30].

VIII. MOMENTUM IN THE ELECTROMAGNETIC FIELD

Within our theory, the superfluid charge density is slightly
inhomogeneous, since the orbit expansion leads to higher
negative charge density within the London penetration depth
of the surface, as shown schematically in Fig. 9. The excess
charge density is given by [31]

ρ− = ens

�

4meλLc
, (57)

which gives rise to an outward pointing electric field in the
interior of superconductors, that attains its maximum value
Em near the surface, given by

Em = − �c

4eλ2
L

, (58)

so that Em = −4πρ−λL [31]. Therefore there is electromag-
netic momentum in the region within λL of the surface where
both electric and magnetic fields are present, according to
Eq. (24). The total electromagnetic angular momentum in that

014503-9



J. E. HIRSCH PHYSICAL REVIEW B 95, 014503 (2017)

FIG. 9. Schematic view of superconducting region. Excess neg-
ative charge density ρ− resides within a London penetration depth
of the phase boundary. A radial electric field exists in the interior.
The extra mechanical momentum Lextra

e carried by the excess charge
density ρ− is compensated by momentum Lem in the electromagnetic
field.

region, of volume 2πr0λLh, is

�Lem = − 1

4πc
EmHcr0(2πr0λLh)ẑ. (59)

On the other hand, the extra mass density ρ−/e carries
mechanical angular momentum, given by [using Eqs. (57) and
(5)]

�Lextra
e = �

4meλLc
�Le = − �

4meλLc

mec

2e
hr2

0 Hcẑ, (60)

so that

�Lem = −�Lextra
e (61)

as required for momentum conservation.
It is interesting to note that for any value of ρ− Eq. (61)

would hold, provided that Em = −4πρ−λL, which is the
condition for the “surface charge density” σ = λLρ− to screen
the internal field Em so that it does not leak out of the super-
conductor: the angular momentum of the mass density ρ−/e

moving at a speed given by Eq. (26) is exactly compensated
by the angular momentum stored in the electromagnetic field.

In summary, the total electronic mechanical angular mo-
mentum of superconducting electrons in a magnetic field
is compensated by the angular momentum of the body
plus a small contribution (∼1/106) of electromagnetic field
momentum:

�Ltot
e =

(
1 + ρ−

ens

)
�Le = −( �Lbody + �Lem), (62)

which completely accounts for momentum conservation and
the mechanisms responsible for it.

IX. DISCUSSION

In this paper, we have argued that the only way that
momentum can be transferred between the supercurrent and
the body as a whole in a reversible way in processes where

the normal-superconductor phase boundary moves is through
mediation of the electromagnetic field, which necessitates flow
of charge in a direction perpendicular to the phase boundary,
and necessitates hole carriers in the normal state. Any
alternative way to transfer the momentum between electrons
and the body, i.e., scattering by impurities or phonons, would
be an irreversible process incompatible both with experiment
and with the established principles of superconductivity [4].

We have furthermore argued that the conventional BCS-
London theory does not have the necessary physical elements
to describe these processes in a reversible fashion. At the very
least, it is a fact that no such description exists in the scientific
literature.

An important aspect of our explanation is that it only works
if it is assumed that the mechanical momentum of an electron
in the supercurrent is

�pe = −eλL

c
H θ̂ (63a)

rather than

�pe = − me

m∗
eλL

c
H θ̂ (63b)

as predicted by the conventional theory [9]. The momentum
formula (63b) works to explain momentum conservation in
process I, but cannot explain how momentum is conserved in
processes II and III. The reason is, the explanation of how
momentum is transferred to the body discussed in Sec. V
involves momentum transfer perpendicular to the motion, for
which m∗ does not play a role: the momentum transferred to
the ions, Eq. (44), does not depend on m∗. We have discussed
elsewhere [9] other reasons for why the correct momentum
expression has to be Eq. (63a) rather than Eq. (63b).

BCS advocates argue that because at low temperatures the
superconducting state with the magnetic field excluded has
lower free energy than the normal state with the magnetic
field inside, the system will somehow “find its way” to the
lower free energy state and expel the magnetic field. They
do not feel compelled to explain in the scientific literature
how, within the confines of BCS theory or even within
time-dependent Ginzburg Landau theory, the process occurs
respecting momentum conservation and reversibility. We argue
that such a stance is unacceptable. One might say that it is
equivalent to saying that because an electron-positron pair
has the same energy as a single 1.022-MeV photon, a theory
predicting that the former will decay into the latter has a claim
to validity. It does not, because such a process with a single
photon would violate momentum conservation, two photons
are needed. Hence the theory with only one photon cannot be
a valid theory, no matter what other valid predictions it makes.

We argue that within BCS theory the Meissner transition
is a “forbidden” transition [7], since the transition cannot
take place respecting momentum conservation if only the
supercurrent changes its momentum. As in other forbidden
transitions in physics, it is necessary to ascertain how long it
will take the system to get around the selection rules originating
in conservation laws by using higher order processes. For
example, consider gamma decay of excited atomic nuclei.
Changes in the nuclear angular momentum by more than one
unit cannot occur by emission of a single photon because
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this would violate angular momentum conservation. Changes
by more than 1 unit can occur, but each additional unit of
spin change inhibits the decay rate by about five orders of
magnitude. For the highest known spin change of 8 units,
the decay rate is suppressed by a factor 1035 and takes 1015

years instead of 10−12 seconds. Similarly, we believe any route
to explain the Meissner effect within BCS theory satisfying
conservation laws and reversibility is highly “forbidden” and
would take time beyond the age of the universe for macroscopic
systems. We would like to challenge BCS advocates to show
that this is not so, by explaining the mechanism by which
momentum is transferred between electrons and the body in a
reversible fashion.

In contrast, the theory of hole superconductivity does have
the physical elements necessary to explain these processes
[8]. In summary, those physical elements that are not part
of BCS theory are the following: (i) normal carriers are
necessarily holes; (ii) when a system goes superconducting,
not only the occupation of Bloch states near the Fermi
energy changes as predicted by BCS, keeping the individual
Bloch states unaltered; instead, the electronic wave function
expands, and the highly dressed normal carrier becomes
an undressed carrier with an extended wave function that
does not “see” the short-wavelength ionic potential [32,33];
(iii) as a consequence of (ii), supercarriers respond to external
fields according to the bare electron mass [9] rather than the
effective mass as predicted by BCS, and (iv) as electrons
become superconducting, negative charge extends beyond the
normal-superconductor boundary into the normal region.

Because these issues are basic and fundamental to the un-
derstanding of superconductivity, we argue that it is imperative
to resolve them. Physicists should stop using conventional
BCS- London theory to describe real superconductors unless
or until it can be shown that the theory does not violate
momentum conservation.
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APPENDIX A: DERIVATION OF THE HALL
COEFFICIENT AND HALL FORCE ON THE LATTICE

We consider the Hall effect in the geometry of Fig. 7. The
Hall coefficient is defined as

RH = Ey

JxH
(A1)

with �H = Hẑ the applied magnetic field, �Jx = Jxx̂ the current
density, and �Ey = Eyŷ the Hall field. The external force on an
electron of wave vector k in a direction perpendicular to the
current (ŷ direction) is

Fk
ext = eEy − e

c
vkH (A2)

with

vk = 1

�

∂εk

∂k
. (A3)

We assume an isotropic band with energy εk and omit vector
labels on the wave vectors. The total force on an electron of
wave vector k in a direction perpendicular to the current is

Fk
tot = me

dvk

dt
= me

m∗
k

d

dt
(�k) = me

m∗
k

(
eEy − e

c
vkH

)
(A4)

according to the semiclassical equation of motion, with

1

m∗
k

= 1

�2

∂2εk

dkdk
(A5)

the effective mass tensor. On the other hand, we can write
the force on the electron of wave vector k as the sum of the
external force and the force exerted by the lattice:

Fk
tot = Fk

ext + Fk
latt = eEy − e

c
vkH + Fk

latt. (A6)

The total force on carriers per unit volume in a direction
perpendicular to the current is, from integrating Eq. (A4) over
the occupied states,

Ftot ≡
∫

occ

d3k

4π3
Fk

tot = mee

∫
occ

d3k

4π3

1

m∗
k

(
Ey − H

c
vk

)
(A7)

and the total force per unit volume exerted by the lattice on
electrons in the transverse direction is, from Eq. (A6),

Flatt ≡
∫

occ

d3k

4π3
Fk

latt = Ftot − e

∫
occ

d3k

4π3

(
Ey − H

c
vk

)
.

(A8)

Next, we evaluate Eqs. (A7) and (A8) for the cases of almost
empty and almost full bands.

1. Almost empty band

The number of carriers and current are given by

ne =
∫

occ

d3k

4π3
, (A9a)

Jx = e

∫
occ

d3k

4π3
vk, (A9b)

and we assume that for the occupied states near the bottom of
the band,

1

m∗
k

∼ 1

m∗ > 0, (A10)

independent of k. Equation (A7) yields

Ftot = me

m∗

(
neeEy − H

c
Jx

)
(A11)

and setting Ftot = 0 yields

Ey = JxH

neec
, (A12)

RH = Ey

JxH
= 1

neec
, (A13)
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and from Eq. (A8)

Flatt = −
(

neeEy − JxH

c

)
= 0 (A14)

using Eq. (A12). Therefore, for this case, the Hall coefficient
RH is negative, the total force exerted by the lattice on the
carriers is zero, and conversely the total force exerted by the
carriers on the lattice is zero.

2. Almost full band

The number of carriers and current are given by

nh =
∫

unocc

d3k

4π3
, (A15a)

Jx = e

∫
occ

d3k

4π3
vk = −e

∫
unocc

d3k

4π3
vk, (A15b)

and we assume

1

m∗
k

∼ − 1

m∗ < 0 (A16)

independent of k, for the unoccupied states near the top of the
band. We have then∫

occ

d3k

4π3

1

m∗
k

= −
∫

unocc

d3k

4π3

1

m∗
k

= nh

m∗ , (A17)

e

∫
occ

d3k

4π3

1

m∗
k

vk = −e

∫
unocc

d3k

4π3

1

m∗
k

vk == − Jx

m∗ , (A18)

hence from Eq. (A7),

Ftot = me

m∗

(
nheEy + H

c
Jx

)
(A19)

and setting Ftot = 0 yields

Ey = −JxH

nhec
, (A20)

RH = Ey

JxH
= − 1

nhec
. (A21)

Therefore, in this case, the Hall coefficient RH is positive. To
find the force exerted by the lattice on electrons from Eq. (A8),
we use that∫

occ

d3k

4π3
=

∫
zone

d3k

4π3
−

∫
unocc

d3k

4π3
= 2

v
− nh (A22)

with v the volume of the unit cell, and use Eq. (A15b), and
obtain

Flatt = −
[
eEy

(
2

v
− nh

)
+ H

c
Jx

]
(A23)

and using Eq. (A20)

Flatt = −2eEy

v
, (A24)

which unlike Eq. (A14) is not zero. Hence the total force per
unit volume exerted by the carriers on the lattice is

Fon-latt = 2eEy

v
. (A25)

Now the electric field Ey also exerts a force on the lattice.
The compensating ionic charge density per unit volume is
|e|(2/v − nh), hence the direct force of the electric field on the
ions per unit volume is

F
Ey

on-latt = −eEy

(
2

v
− nh

)
(A26)

so that the “net” force on the lattice per unit volume is

F net
on-latt = Fon-latt + F

Ey

on-latt = nheEy, (A27)

or, using Eq. (A20)

�F net
on-latt = −H

c
Jxŷ (A28)

in agreement with Eq. (31).

APPENDIX B: THE KEY ISSUE OF REVERSIBILITY

This paper rests on the assumption that under ideal
conditions the transition between normal and superconducting
states in the presence of a magnetic field is reversible, in other
words, that it occurs without change in the entropy of the
universe. In this appendix, we discuss the history of this issue,
and the experimental and theoretical evidence in its favor as it
relates to our work.

Until the year 1933, when the Meissner effect was dis-
covered [1], it was generally believed that the transition from
the superconducting to the normal state when a current flows
in the superconductor was necessarily irreversible: when the
system became normal, resistance would become nonzero,
the current would decay through the usual collision processes
that occur in the normal state, and Joule heat K , with K the
kinetic energy of the supercurrent, would be dissipated in
the process. As a consequence, the entropy of the universe
would increase by an amount �Sirr = K/T , with T the
temperature. No measurements were done to verify this
assumption, presumably because it was considered to be a
self-evident truth [34].

The first hint that in fact this self-evident truth might not
be true came from the experimental finding [35] of a relation
between the difference in specific heats in the normal and
superconducting states and the temperature derivative of the
critical magnetic field at the critical temperature:

Cs(Tc) − Cn(Tc) = V

4π
T

(
∂Hc(T )

∂T

)2

Tc

(B1)

with V the sample volume. This is known as the “Rutgers
relation.” Already before the discovery of the Meissner
effect, Gorter [36] showed that Eq. (B1) follows from the
assumption that the magnetic field B is zero in the interior of
superconductors and that the relation

dQ

T
= dS (B2)

holds for the two phases, where Q is the heat absorbed
(released) in the transition and S the entropy of the phase.
Equation (B2) is equivalent to saying that the transition is
reversible, hence that no Joule heat is dissipated when the
supercurrent stops. Equation (B1) is simply derived from the
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relation [37]

dF = −SdT − MdH (B3)

for the free energies of the normal and superconducting phases
assuming the magnetization M = 0 for the normal phase and
assuming

B = H + 4π
M

V
= 0 (B4)

for the superconducting phase. The above equations are valid
for a long cylinder with a magnetic field in a direction parallel
to the axis. Using S = −∂F/∂T )H , it follows from (B3) and
(B4) that

Sn(T ) − Ss(T ) = L(T )

T
= − V

4π
Hc(T )

∂Hc(T )

∂T
(B5)

along the phase transition line in the H -T phase diagram.
L is the latent heat of the transition. Equation (B5) is
the analogous of the Clausius-Clapeyron equation relating
pressure and temperature for the liquid-solid or liquid-gas
transition. It assumes that the free energies of the coexisting
phases are the same and that the transition is reversible. From
C = T ∂S/∂T )H and Eq. (B5), it follows that

Cs − Cn = V

4π
T

[(
∂Hc(T )

∂T

)2

+ Hc(T )
∂2Hc(T )

∂T 2

]
(B6)

along the coexistence curve. Equation (B6) reduces to Eq. (B1)
at the particular point T = Tc, where the magnetic field and
the latent heat are zero. All these relations follow from the fact
that the relation between the difference in free energies in the
normal and superconducting states at temperature T < Tc and
the critical field Hc(T ) at that temperature is

Fn(T ) − Fs(T ) = V
Hc(T )2

8π
(B7)

if the transition is reversible [36].
Note that Eq. (B7) also follows from BCS theory [5]. There-

fore, within conventional BCS theory, it is assumed, just as this
paper assumes, that the normal-superconductor transition in a
magnetic field is a reversible phase transformation under ideal
conditions.

These relations, together with London’s electrodynamic
equations, imply that the kinetic energy of the supercurrent
is precisely given by the difference in the free energies of
normal and superconducting states Eq. (B7). The supercurrent
density is given by

�J = ens �vs (B8)

with �vs the superfluid velocity. London’s equation is

�∇ × �J = − c

4πλ2
L

�H (B9)

with λL the London penetration depth. In a cylindrical
geometry, Eq. (B9) implies

J = − c

4πλL

H (B10)

so from Eqs. (B7) and (B10),

Fn − Fs = 2πλ2
L

c2
J 2, (B11)

and using the standard equation for the London penetration
depth [5]

1

λ2
L

= 4πnse
2

mec2
, (B12)

it follows that

Fn − Fs = ns

2
mev

2
s ≡ K. (B13)

The right-hand side of Eq. (B13) is the kinetic energy density
of the supercurrent. At the phase boundary between normal and
superconducting phases, Eq. (B13) holds and this guarantees
that there is phase equilibrium between the two phases [24].
Equation (B13) also implies that when there is a small
displacement of the phase boundary whereby a region goes
from S to N, or from N to S, the resulting change in the kinetic
energy of the supercurrent is exactly compensated by the
difference in the free energies of the two phases. This implies
that there is zero Joule heat dissipated when the supercurrent
stops.

After the Meissner effect was discovered, it would seem
very natural to expect that the transition in the presence of
a magnetic field was perfectly reversible for the following
reason: if the kinetic energy of the supercurrent is stored
rather than dissipated as Joule heat when the system becomes
normal, it will be available to be converted again to kinetic
energy of the supercurrent in the reverse transformation as
the system becomes superconducting and expels the magnetic
field by generation of the Meissner current. Nevertheless,
despite the theoretical consistency and inherent beauty of
the above considerations, it was thought necessary to check
this expectation experimentally, presumably because it was
considered counterintuitive that a supercurrent could stop
without any dissipation when the system becomes normal. In
the period 1934–1938, W. H. Keesom and coworkers did very
extensive experimental work to check these predictions in a
variety of ways [2,15–18]. All the results found were consistent
with the nonexistence of irreversible heat dissipation under
ideal conditions (e.g., pure samples, the transition proceeding
slowly), and the thermodynamic relations discussed above
were found to hold to high accuracy.

Specifically, in Ref. [15], Keesom and coworkers made
calorimetric measurements along a “Gorter cycle” [3,36] for
T l: cooling below Tc in zero field, then applying a field
of magnitude just below the threshold value, then heating
across the transition in the presence of the field to above Tc,
then switching off the field. They obtained the latent heat
associated with the transition directly from the measurements,
and applied the first and second laws of thermodynamics to the
heat exchanged along the cycle. Allowing for the possibility
of an irreversible increase in entropy σ in the S-N transition,
they found σ = 0 within experimental error, in other words
that ∮

dQ

T
= 0 (B14)

holds in going around the cycle, hence concluded that “no
irreversible entropy change occurs.” In Ref. [16], they repeated
and confirmed these results to higher accuracy, stating that
to be consistent with the experimental results “it is essential
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that the persistent currents have been annihilated before the
material gets resistance, so that no Joule heat is developed.”
In Ref. [17], the atomic latent heat of Sn was measured and
compared with the theoretical expression (B5) that assumes
reversibility, finding that “the agreement between the observed
values and the calculated ones is striking.” In Ref. [18], both
sides of Eq. (B6) were measured as well as of Eq. (B5) versus
temperature, finding agreement “under the assumption that the
transition from the superconductive to the nonsuperconductive
state is a reversible one.” In Ref. [2], the reverse transition
(N-S) in a magnetic field was also examined and it was found
that the latent heat in the N-S transition was equal to the
one previously measured for the S-N transition, leading to the
conclusion that “also in the transition from the normal into
the superconductive state no irreversible increase in entropy
takes place.” Quantitatively, the authors concluded from the
measurements that “the maximum limit of the irreversible
increase in entropy comes to 1.6% at 3 K and of 1% at 2.6 K
[2].”

These experiments established that at most a small fraction
(1%–2%) of the latent heat measured could be associated with
irreversible processes. Particularly at low temperatures, where
the kinetic energy of the supercurrent becomes substantially
larger than the latent heat, this implies that not more than a tiny
fraction (<1%) of the supercurrent could stop through onset
of resistance with dissipation of its kinetic energy as Joule
heat [38].

Several years later, Mapother [39] again tested the relations
Eqs. (B5) and (B6) for Sn and In. He stated “In this article we
present the results of a careful comparison between magnetic
and calorimetric data for the elements, Sn and In” and “It will
be shown that the thermodynamic consistency between the two
types of measurement is, in general, of the order of 1% and
limited mainly by the precision of the calorimetric data.” Thus
he established that the relations (B5) and (B6) hold to better
than 1%, confirming reversibility.

These experiments and the associated theory are extremely
strong evidence that the normal-superconductor transition in
the presence of a magnetic field is reversible. Note also that
state of the art calorimetry [40] is now substantially more
advanced than it was in the 1930’s. Thus, rather than to 1%
accuracy, it may now be possible to establish experimentally
that not more than 0.1% or perhaps even not more than
0.01% of the kinetic energy of the supercurrent is dissipated
in irreversible processes. This would imply that 99.99% of
the supercurrent stops without the current carriers undergoing
irreversible collisions. The question then would be, how is
99.99% of the mechanical momentum of the supercurrent
transmitted to the body as a whole without irreversible
collisions?

We argue in this paper that the explanation of this
presents an insurmountable challenge to the conventional
theory of superconductivity. The conventional theory offers
no mechanism by which “the persistent currents have been
annihilated before the material gets resistance, so that no
Joule-heat is developed,” as demanded by Keesom [16]. The
only way the conventional theory has addressed this issue
is by proposing that the momentum of the supercurrent is
passed on to normal electrons when Cooper pairs dissociate,
that then transfer it to the body through collisions [20], which
would have to be perfectly elastic and in addition generate no
entropy.

So the conventional theory has to explain both how normal
electrons can inherit the momentum of the supercurrent but
not the kinetic energy of the supercurrent (or at least not more
than 0.01% of the kinetic energy of the supercurrent), and how
the momentum of these normal electrons can subsequently be
transferred to the body as a whole in a reversible way, without
entropy generation. We believe it is impossible to do either
without violating basic laws of physics, even if the transition
occurs infinitely slowly. In any event, it certainly has not been
done in the scientific literature to date.
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