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In confined helimagnetic nanostructures, skyrmionic states in the form of incomplete and isolated skyrmion
states can emerge as the ground state in absence of both external magnetic field and magnetocrystalline anisotropy.
In this work, we study the dynamic properties (resonance frequencies and corresponding eigenmodes) of
skyrmionic states in thin film FeGe disk samples. We employ two different methods in finite-element based
micromagnetic simulation: eigenvalue and ringdown method. The eigenvalue method allows us to identify all
resonance frequencies and corresponding eigenmodes that can exist in the simulated system. However, using
a particular experimentally feasible excitation can excite only a limited set of eigenmodes. Because of that,
we perform ringdown simulations that resemble the experimental setup using both in-plane and out-of-plane
excitations. In addition, we report the nonlinear dependence of resonance frequencies on the external magnetic
bias field and disk sample diameter and discuss the possible reversal mode of skyrmionic states. We compare
the power spectral densities of incomplete skyrmion and isolated skyrmion states and observe several key
differences that can contribute to the experimental identification of the state present in the sample. We measure
the FeGe Gilbert damping, and using its value we determine what eigenmodes can be expected to be observed
in experiments. Finally, we show that neglecting the demagnetization energy contribution or ignoring the
magnetization variation in the out-of-film direction—although not changing the eigenmode’s magnetization
dynamics significantly—changes their resonance frequencies substantially. Apart from contributing to the
understanding of skyrmionic states physics, this systematic work can be used as a guide for the experimental
identification of skyrmionic states in confined helimagnetic nanostructures.

DOI: 10.1103/PhysRevB.95.014433

I. INTRODUCTION

Dzyaloshinskii-Moriya interactions [1,2] (DMI) may occur
in magnetic systems that lack some type of inversion symme-
try. The inversion asymmetry can be present in the magnetic
system either because of a noncentrosymmetric crystal lattice
[2] (helimagnetic material) or due to the interfaces between
different materials which inherently lack inversion symmetry
[3,4]. Consequently, the DMI can be classified either as bulk
or interfacial. The DMI favours magnetic moments at neigh-
boring lattice sites to be perpendicular to each other (in plane
that is perpendicular to the Dzyaloshinskii vector), which is in
contrast to the symmetric ferromagnetic exchange interaction
which tends to align them parallel. When acting together, these
two interactions mutually compete and find a compromise in
the twist between two neighboring magnetic moments, which
allows a rich variety of different magnetization textures. One
of them is a skyrmion configuration with very promising
properties [5–9] for the development of future high-density,
power-efficient storage [10,11] and logic [12] devices.

After it was predicted [13–15] that magnetic skyrmions
can emerge in the presence of DMI, skyrmions were observed
in magnetic systems with both bulk [6,16–19] and interfacial
[5,7,20] types of DMI. However, all studies of helimagnetic
(bulk DMI) materials required an external magnetic field to be
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applied in order to stabilize skyrmions. Recently, a systematic
micromagnetic study [21] reported all equilibrium states that
can emerge in confined helimagnetic nanostructures and iden-
tified the lowest energy (ground) states. In particular, this study
reported that in confined helimagnetic nanostructures two
different skyrmionic states can emerge as the ground state in
absence of both external magnetic field and magnetocrystalline
anisotropy. One state does not contain a complete spin rotation,
whereas the other state contains one full spin rotation along
the disk sample diameter, plus an additional magnetization
tilting at the boundary due to the specific boundary conditions
[22]. We refer to these configurations as incomplete skyrmion
(iSk) and isolated skyrmion (Sk) states, respectively [21]. In
addition, the same study showed that the higher-order target (T)
state with two complete spin rotations along the disk sample
diameter can emerge as a metastable state at zero external
magnetic field.

Understanding the dynamic response of skyrmionic states
in confined helimagnetic nanostructures is of importance both
from the aspect of fundamental physics as well as for their ma-
nipulation. In this work, we explore the dynamics of all three
equilibrium skyrmionic states using a full three-dimensional
model which includes the demagnetization energy contribution
and does not assume the translational invariance of magnetiza-
tion in the out-of-film direction. A similar dynamics simulation
study was performed for the isolated skyrmion breathing
eigenmodes [23] in confined two-dimensional samples with
interfacial DMI; and high-frequency skyrmion spin excitations
were analytically studied in thin cylindrical dots [24]. The
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low-frequency (two lateral and one breathing) eigenmodes
were reported in two-dimensional simulations of a hexagonal
skyrmion lattice [25], where the demagnetization energy
was neglected. Later, microwave absorption measurements
explored the low frequency eigenmodes in Cu2OSeO3 [26–28],
Fe1−xCoxSi [28], and MnSi [28] helimagnetic bulk samples.
In the case of a magnetic bubble [29–32] (magnetization state
stabilized due to the strong uniaxial anisotropy in the absence
of DMI) analytic [33], simulation [34], and experimental [35]
studies reported the existence of two low frequency gyrotropic
eigenmodes, suggesting that the skyrmion possesses mass.
In contrast, a recent analytic work [36] suggests that only
one gyrotropic eigenmode exists in the confined DMI-induced
skyrmion state, whereas another low-frequency lateral eigen-
mode is interpreted as an azimuthal spin-wave mode [36].

Using our full three-dimensional model, employing the
eigenvalue [37] method, we compute all existing (both lateral
and breathing) eigenmodes below 50 GHz in three different
skyrmionic states. In addition, using the ringdown [38]
method, we determine which eigenmodes can be excited using
two different experimentally feasible excitations (in-plane
and out-of-plane). In contrast to the magnetic bubble, in
the confined DMI stabilized skyrmionic states we find the
existence of only one low-frequency gyrotropic eigenmode.
We also demonstrate the nonlinear dependence of eigenmode
frequencies on the external magnetic bias field and the disk
sample diameter and show that the gyrotropic eigenmode
might be the reversal mode of skyrmionic states. After we
identify all eigenmodes of incomplete skyrmion (iSk) and
isolated skyrmion (Sk) ground states, we compare their power
spectral densities (PSDs) in the same sample at different
external magnetic field values. We discuss the comparisons
and observe several key differences that can contribute to
the experimental identification of the state present in the
studied sample. Although we base this study on the specific
helimagnetic material FeGe, in order to make this study
relevant to any helimagnetic material, we need to determine
as many resonant frequencies as possible that can be detected
using a specific excitation. Because of that, we need to reduce
the linewidth and allow sufficient separation between peaks
in the power spectral density (computed using the ringdown
method). Consequently, in the first part of this work, we use
the Gilbert damping α′ = 0.002 [23]. After we identify all
resonance frequencies and corresponding eigenmodes using
α′, we experimentally measure the real value of FeGe Gilbert
damping and use it to determine which (out of all previously
identified eigenmodes) can be experimentally detected in the
FeGe sample. Finally, we investigate how the demagnetization
energy contribution and magnetization variation in the out-of-
film direction affect the dynamics of skyrmionic states. We
report that although the eigenmode magnetization dynamics
is not significantly affected, the resonance frequencies change
substantially, which indicates that ignoring the demagnetiza-
tion energy or modeling the thin-film helimagnetic samples
using two-dimensional meshes is not always justified.

II. METHODS

We simulate a thin film helimagnetic cubic B20 FeGe disk
with 10-nm thickness and diameter d, as shown in Fig. 1(a).

(a)

(b)

(c)

FIG. 1. (a) A thin film FeGe disk sample with 10 nm thickness and
diameter d . An external magnetic bias field H is applied uniformly
and perpendicular to the sample (in the positive z direction). (b) A
cardinal sine wave excitation magnetic field h(t), used in the ringdown
method, is applied for 0.5 ns in either in-plane (x̂) or out-of-plane (ẑ)
direction. (c) The Fourier transform of excitation field h(t) shows
that all eigenmodes (allowed by the used excitation direction) with
frequencies lower than fc = 100 GHz are excited approximately
equally.

The thin film sample is in the xy plane and perpendicular to the
z axis. An external magnetic bias field H is applied uniformly
and perpendicular to the sample (in the positive z direction).

The total energy of the system we simulate contains several
energy contributions and can be written as

E =
∫

(wex + wdmi + wz + wd + wa) d3r. (1)

The first term wex = A[(∇mx)2 + (∇my)2 + (∇mz)2] is the
symmetric exchange energy density with material parameter
A. The unit vector field m = m(r,t), with Cartesian com-
ponents mx , my , and mz, represents the magnetization field
M(r,t) = Msm(r,t), where Ms is the saturation magnetization.
The second term wdmi = Dm · (∇ × m) is the Dzyaloshinskii-
Moriya energy density with material parameter D, which is
obtained by including Lifshitz invariants suitable for materials
of the crystallographic class T, such as the cubic B20 FeGe
(P 213 space group) used in this study. The coupling of
magnetization to an external magnetic field H is defined by
the Zeeman energy density term wz = −μ0MsH · m, with μ0

being the magnetic constant. The wd term is the demagneti-
zation (magnetostatic) energy density. Because wd is crucial
for the stability of skyrmionic states in confined helimagnetic
nanostructures [21], we include its contribution in all sub-
sequent simulations. The last term is the magnetocrystalline
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anisotropy energy density wa, and because it does not play an
important role in the stability of skyrmionic states in the studied
system [21], we assume the simulated material is isotropic and
neglect the magnetocrystalline anisotropy energy contribution.
The FeGe material parameters we use are the following [21]:
saturation magnetization Ms = 384 kA m−1, exchange energy
constant A = 8.78 pJ m−1, and Dzyaloshinskii-Moriya energy
constant D = 1.58 mJ m−2. In our model, we do not assume
any translational invariance of magnetization in the out-of-film
direction, which significantly changes the energy landscape
both in infinitely large thin films [39] and in confined thin film
nanostructures [21]. The relevant length scales in the simulated
system are the exchange length lex = √

2A/μ0M2
s = 9.73 nm

and helical length LD = 4πA/D = 70 nm. We choose the
finite element mesh discretisation so that the maximum spacing
between two neighboring mesh nodes is below lmax = 3 nm,
which is significantly smaller than the exchange length lex.

The magnetization dynamics is governed by the Landau-
Lifshitz-Gilbert (LLG) equation [40,41]

∂m
∂t

= −γ ∗
0 m × Heff + αm × ∂m

∂t
, (2)

where γ ∗
0 = γ0(1 + α2), with γ0 = 2.21×105 m A−1s−1 and

α � 0 is the Gilbert damping. We compute the effective
magnetic field Heff using

Heff = − 1

μ0Ms

δE[m]

δm
, (3)

where E[m] is the total magnetic energy functional, given by
Eq. (1). We validated the boundary conditions by running a
series of simulations and reproducing the results reported by
Rohart and Thiaville [22].

We implemented the presented model in the finite element
method framework and developed a micromagnetic simulation
tool Finmag (successor of Nmag [42]). For the low-level
finite element operations, we use FEniCS project [43] and for
the adaptive step time integration we use Sundials/CVODE
solver [44,45]. For visualisation, we use MATPLOTLIB [46] and
PARAVIEW [47].

We study the dynamic properties of skyrmionic states using
two different methods: eigenvalue method [37] and ringdown
method [38]. In both eigenvalue and ringdown methods, we
firstly compute an equilibrium magnetization configuration m0

by integrating a set of dissipative time-dependent equations,
starting from a specific initial magnetization configuration, un-
til the condition of vanishing torque (m × Heff) is satisfied. The
details on selecting the initial magnetization configurations can
be found in Ref. [21]. We perform all relaxations in this work
down to the maximum precision limited by the unavoidable
numerical noise. Because the magnetization dynamics is not of
interest in the relaxation process, we set the Gilbert damping
in this stage to α = 1.

We perform the eigenvalue method computations in a
finite element framework, motivated by the analytic procedure
by d’Aquino et al. [37]. The perturbation of the system’s
magnetization from its equilibrium state m0 can be written
as m(t) = m0 + εv(t), where ε ∈ R+ and v(t) ⊥ m0 because
of the imposed micromagnetic condition |m| = 1. If this
perturbation expression is inserted into the undamped LLG

equation, we obtain

∂

∂t
(m0 + εv(t)) = −γ ∗

0 (m0 + εv(t)) × Heff(m0 + εv(t)).

(4)

By using a Taylor expansion Heff(m0 + εv(t)) = H0 +
εH′

eff(m0) · v(t) + O(ε2), where H0 = Heff(m0), and knowing
that ∂m0/∂t = 0 and m0 × H0 = 0, we get

∂

∂t
v(t) = −γ ∗

0 [v(t) × H0 + m0 × (H′
eff(m0) · v(t))], (5)

where all O(ε2) terms and higher are neglected. When
the system is in its equilibrium, because Heff(m0) ‖ m0 and
|m0| = 1, the equilibrium effective field can be written as
H0 = h0m0, where h0 = |H0|. Now, if all vector fields are
discretized on the finite elements mesh, Eq. (5) becomes

∂

∂t
v(t) = γ ∗

0 m0 × [(h01 − H′
eff(m0)) · v(t)]. (6)

Using the matrix �(m0) with property m0 × x = �(m0) · x,
Eq. (6) can be written as

∂

∂t
v(t) = A · v(t), (7)

where A = γ ∗
0 �(m0)[h01 − H′

eff(m0)]. This linear differential
equation has a full set of solutions that can be expressed as
v(t) = ṽei2πf t , where ṽ is a constant vector field. Using this
ansatz, Eq. (7) becomes the eigenvalue problem

i2πf ṽ = Aṽ. (8)

We solve this eigenvalue problem using PYTHON wrappers for
the ARPACK [48] solvers, which are implemented in the SCIPY

[49,50] package, which results in a set of resonant frequencies
f and eigenvectors ṽ from which we express the magnetization
dynamics as m(t) = m0 + ṽei2πf t .

In the ringdown method, similar to the eigenvalue method,
we firstly relax the system to its equilibrium magnetization
state m0. After that, we perturb the system from its equilibrium
by applying a time-dependent h(t) = hmax sinc(2πfct)ê exter-
nal magnetic field excitation [23,51] over texc = 0.5 ns, where
hmax is the maximum excitation field value, fc = 100 GHz is
the cutoff frequency, ê is the direction in which the excitation
is applied, and sinc(2πfct) is the unnormalized cardinal sine
function

sinc(2πfct) =
{

sin(2πfct)
2πfct

, for t �= 0,

1, for t = 0.
(9)

The time dependence of the used excitation h(t) is shown
in Fig. 1(b). Computing the Fourier transform of h(t) shows
that using this excitation enables us to excite all eigenmodes
(which are allowed by the direction of excitation ê) in the [0,fc]
range approximately equally, as demonstrated in Fig. 1(c).
We compute the hmax value so that Hf = 0.5 mT is the
excitation amplitude at any frequency [23]. More precisely,
the maximum value of the cardinal sine wave excitation is
hmax = 2fctexcH

f = 50 mT. We apply the excitation in two
experimentally feasible directions: (i) in-plane ê = x̂ and (ii)
out-of-plane ê = ẑ. After the system is perturbed from its
equilibrium state, we simulate the magnetization dynamics for

014433-3



MARIJAN BEG et al. PHYSICAL REVIEW B 95, 014433 (2017)

tsim = 20 ns and sample the magnetization field m(ri ,tj ) at all
mesh nodes ri at uniform time steps tj = j	t (	t = 5 ps).
Although the excitation is sufficiently small so that the
perturbation from the equilibrium state can be approximated
linearly, in order to make sure we do not introduce any
nonlinearities to the system’s dynamics with the excitation, we
delay sampling by 2 ns after the excitation field is removed.

Finally, we analyze the recorded magnetization dynamics
m(ri ,tj ) using (i) spatially averaged and (ii) spatially resolved
methods [52]. We subtract the time-independent equilibrium
magnetization configuration m0(ri) from the recorded mag-
netization dynamics and perform the Fourier analysis only
on the time-dependent part 	m(ri ,tj ) = m(ri ,tj ) − m0(ri). In
the spatially averaged analysis, we compute all three spatially
averaged magnetization components 〈	mk(tj )〉, k = x,y,z,
at all time steps tj . After that, we apply a discrete Fourier
transform and sum the squared Fourier coefficient moduli
(which are proportional to the power) to obtain the power
spectral density (PSD):

Psa(f ) =
∑

k=x,y,z

∣∣∣∣∣∣
n∑

j=1

〈	mk(tj )〉e−i2πf tj

∣∣∣∣∣∣
2

, (10)

where n is the number of time steps at which the magnetization
dynamics was sampled. On the other hand, in the spatially
resolved analysis, we firstly compute the discrete Fourier
transform at all mesh nodes (separately for all three mag-
netization components) and then compute the PSD as the
spatial average of the squared Fourier coefficient moduli [38]:

Psr(f ) =
∑

k=x,y,z

1

N

N∑
i=1

∣∣∣∣∣∣
n∑

j=1

mk(ri ,tj )e−i2πf tj

∣∣∣∣∣∣
2

, (11)

where N is the number of finite element mesh nodes. Because
the power values in PSD are in arbitrary units (a.u.), we
normalize all PSDs in this work so that

∫ fmax

0 P (f ) df = 1,
where fmax = 50 GHz, and show them in the logarithmic
scale. We choose to analyze dynamics of skyrmionic states
in the [0,50 GHz] range in order to avoid the presence of
artefact peaks in PSDs due to aliasing [53] as a consequence
of discrete time sampling limitations. Although the frequency
resolution in the eigenvalue method is determined by the
machine precision, the frequency resolution for the ringdown
method is 	f = (n	t)−1 ≈ tsim

−1 = 0.05 GHz, where n =
tsim/	t + 1 is the number of sampling points during the
sampling simulation stage.

III. RESULTS

We study the dynamics of all three equilibrium skyrmionic
states that can be observed at zero external magnetic field in
confined thin film helimagnetic disk samples with diameters
d � 180 nm. More precisely, we explore the resonance
frequencies and the corresponding eigenmode magnetization
dynamics of the ground-state incomplete skyrmion (iSk) and
isolated skyrmion (Sk) states, as well as the metastable target
(T) configuration. The difference between these states is
in how many times the magnetization configuration covers
the sphere. A quantity that is usually used to determine

whether a magnetization configuration covers the sphere is the
skyrmion number S [5]. However, in confined helimagnetic
nanostructures, an additional tilting of magnetization at the
sample edges [22] in the winding direction opposite to the
skyrmion configuration reduces the absolute skyrmion number
value [21,54]. This does not allow us to determine what
skyrmionic state is present is the sample because |S| < 1
for all of them. To address this, a scalar value [21] Sa in a
three-dimensional sample is defined as

Sa = 1

8π

∫ ∣∣∣∣m ·
(

∂m
∂x

× ∂m
∂y

)∣∣∣∣ d3r. (12)

This scalar value has no mathematical or physical interpre-
tation, and is defined merely to support the classification of
skyrmionic states in confined nanostructures.

Using the eigenvalue method, we find all existing eigen-
modes by computing their resonance frequencies and magne-
tization dynamics. However, this method does not allow us to
determine what eigenmodes can be excited using a particular
excitation. Therefore we employ the ringdown method for
an in-plane and an out-of-plane excitation and overlay the
resulting spatially averaged and spatially resolved power
spectral densities (PSDs) with the resonance frequencies
obtained from the eigenvalue method. If the eigenvalue method
resonance frequency coincides with a PSD peak, this implies
that the corresponding eigenmode can be “activated” using a
specific excitation and we mark it using a triangle (�) symbol.
All other eigenmodes that cannot be activated using a particular
excitation, we mark with a circle (◦) symbol. Throughout this
work, we study the magnetization dynamics below 50 GHz.
We analyze the target state dynamics in Sec. S1 of Ref. [55].

A. Incomplete skyrmion (iSk) state

The first magnetization configuration that we study is
the incomplete skyrmion (iSk) state. The magnetization
component mz of the iSk state, along the sample diameter,
does not cover the whole [−1,1] range, which is required for
the skyrmion configuration to be present in the sample, and
because of that, the scalar value Sa is in the [0,1] range [21]. In
other works, this state is called either the quasi-ferromagnetic
[22,54] or the edged vortex [56,57] state. The incomplete
skyrmion state is in an equilibrium for all studied disk sample
diameters 40 nm � d � 180 nm and at all external magnetic
bias field values [21]. We explore the resonance frequencies
and corresponding eigenmode magnetization dynamics in a
80-nm diameter disk sample at zero external magnetic field,
where the iSk state is not only in an equilibrium, but is also
the ground state [21] (global energy minimum).

Firstly, we compute all existing eigenmodes using the
eigenvalue method and show the magnetization dynamics
of all identified eigenmodes in video 1 and their schematic
representations in Sec. S3 in Ref. [55]. Then, we excite the
system using an in-plane excitation and show the spatially
averaged (SA) and spatially resolved (SR) power spectral
densities (PSDs) overlaid with the eigenvalue method resonant
frequencies in Figs. 2(a) and 2(b), respectively. In these two
PSDs, we identify five peaks (A, D, E, F, and H) and schemat-
ically represent their corresponding eigenmode magnetization
dynamics in Fig. 2(e). The lowest frequency and the most
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(a)

(b)

(e)

(c)

(d)

FIG. 2. The Power spectral densities (PSDs) of an incomplete skyrmion (iSk) ground state at zero external magnetic field in a 80 nm
diameter FeGe disk sample with 10 nm thickness. (a) Spatially averaged and (b) spatially resolved PSDs for an in-plane excitation, together
with overlaid resonance frequencies computed using the eigenvalue method. The resonant frequencies obtained using the eigenvalue method
are marked with a triangle symbol (�) if they can be activated using a particular excitation and with a circle symbol (◦) otherwise. (c) Spatially
averaged and (d) spatially resolved PSDs for an out-of-plane excitation. (e) Schematic representations of magnetization dynamics associated
with the identified eigenmodes. Schematically, we represent the skyrmionic state core with a circle symbol, together with a directed loop if
it gyrates around its equilibrium position. Contour rings represented using dashed lines revolve/breathe out of phase with respect to the those
marked with solid lines. The magnetization dynamics animations of all identified eigenmodes are provided in video 1 in Ref. [55].

dominant eigenmode A at 2.35 GHz consists of a dislocated
incomplete skyrmion state core (where mz = 1) revolving
(gyrating) around its equilibrium position in the clockwise
(CW) direction. Schematically, we represent the skyrmionic
state core with a circle symbol, together with a directed loop
if it gyrates around its equilibrium position. Consequently,
we classify the eigenmode A as the gyrotropic (translational)
mode. The eigenmode F at 23.04 GHz is the second most
dominant eigenmode. Its magnetization dynamics consists
of a ring contour, defined by the constant magnetization z

component distribution, revolving around the sample center in
the counterclockwise (CCW) direction. This eigenmode is not
gyrotropic because the iSk state core remains at its equilibrium
position. The eigenmode H at 41.65 GHz, present in both SA
and SR PSDs, is composed of the iSk state core together with
two mz contour rings revolving in the CW direction. However,
the inner contour revolves out of phase with respect to both

the outer contour and the iSk state core. Because of that, we
depict the inner contour ring using a dashed line and both
the iSk state core loop and the outer contour ring using a
solid line as a way of visualising the mutually out of phase
dynamics. The eigenmode D is present only in the SR PSD
at 13.83 GHz and consists of the iSk state core and a contour
ring revolving in the CW direction, but mutually out of phase.
So far, all identified eigenmodes are lateral, but in the SA
PSD at 14.49 GHz, we also identify a very weak eigenmode
E with radially symmetric magnetization dynamics. Although
we expect that all eigenmodes present in the SA PSD are also
present in the SR PSD, this is not the case for eigenmode E.
We believe this is the case because this breathing eigenmode
can be excited with an out-of-plane excitation, but emerges in
simulations with an in-plane excitation due to the numerical
noise, which is consistent with its small amplitude. This
eigenmode, together with other breathing eigenmodes, will
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(a)

(b)

(c)

(d)

FIG. 3. Power spectral density (PSD) maps showing the dependence of incomplete skyrmion (iSk) state resonant frequencies on the external
magnetic bias field changed between −0.5 T and 1.2 T in steps of 10 mT for d = 80 nm when the system is excited using (a) in-plane and
(b) out-of-plane excitation. The dependence of resonance frequencies on the disk sample diameter varied between 40 nm and 180 nm in steps
of 2 nm at zero external magnetic field for (c) in-plane and (d) out-of-plane excitation. We show two plots for every PSD map: one for the
complete studied frequency range (0–50 GHz) and another plot in order to better resolve the low-frequency (0–10 GHz) part of the PSD map.

be discussed subsequently when we excite the iSk state using
an out-of-plane excitation.

Now, we perturb the incomplete skyrmion state from its
equilibrium using an out-of-plane excitation and show the SA
and SR PSDs in Figs. 2(c) and 2(d), respectively. Using this
excitation, we identify five eigenmodes (A, B, C, E, and G)
and schematically represent their magnetization dynamics in
Fig. 2(e). The most dominant eigenmode E is present in both
SA and SR PSDs at 13.83 GHz. Its magnetization dynamics

consists of a mz contour ring that shrinks and expands
periodically, while the overall magnetization configuration
remains radially symmetric. Because of that, we classify this
eigenmode as a breathing mode. The second most dominant
eigenmode is the gyrotropic mode A, which was also observed
when the system was excited using an in-plane excitation,
suggesting that it can be experimentally detected independent
of the used excitation direction. The last eigenmode G present
in both SA and SR PSDs at 32.37 GHz consists of two contour
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rings breathing mutually out of phase. More precisely, when
one contour shrinks, another one expands and vice versa.
We schematically illustrate this out of phase breathing using
dashed and solid lines depicting the contours. Finally, the
eigenmodes B and C, visible only in the SR PSD at 2.57
and 3.76 GHz, respectively, can be understood as a particular
magnetization configuration rotating in the sample in the CW
direction without dislocating their core, as shown in Fig. 2(e).

After analyzing the incomplete skyrmion power spectral
densities for d = 80 nm and H = 0, we now explore how
the resonance frequencies depend on the external magnetic
bias field H and the disk sample diameter d for both an
in-plane and an out-of-plane excitation. Firstly, we fix the
disk sample diameter at 80 nm and reduce the external
magnetic field from 1.2 to −0.5 T in steps of 10 mT. More
precisely, we start at μ0H = 1.2 T initializing the system
using incomplete skyrmion configuration with positive core
orientation iSk ↑, relax the system to its equilibrium, and
then run both eigenvalue and ringdown simulations. After
that, we reduce the external magnetic field by 10 mT, relax
the system to its equilibrium using the relaxed (equilibrium)
state from the previous simulation as initial configuration,
and run dynamics simulations. We iterate until we reach
−0.5 T. We show the resulting H -dependent PSD maps for an
in-plane and an out-of-plane excitation in Figs. 3(a) and 3(b),
respectively. In these H -dependent PSD maps, a discontinuity
in resonance frequencies at −0.26 T is evident. This is the
case because for d = 80 nm and −0.26 T � μ0H � 1.2 T,
the iSk state with positive (mz = 1) core orientation (iSk ↑)
is in an equilibrium. However, for μ0H < −0.26 T, the iSk ↑
is not in an equilibrium anymore and the iSk state reverses
its orientation to the negative (mz = −1) direction (iSk ↓) in
order to reduce its Zeeman energy. This is consistent with
the incomplete skyrmion hysteretic behavior studies [21].
Secondly, we change the disk sample diameter d between
40 and 180 nm in steps of 2 nm at zero external magnetic
bias field and show in Figs. 3(c) and 3(d) the d-dependent
PSD maps for an in-plane and an out-of-plane excitation,
respectively. In PSD maps, we show the spatially resolved
PSDs, computed using Eq. (11), because in comparison to the
spatially averaged PSDs, they exhibit more resonance peaks
[38]. We show two plots for every PSD map: one for the
complete studied frequency range (0–50 GHz) and another
plot in order to better resolve the low-frequency (0–10 GHz)
part of the PSD map.

In the case of an in-plane excitation, three lateral eigen-
modes (A, D, and F) are visible in the H -dependent PSD map,
shown in Fig. 3(a), and in the iSk ↑ range their frequencies
nonlinearly and monotonically increase with H . Eigenmodes
D and F are not as dominant as eigenmode A in the PSD
map below approximately 0.3 T, which results in the lack of
sufficient contrast for them to be visible. Now, if we change
the direction of excitation, five eigenmodes (A, B, C, E, and G)
are visible in the H -dependent PSD map, as shown in Fig. 3(b).
In the iSk ↑ range, eigenmodes A, B, and C are visible
only between Hs and approximately 0.4 T. In Fig. 2(d)
at zero external magnetic field, eigenmodes A, B, and C
have very similar frequencies which makes it difficult for
experimentalists to determine which eigenmode the resonance
frequency they measure belongs to. From the out-of-plane

H -dependent PSD map in Fig. 3(b), we observe that this diffi-
culty can be resolved by reducing the external magnetic field
towards the switching field. More precisely, the frequencies of
eigenmodes A and B both decrease, but only the frequency of
eigenmode A approaches zero. On the contrary, the frequency
of eigenmode C increases by reducing H . Also, the separation
between A, B, and C peaks in the PSD increases, by either
increasing or decreasing external magnetic field value. We
show the dependence of their frequencies at high external
magnetic fields in Sec. S2 in Ref. [55] using the eigenvalue
method and demonstrate that no eigenmode crossing occurs.
In addition, as we previously discussed, by changing the
excitation to an in-plane direction, only eigenmode A would
be present. The eigenmodes E and G are visible in the
whole examined range of H , and their frequencies increase
nonlinearly and monotonically with external magnetic bias
field. Interestingly, the frequency of eigenmode A approaches
zero near the switching field μ0Hs = −0.26 T, suggesting that
this gyrotropic eigenmode might be the reversal (zero) mode
of the incomplete skyrmion state in the studied sample.

By varying the disk sample diameter d, for an in-plane
excitation, we observe the gyrotropic eigenmode A fre-
quency increasing between 40 and 64 nm (where it reaches
its maximum), and then decreasing with d, as shown in
Fig. 3(c). Another visible eigenmode in the PSD map above
approximately 74 nm, for an in-plane excitation, is the
eigenmode F whose frequency monotonically decreases with
d. In the case of an out-of-plane excitation, we identify seven
(A, B, C, E, G, X1, and X2) eigenmodes in the PSD map
shown in Fig. 3(d). The magnetization dynamics of all these
eigenmodes was discussed before, except X1 and X2, because
they were not present in the PSDs below the maximum studied
frequency 50 GHz for d = 80 nm. The eigenmode A frequency
dependence is the same as for an in-plane excitation and
another six eigenmodes (B, C, E, G, X1, and X2) frequencies
monotonically decrease with the disk sample diameter.

B. Isolated skyrmion (Sk) state

In this section, we explore the dynamics of an isolated
skyrmion (Sk) state, for which the magnetization z com-
ponent covers the [−1,1] range once (plus the additional
magnetization tilting at the boundaries due to the specific
boundary conditions [22]) along the disk sample diameter,
and consequently, the scalar value Sa is in the [1,2] range
[21]. The Sk state is in an equilibrium [21] for d � 70 nm
and μ0H � 1.1 T. We study the Sk state dynamics for a
150 nm diameter disk sample at zero external magnetic bias
field, where the Sk state is not only in an equilibrium, but is
also the ground state [21].

After we perform the eigenvalue method computations, we
excite the system using an in-plane excitation and show the
SA and SR PSDs in Figs. 4(a) and 4(b), respectively. The
magnetization dynamics of all existing eigenmodes computed
using the eigenvalue method are shown in videos 2 and 3
in Ref. [55] and their schematic representations in Sec. S3
in Ref. [55]. In both SA and SR PSDs, we identify nine
peaks (eigenmodes A, B, D, E, G, I, J, L, and M), and
show their schematic representations in Fig. 4(e). The lowest
frequency eigenmode at 0.67 GHz is the gyrotropic eigenmode
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(a)

(b)

(e)

(c)

(d)

FIG. 4. The power spectral densities (PSDs) of an isolated skyrmion (Sk) ground state in a 150-nm diameter FeGe disk sample with 10 nm
thickness at zero external magnetic bias field. (a) Spatially averaged and (b) spatially resolved PSDs for an in-plane excitation, together with
overlaid resonance frequencies computed using the eigenvalue method. The resonant frequencies obtained using the eigenvalue method are
marked with a triangle symbol (�) if they can be activated using a particular excitation and with a circle symbol (◦) otherwise. (c) Spatially
averaged and (d) spatially resolved PSDs computed when the Sk state is perturbed from its equilibrium with an out-of-plane excitation. (e)
Schematic representations of magnetization dynamics associated with the identified eigenmodes. Schematically, we represent the skyrmionic
state core with a circle symbol, together with a directed loop if it gyrates around its equilibrium position. Contour rings represented using
dashed lines revolve/breathe out of phase with respect to the those marked with solid lines. The magnetization dynamics animations of all
identified eigenmodes are provided in videos 2 and 3 in Ref. [55].

A. Its magnetization dynamics consists of a dislocated Sk
state core (where mz = −1) gyrating around its equilibrium
position in the CCW direction. In both PSDs, the eigenmode
B at 1.91 GHz is the most dominant one, and consists
of a contour ring (defined as a constant magnetization z

component distribution) revolving in the CW direction. The
eigenmode D at 7.61 GHz is composed of both the Sk
state core and a magnetization contour ring revolving in the
CCW direction, but mutually out of phase. At 14.54 GHz,
we identify an eigenmode E with two magnetization contour
rings revolving mutually out of phase in the CW direction.
Similarly, the eigenmode G at 18.89 GHz also consists
of two contour rings revolving mutually out of phase, but
now in the CCW direction. The four remaining eigenmodes
(I, J, L, and M) are significantly weaker in both PSDs when
compared to the power of previously discussed eigenmodes.

Their magnetization dynamics, shown in Fig. 4(e), are all
lateral and contain different combinations of revolving contour
rings and revolving Sk state core.

Now, we change the excitation to be in the out-of-plane
direction. The computed spatially averaged and spatially
resolved power spectral densities, overlaid with the resonance
frequencies obtained from the eigenvalue method, are shown
in Figs. 4(c) and 4(d), respectively. In this case, we observe
five peaks (eigenmodes A, C, F, H, and K) in both PSDs,
and a significantly weaker lateral eigenmode G (previously
discussed) in SA PSD. We show the schematic representation
of their magnetization dynamics in Fig. 4(e). Similar to the
incomplete skyrmion state, the gyrotropic eigenmode A can
also be activated with an out-of-plane excitation. The lowest
frequency breathing eigenmode C at 2.00 GHz consists of a
single contour ring that shrinks and expands periodically. An
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(a)

(b)

(c)

(d)

FIG. 5. Power spectral density (PSD) maps showing the dependence of isolated skyrmion (Sk) state resonant frequencies on the external
magnetic bias field changed between −0.5 and 1.2 T in steps of 10 mT for d = 150 nm when the system is excited using (a) in-plane and (b)
out-of-plane excitation. The dependence of resonance frequencies on the disk sample diameter varied between 40 and 180 nm in steps of 2 nm
at zero external magnetic field for (c) in-plane and (d) out-of-plane excitation. We show two plots for every PSD map: one for the complete
studied frequency range (0–50 GHz) and another plot in order to better resolve the low-frequency (0–10 GHz) part of the PSD map.

eigenmode F at 16.12 GHz is composed of two contour rings
breathing mutually out of phase. Similar to the eigenmode
C, the eigenmode H at 25.22 GHz consists of a single
breathing contour, but now with a smaller contour diameter
(smaller mz). At 39.25 GHz, we identify the highest frequency
breathing eigenmode K in the studied frequency range, which
contains three breathing contours, where the inner and the outer
contours breathe out of phase with respect to the middle one.

So far, we analyzed the isolated skyrmion state dynamics
for d = 150 nm and H = 0. Now, our objective is to determine
how the resonance frequencies depend on disk sample diame-
ter and external magnetic field. We compute the H -dependent
PSD map in two parts in order to obtain how the resonance
frequencies change in the entire range of external magnetic
field values where the isolated skyrmion state with negative
core orientation (Sk ↓) is in equilibrium. More precisely, the
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system initialized with Sk ↓ at high external magnetic fields
relaxes to the incomplete skyrmion state with positive core
orientation [21] iSk ↑. Consequently, if we keep reducing
H and use the equilibrium state from previous simulation
iteration as initial state, we could not reach the Sk ↓ state.
Therefore we firstly fix the disk sample diameter to 150 nm,
set H = 0, initialize the system using Sk ↓ configuration, relax
the system, and run dynamics simulations. Then we increase
the external magnetic field by 10 mT using the equilibrium
state from previous simulation as the initial state at new value
of external magnetic field. We iterate this until we reach 1.2 T.
Similarly, starting from zero external magnetic field, we reduce
μ0H in steps of 10 mT, until μ0H = −0.5 T is reached.
We show the H -dependent PSD maps for an in-plane and
an out-of-plane excitation in Figs. 5(a) and 5(b), respectively.
In these PSD maps, two discontinuities in resonant frequencies
at −0.24 and 1.12 T are present. The first discontinuity
occurs because decreasing H causes the Sk state core with
negative (mz = −1) orientation (Sk ↓) to switch to the positive
(mz = 1) direction (Sk ↑) at the switching field μ0Hs =
−0.24 T. On the other hand, the discontinuity at 1.12 T occurs
because, above this value, the Sk ↓ is not in an equilibrium
anymore and the system relaxes to the incomplete skyrmion
state with positive core orientation (iSk ↑). Secondly, at
H = 0, we vary d between 40 and 180 nm in steps of 2 nm
and show the d-dependent PSD maps in Figs. 5(c) and 5(d) for
an in-plane and an out-of-plane excitation, respectively. Now,
a single discontinuity in resonance frequencies is present at
70 nm, below which the disk sample diameter becomes too
small to accommodate the full magnetization rotation and
the iSk state emerges. The external magnetic bias field and
disk sample diameter values at which the discontinuities occur
are consistent with equilibrium [21] and hysteretic behavior
[21,58] studies.

For an in-plane excitation, in the H -dependent PSD map,
shown in Fig. 5(a), five previously discussed eigenmodes
(A, B, D, E, and G) are visible in the H range where
the Sk ↓ state is in an equilibrium. The frequency of gy-
rotropic eigenmode A firstly increases, reaches its maximum
at approximately 0.15 T, and then decreases down to its
minimum at approximately 0.9 T, after which it keeps
increasing with H . In comparison to the other eigenmodes,
its frequency varies over a much smaller range (less than
1 GHz) over the entire H range where the Sk ↓ state is
in an equilibrium. Similar to the incomplete skyrmion state,
the frequency of gyrotropic eigenmode A approaches zero
near the switching field μ0Hs = −0.24 T, suggesting that
this eigenmode might govern the isolated skyrmion reversal
process. The eigenmode B frequency increases approximately
linearly up to 0.6 T, after which it continues increasing
nonlinearly. The frequency of eigenmode D, firstly decreases,
reaches its minimum at approximately 0.22 T, and then
continues increasing nonlinearly with H . The frequencies
of eigenmodes E and G exhibit more complicated behavior
where two extremes (maximum and minimum) are present
in their H dependencies. When an out-of-plane excitation
is used, we observe five previously discussed eigenmodes
(A, C, F, H, and J) in the H -dependent PSD map, shown
in Fig. 5(b). The eigenmode A now becomes invisible in the
PSD map below 0.2 T. The breathing eigenmode C frequency

increases monotonically over the entire Sk ↓ field range. The
frequency dependencies of eigenmodes F, H, and J, exhibit
more complicated behavior having both local maximum and
minimum in their H dependencies.

In the d-dependent PSD map, shown in Fig. 5(c), obtained
when an in-plane excitation is used, five previously discussed
eigenmodes (A, B, D, E, and G) are present. In contrast to
the frequencies of eigenmodes D, E, and G that monotonically
decrease with d over a wide range of frequencies, the eigen-
modes A and B frequencies vary in a much smaller (less than
1 GHz) range over entire studied d range. Eigenmodes D, E,
and G become invisible in the PSD map below approximately
120 nm. In Fig. 5(d), we show the d-dependent PSD map for
an out-of-plane excitation, where five eigenmodes (A, C, F,
H, and J) are visible. Similar to the eigenmodes A and B,
the lowest frequency breathing eigenmode frequency changes
over a much smaller range than the frequencies of eigenmodes
F, H, and J, when the disk sample diameter is changed.

C. Comparison of incomplete skyrmion and isolated
skyrmion power spectral densities

One of the challenges in the study of skyrmionic states in
confined helimagnetic nanostructures is the detection of what
state emerged in the studied sample. In this subsection we
discuss how measuring resonance frequencies can contribute
to the identification of the emerged state. Previously, in
Secs. III A and III B, we studied the dynamics of both iSk
and Sk states in disk samples with diameters for which these
states were the ground states. Now, we compare the PSDs
of iSk and Sk states in a 100-nm diameter disk sample with
10-nm thickness at different external magnetic field values
μ0H (between 0 T and 1 T in steps of 0.25 T). In this sample
size and at all simulated external magnetic field values, both
iSk and Sk states are in equilibrium. More specifically, the
Sk state is metastable and the iSk state is the ground state
[21]. We show the comparison of spatially resolved iSk and
Sk PSDs at different external magnetic field values for an
in-plane and an out-of-plane excitation in Fig. 6. Because in
a 100-nm diameter disk sample there are no dominant iSk
and Sk eigenmodes that can be easily detected in experiments
above 30 GHz, we now limit our discussion of PSDs below
30 GHz in order to better resolve the key differences, that can
contribute to the identification of the present state.

Firstly, in the case of an in-plane excitation (left column
in Fig. 6), the frequency of iSk gyrotropic eigenmode A
(the lowest frequency iSk eigenmode), increases with H .
On the contrary, the Sk gyrotropic eigenmode A (again the
lowest frequency Sk eigenmode) frequency remains approx-
imately the same. Furthermore, by increasing the external
magnetic field the Sk eigenmode B frequency increases, and
consequently, the frequency difference between two lowest
frequency Sk eigenmodes 	AB increases in a wide range
of frequencies. In contrast, the frequencies of two lowest
frequency iSk eigenmodes A and D both increase with H ,
so that the frequency difference 	AD between them changes
over a small range of frequencies (remains approximately the
same). However, at low values of external magnetic field, it
could be difficult to measure the iSk eigenmode D due to
its relatively small amplitude. In that case, between 0.25 and

014433-10



DYNAMICS OF SKYRMIONIC STATES IN CONFINED . . . PHYSICAL REVIEW B 95, 014433 (2017)

FIG. 6. Comparisons of power spectral densities (PSDs) of ground incomplete skyrmion (iSk) state (solid red line) and metastable isolated
skyrmion (Sk) state (dashed blue line) in a 100-nm disk sample with 10-nm thickness at different values of external magnetic field H , computed
for an in-plane (left column) and an out-of-plane (right column) excitation.

0.75 T, the frequency of dominant iSk eigenmode F does not
change, so the 	AF = 	AD + 	DF difference reduces with H

for about 5 GHz.
When we excite the system using an out-of-plane excitation

(right column in Fig. 6), at H = 0, several resonance frequen-
cies below 5 GHz are present, which does not allow a clear
identification of the emerged state by measuring resonance
frequencies in that region. However, by increasing the external
magnetic field, the low-frequency part of PSDs simplifies.
More specifically, the Sk eigenmode A frequency again does
not change, while the Sk breathing eigenmode C, and therefore
the difference 	AC, increase with H . In addition, for a Sk
state above 0.25 T, the frequency of eigenmode F remains

approximately the same, and therefore, the difference 	CF

decreases with H . On the contrary, iSk eigenmodes A, B, and
C disappear from the PSD after μ0H = 0.5 T, whereas the
frequency difference 	EG between two most dominant iSk
eigenmodes E and G remains approximately the same, since
their frequencies both increase.

The dependencies of resonant frequencies in this sample
with d = 100 nm are in a good agreement with the PSD maps
shown in Figs. 3(a) and 5(a) and eigenvalue computed results
in Sec. S2 in Ref. [55]. This suggests that these identification
differences can probably be applied to different sample sizes.
At μ0H = 1 T, we approach the transition from Sk to iSk state
and additional peaks in Sk state PSDs, shown in Fig. 6, occur.
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FIG. 7. The linewidth 	H (half width at half maximum) mea-
surement points at different resonance frequencies f for a FeGe thin
film, together with a first degree polynomial fit from which the Gilbert
damping was extracted.

D. Simulations with real FeGe damping

In the previous analysis of skyrmionic states dynamics,
we intentionally used the small Gilbert damping value α′ =
0.002 as used in other eigenmode studies [23], in order
to allow enough separation between peaks in the power
spectral densities (enabled by the reduced linewidth) and
identify all eigenmodes that can be excited using a particular
experimentally feasible excitation. However, in experiments,
which eigenmodes can be observed strongly depends on the

real value of Gilbert damping. Therefore, in this section,
we measure the FeGe Gilbert damping value α and repeat
our simulations in order to determine what eigenmodes are
expected to be experimentally observed in helimagnetic FeGe
confined nanostructures.

We perform the ferromagnetic resonance measurements in
a FeGe thin film with 67.8 ± 0.1 nm thickness, grown on
the Si substrate in the (111) direction and capped with a
4.77 ± 0.07 nm thin Ge layer [59]. We show the linewidth
	H (half width at half maximum) measurement points at
different resonance frequencies f , together with a first degree
polynomial fit in Fig. 7. The polynomial fit allows us to
decompose the 	H dependence into a frequency-independent
inhomogeneously broadened component 	H0 and an intrinsic
damping-related part [60–62]:

	H = 	H0 + αf

γ
, (13)

where α is the Gilbert damping and γ is the gyromagnetic ratio.
From the slope of the polynomial fit and using the frequency-
dependent term that reflects the “viscous” damping of the
precessive magnetization motion associated with the FMR,
we find α = 0.28 ± 0.02.

Now, we use the measured α = 0.28 and repeat the
ringdown simulations for the two skyrmionic ground states that
can exist in the studied system. We show the spatially resolved
power spectral density of an incomplete skyrmion state in

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 8. The spatially resolved power spectral densities (PSDs) of an incomplete skyrmion state in a 80-nm diameter FeGe disk sample with
10-nm thickness at zero external magnetic bias field for (a) in-plane and (b) out-of-plane excitation directions. The isolated skyrmion state in
a 150 nm diameter thin film disk with 10-nm thickness at H = 0 when the system is excited with (c) in-plane and (d) out-of-plane excitation.
The PSDs are computed using the experimentally measured value of FeGe Gilbert damping α = 0.28.
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a 80-nm diameter disk sample at zero external magnetic bias
field for an in-plane and an out-of-plane excitation in Figs. 8(a)
and 8(b), respectively. We observe that, when the system
is excited using an in-plane excitation, only the gyrotropic
eigenmode A is present in the PSD. On the other hand, for
an out-of-plane excitation, we identify two eigenmodes in the
PSD shown in Fig. 8(b). The first one is the gyrotropic eigen-
mode A, which is also present in the in-plane PSD, and another
one is the lowest frequency breathing eigenmode E. The PSDs
of the isolated skyrmion state in a 150-nm diameter disk sample
at zero external magnetic bias field are shown in Figs. 8(c) and
8(d) for an in-plane and an out-of-plane excitations, respec-
tively. Now, only the three lowest frequency isolated skyrmion
eigenmodes are present. The gyrotropic eigenmode A and
eigenmode B can be identified when the system is excited using
an in-plane excitation. On the other hand, for the out-of-plane
excitation, only the breathing eigenmode C is present.

E. Demagnetization energy and out-of-plane magnetization
variation effects

Usually, in the simulations of skyrmionic states dynamics
in helimagnetic samples, for simplicity, the demagnetization
energy contribution is neglected and/or a helimagnetic thin
film sample is modelled using a two-dimensional mesh. It
has been shown that the demagnetization energy contribution
[21] and the magnetization variation in the out-of-film
direction [21,39] radically change the energy landscape.
Consequently, using these assumptions when the static
properties of skyrmionic states are explored is not justified.
Because of that, in this section, we investigate how these
two assumptions affect the dynamics of the Sk state in
studied helimagnetic nanostructure. Firstly, we repeat the
isolated skyrmion state simulations in a 150-nm diameter
disk sample at zero external magnetic bias field, but this
time we set the demagnetization energy contribution wd in
Eq. (1) artificially to zero. Secondly, again in the absence
of demagnetization energy contribution, we simulate the Sk
state dynamics under the same conditions, but this time using
a two-dimensional mesh to model a thin film sample (i.e.,
not allowing the magnetization variation in the out-of-film
direction). We show the comparison of power spectral densities
computed using three-dimensional and two-dimensional
models in absence of demagnetization energy contribution
with the one computed using a full model in Figs. 9(a) and 9(b),
for an in-plane and an out-of-plane excitations, respectively.

We observe that although the magnetization dynamics of
identified eigenmodes do not change significantly, the reso-
nance frequencies of some eigenmodes change substantially.
In the 3D simulations in absence of demagnetization energy,
while the frequency of eigenmode D remains approximately
the same, the frequencies of eigenmodes A and B increase
by 71% and 18%, respectively. On the other hand, the
frequencies of eigenmodes E and G decrease by 14% and
21%, respectively. Furthermore, power spectral densities in
Fig. 9(b), computed for the out-of-plane excitation, show that
the frequency of breathing eigenmode C increases by 17%,
whereas the frequency of eigenmode F decreases by 34%.

If the thin film sample is modelled using a 2D mesh,
which does not allow the magnetization to vary in the z

(a)

(b)

FIG. 9. The comparison of power spectral densities computed
using three-dimensional and two-dimensional models in absence of
demagnetization energy contribution with the PSD obtained using a
full simulation model for an isolated skyrmion state in the case of
(a) in-plane and (b) out-of-plane excitations. Simulated sample is a
150-nm diameter disk with 10-nm thickness at zero external magnetic
field.

direction, the frequencies of lateral eigenmodes A, B, and
G do not change significantly in comparison to the 3D model
in absence of demagnetization energy contribution. Although
the frequency of eigenmode D does not change in the 3D
simplified (wd = 0) model, neglecting the sample thickness,
increases its frequency by 20%. The frequency of eigenmode
E increases so that it is approximately the same as in the full
3d model. In comparison to the 3D simplified model, the
frequency of breathing eigenmodes C and F further increase
by 19% and 7%, respectively. In the low-frequency region of
Fig. 9(b), we observe several eigenmodes that are not present in
the three-dimensional model. Although there are theoretically
less eigenmodes in a two-dimesional sample (the number
of existing eigenmodes equals to the number of degrees of
freedom in the system), we do not know at what frequencies
they will occur. We believe the reason for this is that although
the state is the same, its dynamics quilitatively changes at low
frequencies due to the missing thickness dimension. We also
observe eigenmodes computed using the eigenvalue method
that agree with the peaks in PSD shown in Fig. 9(b).

IV. DISCUSSION AND CONCLUSION

Using the eigenvalue method, we computed all eigenmodes
with frequencies below 50 GHz for the incomplete skyrmion,
isolated skyrmion, and target states in helimagnetic thin
film disk samples at zero external magnetic field. Because
which eigenmodes are present in the power spectral density
strongly depends on the excitation used to perturb the
system from its equilibrium state, we performed the ring-
down simulations using two different experimentally feasible
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excitations (in-plane and out-of-plane). We demonstrated that
in all three simulated states, two lateral and one breathing
low-frequency eigenmodes exist, as previously demonstrated
in two-dimensional skyrmion lattice simulations [25] and
microwave absorption measurements in bulk helimagnetic
materials [26–28]. However, only one lateral eigenmode is
gyrotropic, with the skyrmionic state core gyrating around
its equilibrium position. The other lateral eigenmode we
observed is not gyrotropic because it consists of a single
contour ring (defined by the magnetization z component
distribution) revolving around the static skyrmionic state
core. The existence of only one gyrotropic eigenmode is
in accordance with the recent analytic (rigid skyrmion two-
dimensional model) findings by Guslienko and Gareeva [36],
but in contrast to magnetic bubbles where two gyrotropic
eigenmodes were found [33–35]. Because the two gyrotropic
eigenmodes with opposite gyration direction in a magnetic
bubble imply it possesses mass, our findings suggest that the
confined DMI-induced skyrmionic states in the studied system
are massless. The low-frequency breathing eigenmode we
observe, where a single magnetization z component contour
ring shrinks and expands periodically, is in accordance with
findings in Refs. [23,25–28,63,64].

For the incomplete skyrmion and the isolated skyrmion
states, we found that the resonance frequencies depend
nonlinearly on both the disk sample diameter and the external
magnetic bias field. We observed that the frequency of the
gyrotropic eigenmode approaches zero near the switching
field Hs (where the reversal of skyrmionic state core occurs)
for both incomplete skyrmion and isolated skyrmion states,
suggesting that this eigenmode might be the reversal mode of
studied skyrmionic states. We find that when the skyrmionic
state core orientation reverses, the revolving direction of all
lateral eigenmodes changes, which confirms that the revolving
direction depends on the direction of the gyrovector as shown
in Refs. [25,36].

After we identified all existing eigenmodes of iSk and Sk
ground states, we compared their PSDs in the same sample
at different external magnetic field values. We identified
several characteristics that can contribute to the experimental
identification of the state that emerged in the sample by
measuring the resonance frequencies.

In the identification and analysis of eigenmodes, we used a
small Gilbert damping value in order to provide enough sepa-
ration between peaks in the PSD. However, which eigenmodes
are expected to be observed in experiments strongly depends
on the real Gilbert damping value α. Therefore we measured
α in the FeGe thin film, and carried out ringdown simulations
with this α. We showed that for the incomplete skyrmion, two
eigenmodes (gyrotropic and breathing) are present in the PSD
computed using an out-of-plane excitation, whereas only the

gyrotropic eigenmode is present in the PSD computed using an
in-plane excitation. In the isolated skyrmion case, two lateral
eigenmodes are present in the PSD obtained using an in-plane
excitation, whereas a single breathing eigenmode is present in
the PSD computed after using the out-of-plane excitation.

Our simulations took into account the demagnetization
energy contribution, which is usually neglected for simplicity
in both analytic and simulation works. To explore the impor-
tance of model assumptions, we carried out further systematic
simulation studies in which we set the demagnetization
energy contribution artificially to zero. We also repeated the
simulations under the same conditions on 3D and 2D meshes
(with and without permissible magnetization variation in the
out-of-film direction, respectively). We found that although
the magnetization dynamics of eigenmodes does not change
significantly, their frequencies change substantially. This
suggests that ignoring the demagnetization energy contribution
or approximating a thin film helimagnetic sample using a
two-dimensional mesh is not always justified.

This work provides a systematic dynamics study of
skyrmionic states in confined helimagnetic nanostructures. We
report all eigenmodes present in the sample as well as which
eigenmodes can be observed using particular experimentally
feasible excitations. Apart from contributing to fundamental
physics, this work could support experimentalists to determine
what magnetization configuration is present in the confined
helimagnetic sample by measuring ferromagnetic resonance
spectra.

All data supporting this study are openly available from
the University of Southampton repository at http://doi.org/
10.5258/SOTON/403976.
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[16] S. Mühlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch,

A. Neubauer, R. Georgii, and P. Böni, Science 323, 915
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