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Collective dynamics in atomistic models with coupled translational and spin degrees of freedom
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Using an atomistic model that simultaneously treats the dynamics of translational and spin degrees of freedom,
we perform combined molecular and spin dynamics simulations to investigate the mutual influence of the phonons
and magnons on their respective frequency spectra and lifetimes in ferromagnetic bec iron. By calculating the
Fourier transforms of the space- and time-displaced correlation functions, the characteristic frequencies and the
linewidths of the vibrational and magnetic excitation modes were determined. Comparison of the results with that
of the stand-alone molecular dynamics and spin dynamics simulations reveals that the dynamic interplay between
the phonons and magnons leads to a shift in the respective frequency spectra and a decrease in the lifetimes.
Moreover, in the presence of lattice vibrations, additional longitudinal magnetic excitations were observed with

the same frequencies as the longitudinal phonons.
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I. INTRODUCTION

For decades, dynamical simulations of atomistic models
have played a pivotal role in the study of collective phenomena
in materials at finite temperatures. Molecular dynamics (MD)
[1,2] utilizing empirical potentials has been extensively used
in the analysis of vibrational properties in a variety of systems
such as metals and alloys [3-7], polymers [8,9], carbon
nanotubes [10], graphene [11], etc. With regard to magnetic
excitations, the lesser-known spin dynamics (SD) method
[12—16] has proven to be an indispensable tool for investigating
classical lattice-based spin models for which the analytical
solutions are intractable. Over the years, SD simulations have
expanded our understanding of spin waves and solitons in
magnetic materials, leading to a number of ground-breaking
discoveries, including the existence of propagating spin waves
in paramagnetic bcc iron [17], the presence of longitudinal
two-spin-wave modes [18] that subsequently lead to experi-
mental verification [19], and an unexpected form of transverse
spin-wave excitations in antiferromagnetic nanofilms [20].

Study of collective dynamics in magnetic materials faces an
enormous challenge due to the coupling of lattice vibrations
and spin waves which is inherently neglected in the afore-
mentioned atomistic models. In magnetic metals and alloys,
the atomic magnetic moments and exchange interactions
strongly depend on the local atomic environment [21-23] and
therefore change dynamically as the local crystal structure
is distorted by lattice vibrations [24]. On the other hand,
magnetic interactions themselves are integral for maintaining
the structural stability of such systems [25,26]. For instance,
the stabilization of the bcc crystal structure in iron is long
conceived to be of magnetic origin [27,28]. Furthermore,
a number of recent studies emphasize the significance of
phonon-magnon coupling on various dynamical processes
such as self-diffusion [29], thermal transport [30], dislocation
dynamics [31], and spin-Seebeck effect [32]. The dynamics
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of atomic and magnetic degrees of freedom are, hence,
inseparable and should be treated in a self-consistent manner.

The idea of integrating spin dynamics with molecular
dynamics was pioneered by Omelyan et al. [33] in the context
of a simple model for ferrofluids. The foundation of this
combined molecular and spin dynamics (MD-SD) approach
lies in the unification of an atomistic potential and a Heisenberg
spin Hamiltonian, with the coupling between the atomic
and spin subsystems established via a coordinate-dependent
exchange interaction. With the use of an empirical many-body
potential and a parametrized exchange interaction, Ma et al.
[34] further extended MD-SD into a framework for realistic
modeling of bee iron. The parametrization developed by Ma
et al. [34] has since been successfully adopted to investigate
various phenomena in bce iron such as magnetovolume effects
[35], vacancy formation and migration [36,37], and external
magnetic field effects [38]. Moreover, the method has been
recently extended by incorporating spin-orbit interactions to
facilitate the dynamic exchange of angular momentum be-
tween the lattice and spin subsystems [39]. This, in particular,
extends the applicability of MD-SD to accurate modeling of
nonequilibrium processes.

The aim of this paper is to improve our understanding
of phonon-magnon interactions in the ferromagnetic phase
of bcc iron within the context of MD-SD. This study is
an extension of our earlier preliminary work [40,41] which
primarily focused on the effect of lattice vibrations on the
spin-spin dynamic structure factor in the [100] lattice direction.
In this paper, we provide a more in-depth analysis of the
mutual influence of phonons and magnons on their respective
frequency spectra and lifetimes for all three high-symmetry
lattice directions: [100], [110], and [111]. This is achieved
by comparing the results obtained for MD-SD simulations
with those of stand-alone MD and SD simulations in which
spin-lattice coupling is completely neglected. In Sec. II, we
present the MD-SD formalism and the parametrization for
bce iron, followed by a comprehensive description of the
methods we adopt for characterizing collective excitations.
Sections III A and III B, respectively, report our results on vi-
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brational and magnetic excitations, followed by conclusions in
Sec. IV.

II. METHODS

A. Combined molecular and spin dynamics

MD-SD is essentially a reformulation of the MD approach,
in which the effective spin angular momenta of the atoms {S;}
are incorporated into the Hamiltonian and treated as explicit
phase variables. For a classical system of N magnetic atoms of
mass m described by their positions {r;}, velocities {v;}, and
the atomic spins {S;}, the MD-SD Hamiltonian takes the form

N 2
M=) 4D = Y (DS S (1)

i=1 i<j
where the first term represents the kinetic energy of the atoms,
and U({r;}) is the spin-independent (nonmagnetic) scalar
interaction between the atoms. The Heisenberg-like exchange
interaction with the coordinate-dependent exchange parameter
and J;;({ry}) specifies the exchange coupling between the
ith and jth spins. The aforementioned Hamiltonian has true
dynamics as described by the classical equations of motion

i _ \{ (22)

dt

ﬁ = f—l (2b)

dt m

ds; off

= SHT xS, 20)
where f; = —V,’H and HS" = Vg, 'H are the interatomic force

and the effective field acting on the ith atom/spin. The goal
of the MD-SD approach is to numerically solve the above
equations of motion starting from a given initial configuration,
and obtain the trajectories of both the atomic and spin degrees
of freedom.

MD-SD is a generic framework that with proper
parametrization can be readily adopted for any magnetic mate-
rial in which the spin interactions can be modeled classically.
In this study, we adopt the parametrization introduced by Ma
et al. [34] for bee iron, in which U({r;}) is constructed as

U({r;}) = Upp — EE™, A3

spin

where Upp is the “magnetic” embedded atom poten-

tial developed by Dudarev and Derlet [42,43], and
Ef;i"n”“d = =i _; Jij{re)IS;11S;] is the energy contribution

from a collinear spin state, subtracted out to eliminate the
magnetic interaction energy that is implicitly contained in
Upp. With the particular form of U({r;}) given in Eq. (3),
Hamiltonian (1) provides the same ground-state energy as
Upp. The exchange interaction is modeled via a simple
pairwise function J (r;;) parametrized by first-principles calcu-
lations [34], with spin lengths absorbed into its definition, i.e.,
J(rij) = Ji;({rxDISi11S;|. We assume constant spin lengths
IS| = 2.2/g, with g being the electron g factor.

We would like to point out that the fluctuation of the
magnitudes of magnetic moments and spin-orbit interactions
are not considered in this work. In transition metals and alloys,
fluctuation of spin magnitudes may have a notable effect
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on the material properties, particularly at high temperatures.
Ma et al. [44] proposed a way of incorporating longitudinal
spin fluctuations into SD and MD-SD simulations via a
Langevin-type equation of motion within the context of
fluctuation-dissipation theorem. Numerical coefficients of the
corresponding Landau Hamiltonian can be determined from
ab initio calculations [44,45]. An accurate depiction of spin-
orbit interactions can be potentially achieved with the use
of Hubbard-like Hamiltonians as the foundation for deriving
the equations of motion [46]. A phenomenological approach
for modeling spin-orbit interactions in MD-SD has also been
recently proposed [39], but was not adopted in this study due
to its computationally demanding nature.

B. Characterizing collective excitations

In MD and SD simulations, space-displaced, time-displaced
correlation functions of the microscopic dynamical variables
are integral to the study of the collective phenomena in
the system [1,12,47]. Fourier transforms of these quantities
directly yield information regarding the frequency spectra and
the lifetimes of the respective collective modes.

Let us define microscopic atom density as

pa(r,1) =Y 8[r — (1)), )

The spatial Fourier transform of the space-displaced, time-
displaced density-density correlation function, namely the
intermediate scattering function [48], then takes the form

1
Fun(@.1) = = {0n(q.1)pn(—4,0)), &)

where p,(q,1) = [ pu(r,1)e" 4 dr = Y, e"4%")_ The power
spectrum of the intermediate scattering function,

1 +oo .
Snn(qaw) == E / an(qat)eilwtdtv (6)

oo

is called the “density-density dynamic structure factor” for
the momentum transfer q and frequency (energy) transfer w.
Sqn(q,w) is directly related to the differential cross section
measured in inelastic neutron-scattering experiments [48].
Local-density fluctuations in a system are caused by the
thermal diffusion of atoms as well as vibrational modes related
to the propagating lattice waves [49]. For liquid systems,
the thermal diffusive mode can be identified as a peak in
Sqn(q,w) centered at w = 0, whereas for solids this peak will
disappear due to the absence of thermal diffusion [49]. In
crystalline solids, peaks in S,,(q,®) at nonzero frequencies
can be uniquely associated with longitudinal vibrational modes
with the corresponding frequencies and wave vectors. As the
transverse lattice vibrations do not cause local density fluctu-
ations towards the direction of wave propagation, S,,(q,®)
is incapable of revealing information about these modes.
Therefore, to identify transverse lattice vibrations, one needs to
consider the time-dependent correlations of transverse velocity
components.

With the microscopic “velocity density” defined as
pu(r,1) = >, vi(t)8[r — r;(¢)], the spatial Fourier transform
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of the velocity-velocity correlation function takes the form

%(pﬁ'%q,r) ;" (=4.0)), ™
where pL7(q,1) = 3, vl (1)e=79%®, with the superscripts
L and T respectively denoting the longitudinal and trans-
verse components with reference to the direction of the
wave propagation. Peaks in the corresponding power spectra
Sk (q,w) and ST (q,w) respectively reveal longitudinal and
transverse vibrational modes of the system. It can be shown
that S- (q,w) is directly related to the density-density dynamic
structure factor S,,(q,w) via the relationship S,,(q,w) =
?/q*Sk (q,0) [48,49].

Just as the time-dependent density-density and velocity-
velocity correlations reveal vibrational excitations associated
with the lattice subsystem, spin-density autocorrelations can
elucidate the magnetic excitations associated with the spin
subsystem.

The microscopic “spin density” is given by

ps(r.1) =Y Si(1)8[r — r;(1)]. ®)

FLT(q.1) =

Treating the spin-spin correlations along x, y, and z directions
separately, we define the intermediate scattering function as

1
Fr(q,0) = N<pf<q,r)pf<—q,0)>, )

where k = x, y, or z, and p,(q,t) = Y_; Si(t)e 4", For a
ferromagnetic system in the microcanonical ensemble, the
magnetization vector is a constant of motion and serves as
a fixed symmetry axis throughout the time evolution of the
system. To differentiate between the magnetic excitations
that propagate parallel and perpendicular to this symmetry
axis, we redefine the coordinate system in spin space such
that the z axis is parallel to the magnetization vector. The
components {FX(q,)} can then be simply regrouped to yield
the longitudinal component

Fk(q,t) = Fi(q,1), (10)
and the transverse component
Fl(q.0) = 3[Fi(q.0) + Fi(q.0)]. (11)

Note that the separation of magnetic excitations into longitudi-
nal and transverse modes is only meaningful for temperatures
below the Curie temperature ¢, since above Tc, the net
magnetization vanishes and all directions in spin space become
equivalent.

Fourier transforms of F%7(q,r) yield the spin-spin dy-
namic structure factors S&-7(q, ). Just like the density-density
dynamic structure factor, the spin-spin dynamic structure
factor is a measurable quantity in inelastic neutron-scattering
experiments [12,47].

In this study, we are primarily interested in investigating
wave propagation along the three principle lattice directions:
[100], [110], and [111]. Let us denote the wave vectors in these
directions as q = (¢,0,0), (¢,¢,0), and (q,q,9), respectively.
Due to the finite size of the simulation box, the accessible
values of ¢ in each direction is constrained to a discrete set
givenbyg = 27n,/La,withn, = +1, £2,..., & ,L forthe
[100] and [111] directions, and n, = £1, £2,...,£,L/2
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for the [110] direoction, where L is the linear lattice dimension
and a = 2.8665 A is the lattice constant of bcc iron.

C. Simulation details

For integrating the coupled equations of motion presented
in Eq. (2), we adopted an algorithm based on the second-order
Suzuki-Trotter (ST) decomposition of the noncommuting
operators [33,50,51]. To obtain a reasonable level of accuracy
as reflected by the energy and magnetization conservation, an
integration time step of At = 1 fs was used.

For computing canonical averages of time-dependent cor-
relation functions, we used time series obtained from micro-
canonical dynamical simulations, that are, in turn, initiated
from equilibrium states drawn from the canonical ensemble
at the desired temperature 7. Averaging over the results of
multiple simulations started from different initial states yields
good estimates of the respective canonical ensemble averages
[12].

For generating the initial states for our microcanonical
MD-SD simulations, we adhere to the following procedure.
First, we equilibrate the subspace consisting of positions and
spins using the Metropolis Monte Carlo (MC) method [52].
As the second step, we assign initial velocities to the atoms
based on the Maxwell-Boltzmann distribution at the desired
temperature 7. Finally, we perform a short microcanonical
MD-SD equilibration run (typically ~1000 time steps with
At = 1 fs), which would ultimately bring the whole system to
the equilibrium by resolving any inconsistencies between the
position-spin subspace and the velocity distribution. Figure 1
shows the time evolution of the instantaneous lattice and
spin temperatures as observed in a microcanonical MD-SD
simulation initiated from an equilibrium state generated from
the aforementioned technique for 7 = 800 K. Both lattice and
spin temperatures fluctuate about a mean value of 7 = 800 K,
indicating that the lattice and the spin subsystems are in mutual
equilibrium.

840 T T

— lattice
— spin

T (K)

1 | 1 | | |
7600 200 400 600 800 1000

time (ps)

FIG. 1. Time evolution of the instantaneous lattice and spin
temperatures as observed in a microcanonical MD-SD simulation for
the system size L = 16 at temperature 7 = 800 K. The initial state
for the time integration was generated from the procedure described
in Sec. II C. The spin temperature was measured using the formula
developed by Nurdin et al. [53].
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To characterize phonon and magnon modes, we performed
simulations for the system size L = 16 (8192 atoms) at
temperatures 7 = 300, 800, and 1000 K. 7 = 1000 K was
particularly chosen due to its vicinity to the Curie temperature
of bee iron, T¢ = 1043 K. (A recent high-resolution Monte
Carlo study has revealed that the transition temperature of the
particular spin-lattice model used in our study is 7 ~ 1078 K
[54].) Equations of motion were integrated up to a total
time of 7.x = 1 ns, and the space-displaced, time-displaced
correlation functions were computed for the three principle
lattice directions: [100], [110], and [111]. To increase the
accuracy, we have averaged these quantities over different
starting points in the time series. Canonical ensemble averages
were estimated using the results of 200 independent simula-
tions, each initiated from a different initial state. The time
Fourier transform in Eq. (6) was carried out to a cutoff time of
teutoff = 0.5 ns.

As our primary goal is to understand the mutual impact of
the phonons and magnons on their respective frequency spectra
and lifetimes, we have also performed stand-alone MD and SD
simulations for comparison. For MD simulations, we used the
Dudarev-Derlet potential to model the interatomic interactions
while completely neglecting the spin-spin interactions. SD
simulations were conducted with the atoms frozen at perfect
bec lattice positions, and the exchange parameters determined
from the same pairwise function used for MD-SD simulations.

III. RESULTS
A. Vibrational excitations

For all the temperatures considered, we observe well
defined excitation peaks at nonzero frequencies in the density-
density dynamic structure factor S,,(q,®), as well as in the
longitudinal and the transverse components of the velocity-
velocity dynamic structure factor: S%(q,w) and S/ (q,w).
For each q along [100] and [111] lattice directions, all three
quantities show single peaks (see Fig. 2 for an example). The
peak positions in S,,(q,w) and SULv(q,w) for the same wave

0.0004

o simulation 0
— Lorentzian fit

0.0003
®,=30.543 £ 0.006 meV

I =0.268 + 0.006 meV
0.0002F 1,=(3.24£0.08)x 10

S,.(q, ®)

0.0001F

FIG. 2. Density-density dynamic structure factor for q =
(1.1 A_I,O,O) obtained from MD-SD simulations for L = 16 at
T =300 K. The symbols represent simulation data while the solid
line is a fit with the Lorentzian line shape given in Eq. (12).
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vector coincide with each other as they are both associated
with the longitudinal vibrational modes, and hence convey the
same information. The peaks in S! (q,w) are associated with
the transverse lattice vibrations. Since there are two orthogonal
directions perpendicular to a given wave vector q, there are,
in fact, two transverse vibrational modes for each q. Due to
the fourfold and threefold rotational symmetry about the axes
[100] and [111], respectively, the two transverse modes for the
wave vectors along these directions become degenerate [55].
As a result, we only observe a single peak in S! (q,w) for the
wave vectors along these directions.

We also observe single peak structures in S,,(q,») and
Sva(q,a)) for the wave vectors along the [110] direction.
However, for the case of SvTv(q,w), one can clearly identify
two distinct peaks. This is a consequence of the two transverse
modes being nondegenerate due to the reduced rotational
symmetry (twofold) about the [110] axis in comparison to
[100] and [111] directions [55].

To extract the positions and the half widths of the phonon
peaks, we fit the simulation results for the dynamic structure
factor to a Lorentzian function of the form [13,17]

I,r?

M) = o e T

12)

where wy is the characteristic frequency of the vibrational
mode, [ is the intensity or the amplitude of the peak, and
I' is the half width at half maximum (HWHM) which is
inversely proportional to the lifetime of the excitation. The
errors of the fitting parameters were estimated using the
following procedure. The complete set of correlation function
estimates obtained from 200 independent simulations was
divided into ten groups, and the data within each group were
averaged over to yield ten results sets. Dynamic structure
factors were independently computed for these ten correlation
function sets. To estimate the errors in the fitting parameters,
we separately performed curve fits to these ten independent
dynamic structure factor estimates, and calculated the standard
deviations of the fitting parameters. Statistical error bars
obtained in this manner were found to be an order of magnitude
larger than the error bars estimated by the curve-fitting tool.
For all the temperatures and wave vectors considered, the
Lorentzian line shape given in Eq. (12) fitted well with the
peaks observed in S,,(q,®) and S57(q,w). Figure 2 shows
an example curve fit for the MD-SD results of S, (q,w) for

q=(1.1 AA ,0,0) at T = 300 K. To fit the two-peak structure
observed in SUTU(q,a)) for the [110] direction, we use the sum
of two Lorentzians.

Using the peak positions obtained from the Lorentzian
fits, one can construct phonon dispersion relations for the
three principle lattice directions. Figure 3 shows the the
dispersion curves determined from our MD-SD simulations
for T =300 K, along with the experimental results [56,57]
obtained from inelastic neutron scattering. For comparison,
we have also shown the results of stand-alone MD simulations
for the same temperature. In general, for small to moderate
q values, both MD-SD and MD dispersion curves agree well
with the experimental results, but deviations can be observed
for larger g values, particularly near the zone boundaries in
[100] and [111] directions. Although the MD-SD and MD
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FIG. 3. Comparison of the phonon dispersion curves obtained
from MD-SD simulations (L = 16) with the experimental results
[56,57] for T = 300 K. Results obtained from pure MD simulations
are also plotted for comparison. LA and TA, respectively, denote the
longitudinal and transverse branches.

dispersion curves are indistinguishable within the resolution
of Fig. 3, we will show later on that there are, in fact, deviations
larger than the error bars.

At temperatures in the vicinity of absolute zero, due to
the low occupation of vibrational modes, phonons behave as
weakly interacting quasiparticles that can be treated within
the harmonic approximation [58]. In this limit, characteristic
frequencies of the phonons are well defined and the lifetimes
are practically infinite. As the temperature is increased, phonon
occupation numbers also increase, which in turn increases
the probability of mutual interactions. As a result of such
phonon-phonon scattering at elevated temperatures, charac-
teristic frequencies of the phonons may shift, and the lifetimes
may shorten [58,59]. In magnetic crystals, the coexistence
of phonons and magnons gives rise to another class of
scattering processes, namely, phonon-magnon scattering. Just
as phonon-phonon scattering, phonon-magnon scattering may
also lead to a shift in the characteristic phonon frequencies, as
well as shortening of the phonon lifetimes. As the occupancy of
both phonon and magnon modes increases with temperature,
these effects will be more pronounced as the temperature is
increased.

To carefully examine the changes in the phonon frequency
spectrum due to magnons, we compare the characteristic
frequencies determined from MD-SD simulations (®,,, i, ) With
the ones obtained from MD simulations (w,,,) by calculating
the fractional frequency shift, (@, o, — ®yp)/ @y, - The results
for the three principle directions are shown in Figs. 4 and 5,
for the longitudinal and the transverse modes, respectively.
With the exception of the high-frequency transverse branch
along the [110] direction (TA2), phonon frequencies shift
to higher values in the presence of magnons. In general,
the shift in frequencies becomes more pronounced as the
temperature is increased. A particularly interesting behavior
occurs in the longitudinal branch for the [111] direction where
we observe dips in the curves for all three temperatures at

PHYSICAL REVIEW B 95, 014431 (2017)

@ 2.0 ;
_ iy [100]
X e-oT=300K
‘; sk L 8 o-oT=800K |
g N == T=1000 K
~ \i—“i>hi“-i”7i\\\i
S L0F 3 TR |
8- 22 zz-—-z:/"§"’§“~§---§~ i\‘
a e e
2 0.5 T Eg
£° ege
=~ B L e SRS S
OO 1 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0
®) 5, ‘ ‘ ‘
- [110] e-oT=300K
X 0-0T=800K
% 1.5+ -aT=1000K -
3 L §
~ \‘\ B E o
~ | N W
2 1.0t A e s
5 e
3 P =
g 05f S— ]
2 . NN S ot
00 1 1 1 1 1
0.0 0.1 0.2 0.3 0.4 0.5
© 5
e (1 e eT=300K
VD [ o< T =800 K
= LN =-uT=1000K
E 1.0 \I\‘I,—“'”_E I‘\i\*E\
) 5 E
s L& S \
g Py 3\§ .
! Sr - o N
2 03 Sz
A
82 i//!“‘,,’——‘\‘
~ I’“! -
0.0t . . .
0.0 0.2 0.4 0.6

FIG. 4. The fractional shift in longitudinal phonon frequencies
due to magnons for L =16 at T =300K, 7 =800 K, and T =
1000 K in the (a) [1 0 0], (b) [1 1 0], and (c) [1 1 1] lattice directions.

the same ¢ value. For all three temperatures, the frequency
shift of the vibrational mode that corresponds to the bottom
of the dip is close to zero. Therefore, the frequency of this
phonon mode appears to be unaffected by the presence of
magnons.

Lifetimes of the phonon excitations are inversely propor-
tional to the half widths at half maximum of the corresponding
vibrational peaks observed in S,,(q,) and S&7(q,w). To
study the impact of the magnons on the phonon lifetimes, we
compare the half widths obtained from MD-SD simulations
with that of the MD simulations. Figure 6 shows the results
for the longitudinal phonons. For the longitudinal phonons
at T =300 K, a marginal increase in the half widths can
be observed due to the magnons, which becomes more
pronounced as the temperature is increased. For the case of
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from MD-SD and MD simulations for L = 16 in the (a) [1 0 0],
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FIG. 5. The fractional shift in transverse phonon frequencies due
to magnons for L = 16 at 7 = 300 K, 7 = 800 K, and 7 = 1000 K
in the (a) [1 0 0], (b) [1 1 0] (TA1), (c) [1 1 0] (TA2), and (d) [1 1 1]

lattice directions.

transverse phonons, we did not observe any notable difference
between the MD-SD and MD half widths outside the error

bars, for all the temperatures considered.

B. Magnetic excitations

1. Transverse magnon modes

For the temperatures 7 =300 K and T = 800 K, our

structure factor S

results for the transverse component of the spin-spin dynamic

T
s

(q,w) show a single spin-wave peak that

can be fitted to a Lorentzian line shape of the form Eq. (12)
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FIG. 7. Transverse spin-spin dynamic structure factor obtained
from MD-SD simulations for L =16. (a) T =300K and q =
(1.1 A71,0,0), (b) T = 1000 K and q = (0.82 A~',0,0). The sym-
bols represent simulation data while the solid lines are fits to
functional forms presented by Eq. (12) [for panel (a)] and Eq. (13)
[for panel (b)].

[see Fig. 7(a) for an example]. For T = 1000 K, we also
observe a diffusive central peak at w = 0, as observed in
neutron-scattering experiments [60] and previous SD studies
[17]. This two-peak structure can be best captured by a function
of the form [17]
I,r?

(w — wp)?> + T2’
where the first term (Gaussian) corresponds to the central peak,
and the second term (Lorentzian) describes the spin-wave peak
[see Fig. 7(b) for an example). For large q values at T = 800 K
and T = 1000 K, spin-wave peaks in S/ (q,) were found to
be asymmetric, and hence did not yield good fits to Lorentzian
line shapes. Therefore, one cannot obtain reliable estimates of
the magnon half widths. However, spin-wave peak positions
can still be determined relatively precisely, thus the magnon
dispersion relations can be constructed.

Figure 8 shows the transverse magnon dispersion relations
for small |q| values along the three principle directions
as determined from MD-SD simulations at 7 = 300 K. In

S(q.0) = L.exp (— o*/0?) + (13)

PHYSICAL REVIEW B 95, 014431 (2017)
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FIG. 8. Transverse magnon dispersion relations at 7 = 300 K
obtained from MD-SD simulations for L = 16. The experimental
results reported by Lynn [61] and Collins [62] for the [1 1 0] direction
are also plotted for comparison.

agreement with the experimental findings [61,62], the three
dispersion relations are isotropic when plotted as functions of
the magnitude of the wave vector |q|. Moreover, for small |q|
values, our results agree quantitatively with the experimental
results for the [110] direction [61,62]. Figure 9 shows the
complete dispersion curves determined from MD-SD and SD
simulations for 7 =300 K, 7 =800 K, and 7 = 1000 K.
For both MD-SD and SD, the characteristic frequencies
shift to lower values as the temperature is increased. This
indicates increased magnon-magnon scattering at elevated
temperatures. For all three temperatures, particularly near
the zone boundaries, we can observe a marginal difference
between the MD-SD and SD dispersion curves. This, in fact,
is a result of phonon-magnon scattering.

r H P r N
500
44 300K (MD-SD)
0-0 300{K (SD)
a4 800K (MD-SD)
400+ e-¢ 300K (SD) ]
o0 1000{K (MD-SD)
v-v 1000:K (SD)
< 300 g
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E »
8 200t 7
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[q00] lgqq] laq0]
q (2m/a)

FIG. 9. Transverse magnon dispersion curves for 7' = 300 K,
T =800 K, and T = 1000 K obtained from MD-SD and SD sim-
ulations for L = 16.

014431-7



PERERA, NICHOLSON, EISENBACH, STOCKS, AND LANDAU

(a)
= 4 eeT=300K [100] E
K o< T=800K
2 -8 T=1000K i
S 2 é
- % A
& >
"~ o) *~i .,?y |
(,I) S ey ‘ \’ g //I 4
g = i & y
g 2 %i |
0.0 02 0.6 0.8 1.0
b
(b) A ‘ ‘ :
[110] ]
< e eT=300K E
S 0T =800 K =
- oT= |
S ol = T=1000 K &
8:/1 1 § /,/‘/
a0 e
L v 1
B < S S b
2 ‘ ‘ ‘ ‘ |
0.0 0.1 0.2 0.3 0.4 0.5
(c)
5 ' .
;\g 4L oeT=300K Ei (i 7
< oo T =800 K ! = . ]
§ 3/ m-aT=1000K / s T x if
= 2 e 5 B %, ]
gt /iﬂ‘ e T e
a % 1
A /
> B
0.6 0.8 1.0
q (2m/a)

FIG. 10. The fractional shift in transverse magnon frequencies
due to phonons for L =16 at T =300K, T =800K, and T =
1000 K in the (a) [1 0 0], (b) [1 1 0], and (c) [1 1 1] lattice directions.

To further investigate the magnon softening due to phonons,
we calculate the fractional frequency shift of the magnons,
(Wyp.sp — Wgp)/ W, The results are shown in Fig. 10 for the
three principle directions. For small g values, magnon modes
shift to lower frequencies in the presence of phonons. As g
increases, the direction of the shift is reversed. Moreover,
the shift in frequencies becomes more pronounced as the
temperature is increased.

Figure 11 compares the transverse magnon half widths
obtained from MD-SD and SD simulations for 7" = 300 K.
Although the difference between the half widths is negligible
for small g values, for moderate to large ¢ values, half widths
for the MD-SD results are significantly larger than that for the
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FIG. 11. Half width at half maximum (HWHM) of the transverse
magnons at 7 = 300 K obtained from MD-SD and SD simulations
for L =16 in the (a) [1 0 0], (b) [1 1 0], and (c) [1 1 1] lattice
directions.

SD results. This indicates significant shortening of the magnon
lifetimes due to phonon-magnon scattering.

2. Longitudinal magnon modes

Our results for the longitudinal spin-spin dynamic structure
factor SL <(q,w) obtained from both MD-SD and SD simu-
lations show many very low-intensity excitations peaks, for
all wave vectors considered. Figure 12 shows S -(q,w) for a
small system size L = 8 at T = 300 K, where we compare the
SD results [panel (a)] with the MD-SD results [panel (b)] for
q = %(1,0,0).

In the context of classical Heisenberg models, Bunker ef al.
[18] showed that the excitation peaks observed in SSLS (q,w) are
two-spin-wave creation and/or annihilation peaks which result
from the pairwise interactions between transverse magnon
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FIG. 12. The longitudinal component of the spin-spin dynamic
structure factor St (q,w) for q = %(1,0,0) obtained from (a) SD
and (b) MD-SD simulations for L = 8 at T = 300 K. The predicted
positions of the two-spin-wave annihilation peaks are indicated by the
vertical dashed lines. The dotted line [LA (100)] marks the frequency

of the longitudinal phonon mode for the same q.

modes. For ferromagnetic systems, only spin-wave annihi-
lation peaks are present, and their frequencies are given by

w;;(4; £ q;) = o(q;) — o(q;), (14)

where ¢; and q; are the wave vectors of the two transverse
magnon modes which comprise the two-spin-wave excitation.
Since the set of allowable wave vectors {q; } depends on the sys-
tem size L, the resultant two-spin-wave spectrum also varies
with L. For a real magnetic crystal where L is practically infi-
nite, the two-spin-wave spectrum would become continuous.
To verify whether the peaks we observe in S%(q,w) are
two-spin-wave peaks, we chose a relatively small system size
(L = 8) so that the set of allowable wave vectors is reduced to a
manageable size. Then, using MD-SD and SD simulations, we
separately determined the transverse magnon frequencies that
correspond to the first few n, values along all possible lattice
directions. With this information at hand, we can predict the
expected positions of all the two-spin-wave annihilation peaks
using Eq. (14) for both the SD and MD-SD cases. As an
example, let us consider the wave vector pair q; = (1,1,1)
and q; = (1,1,0). Since q; — q; = (0,0,1), they produce a

PHYSICAL REVIEW B 95, 014431 (2017)
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FIG. 13. The longitudinal component of the spin-spin dynamic
structure factor S%(q,w) for q = %(1,0,0) obtained from (a) SD and
(b) MD-SD simulations for L = 8 at 7 = 800 K. The inset of (b)
shows the density-density dynamic structure factor for the same q.

spin-wave annihilation peak in SSLS(q,w) for q = (0,0,1) at the
frequency o™ = w(q;) — w(q;). (Note that we have ignored
the common prefactor 277/ La from the wave vectors.)

In Figs. 12(a) and 12(b), we have superimposed the
predicted spin-wave annihilation peak positions corresponding
to each case. We see an excellent match between the observed
peaks and the predicted two-spin-wave peak positions, with
the exception of the particular sharp peak at w ~ 10 meV
which only appears in panel (b). Surprisingly, the position
of this peak coincides with the frequency of the longitudinal
phonon mode for the same q as determined from the peak
position of §,,(q,») or SULu(q,a)). Similar excitation peaks
were observed for all wave vectors, for all system sizes
and temperatures considered. The origin of these coupled
phonon-magnon modes can be explained as follows. Unlike
transverse phonons, when a longitudinal phonon propagates
along a certain lattice direction, it generates fluctuations in the
local atom density along that direction with the corresponding
phonon frequency. This, in turn, leads to fluctuations in the
local density of the longitudinal components of the spins
(i.e., components of the spin vectors parallel to the net
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FIG. 14. The longitudinal component of the spin-spin dynamic
structure factor S% (q,w) for q = %(1,0,0) obtained from (a) SD and
(b) MD-SD simulations for L = 16 at T = 1000 K. The inset of (b)
shows the density-density dynamic structure factor for the same q.

magnetization). These longitudinal spin fluctuations propagate
along with the phonon, yielding a sharp, coupled mode in the
the longitudinal magnon spectrum.

Figures 13 and 14 show SSLS(q,a)) for q = i—Z(l,0,0) at
T =800 Kand T = 1000 K, respectively, where we compare
the SD results [panel (a)] with the MD-SD results [panel (b)].
In each figure, the inset of panel (b) shows the longitudinal
density-density dynamic structure factor for the same wave
vector. In comparison to the results for 7 = 300 K, we observe
that the diffusive central peak becomes more pronounced
as the temperature rises, and many of the low-intensity
two-spin-wave peaks broaden and disappear into its tail.
These observations are in qualitative agreement with previous
SD studies of the ferromagnetic Heisenberg model [18]. The
coupled phonon-magnon peak also becomes less pronounced
with increasing temperature, as the diffusive central peak
becomes more pronounced. At T = 1000 K, the intensity of
the peak is very low and is barely recognizable. Above the
Curie temperature, spins are randomly oriented and the vector
sum of spins per unit volume will be zero on average. Hence,
the coupled phonon-magnon mode should entirely disappear;

PHYSICAL REVIEW B 95, 014431 (2017)

however, it is already so faint at 7 = 1000 K that we clearly
would not have sufficient resolution to test this behavior above
the Curie temperature.

We would like to point out that the existence of these
coupled phonon-magnon modes is a phenomenon that so
far has not been discovered experimentally. In fact, this
is not surprising since the experimental detection of these
peaks would be extremely challenging due to their very low
intensities.

IV. CONCLUSIONS

To investigate collective phenomena in ferromagnetic bec
iron, we performed combined molecular and spin dynam-
ics (MD-SD) simulations at temperatures 7 = 300 K, T =
800K, and T = 1000 K. From the trajectories of these
simulations, space- and time-displaced correlation functions
associated with the atomic and spin variables were calcu-
lated. Fourier transforms of these quantities, namely dynamic
structure factors, directly reveal information regarding the
frequencies and the lifetimes of the vibrational and magnetic
excitation modes. For small g values, the dispersion relations
obtained from our simulations at 7 = 300 K agree well with
the experimental results, but deviations can be observed for
large g values, especially for the transverse magnon dispersion
curves. These discrepancies can be attributed to the anhar-
monic effects not being faithfully captured in the embedded
atom potential and the pairwise functional representation of
the exchange interaction. In fact, Yin er al. [24] recently
pointed out that the exchange parameters in bcc iron depend
on the local atomic environment in a complicated manner
that may not be properly characterized through a pairwise
distance-dependent function. Thus, a more accurate depiction
of magnetic interactions necessitates the development of
sophisticated models of exchange interactions that effectively
capture the contribution of the local environment.

To understand the mutual influence of the phonons and
magnons on each other, we compared our results with that
of the stand-alone molecular dynamics and spin dynamics
simulations. Due to phonon-magnon coupling, we observe a
shift in the characteristic frequencies, as well as a decrease in
the lifetimes. These effects become more pronounced as the
temperature is increased. Moreover, the frequency shifts and
the lifetime reductions that occur in magnons due to phonons
are found to be far more pronounced than the corresponding
effects experienced by phonons due to magnons. This is not
surprising considering the fact that the energy scale associated
with the spin-spin interactions is about an order of magnitude
smaller than that of the atomic (nonmagnetic) interactions.

A comparison of our results at different temperatures
shows that the effects of spin-lattice coupling becomes more
pronounced as the temperature rises. However, due to critical
fluctuations, the size of the error bars for magnon properties
increases rapidly as the temperature approaches the Curie
temperature [see Figs. 7(b) and 10 for examples]. Therefore,
obtaining reliable estimates of magnon properties becomes
increasingly difficult as the Curie temperature is approached.

The unprecedented resolution provided by our simulations
has allowed us to clearly identify two-spin-wave peaks
in the longitudinal spin-spin dynamic structure factor with
amplitudes down to six orders of magnitude smaller than that
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of the highest single spin-wave peak observed. In addition, in
the presence of lattice vibrations, we also observe additional
longitudinal magnetic excitations with frequencies which
coincide with those of the longitudinal phonons that so far has
not been detected in inelastic neutron scattering experiments,
presumably due to their very low intensities. This is an
unexpected form of longitudinal spin-wave excitations that
so far has not been detected in inelastic neutron scattering
experiments, presumably due to their very low intensities.
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