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The main object of investigation in magnonics, spin waves (SWs) are promising information carriers. Presently,
the most commonly studied are plane-wave-like SWs and SWs propagating in confined structures, such as
waveguides. Here we consider a Gaussian SW beam obliquely incident on an ultranarrow interface between two
identical ferromagnetic materials. We use an analytical model and micromagnetic simulations for an in-depth
analysis of the influence of the interface properties, in particular the magnetic anisotropy, on the transmission of
the SW beam. We derive analytical formulas for the reflectance, transmittance, phase shift, and Goos-Hänchen
(GH) shift for beams reflected and refracted by an interface between two semi-infinite ferromagnetic media. The
GH shifts in SW beam reflection and transmission are confirmed by micromagnetic simulations in the thin-film
geometry. We demonstrate the dependence of the characteristic properties on the magnetic anisotropy at the
interface, the angle of incidence, and the frequency of the SWs. We also propose a method for the excitation of
high-quality SW beams in micromagnetic simulations.
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I. INTRODUCTION

Moore’s law in its basic form postulated in 1965 [1],
stating that the number of transistors in a dense integrated
circuit (or chips) doubles approximately every 2 years, is now
nearing its end [2]. In light of the still increasing demand
for computational resources, the presently dominating com-
plementary metal-oxide semiconductor (CMOS) circuits are
reaching their limits in terms of miniaturization, performance,
and energy consumption [2,3]. Moreover, the costs are rising
while the benefits of further miniaturization are decreasing [2].
This brings about the necessity to create a new class of
devices with enhanced performance and functionality for
various applications to supplement or even replace CMOS
circuits [4,5]. Spin waves (SWs) are among the potential
candidates for replacement of electric charges as information
carriers [6–8].

The main object of investigation in the emerging branch of
modern magnetism known as magnonics [9,10], SWs are mag-
netization excitations propagating without charge transport.
This excludes Joule heating and implies that the application
of SWs in computing devices could significantly reduce
the energy consumption with respect to the charge-based
alternatives [5,11]. Spin waves have frequencies ranging from
several gigahertz to hundreds of gigahertz with wavelengths 4
to 5 orders of magnitude shorter than those of electromagnetic
waves of the same frequencies. Moreover, even in homo-
geneous planar structures, SWs have a nontrivial dispersion
relation, resulting in an exceptional richness of potential
properties that could be used for SW manipulation; these
properties have no counterpart in photonics and electronics [6].

Potentially, SWs guarantee high operating frequencies and
low energy consumption with preserved CMOS level of
miniaturization and possible integration with present CMOS
circuits. Solutions known from photonics, spintronics, and
electronics can be applied in magnonics as well. Furthermore,
the use of SWs as information carriers would pave the

way to wave-based non-Boolean computing [12], holographic
memory [13,14], and the physical realization of neural net-
works [15]. Crucial in these approaches is the manipulation of
both amplitude and phase of the SWs. In magnonics this can
be realized by means of magnonic crystals or SW scattering
by disturbances such as holes [14], domain walls [16], and
magnetic elements placed on waveguide cross junctions [13].
Another possible approach, which has emerged in modern
photonics for electromagnetic waves, is based on the use of
materials referred to as metasurfaces for wave manipulation at
subwavelength distances [17].

The reflection and refraction of SWs are determined by
the magnetic properties of the ferromagnetic media and by
the interface boundary conditions. In the theoretical and
experimental studies of spin-wave reflection [18,19] and
refraction [19–21] reported to date SWs are mostly treated as
plane waves. Other kinds of excitations, specifically, coherent
low-divergence spin-wave beams (SWBs), the application of
which would open new possibilities, have not been explored to
date. There are only a few theoretical and experimental studies
on the formation of low-frequency SW beams; research in this
field is hampered by caustics, nonlinear effects, and difficulties
related to excitation by nano-oscillators and width-modulated
microwave transducers [22–30].

From the theoretical point of view the study of SW
reflection and refraction can be regarded as the investigation
of the amplitude and phase changes (in relation to the incident
SWs) that the reflected and transmitted SWs, respectively,
undergo at the interface. Very convenient parameters in that
study are reflectance R (the power ratio of the reflected and
incident SWs) and transmittance T (the power ratio of the
transmitted and incident SWs) and the phase shifts �ϕr and
�ϕt of the reflected and transmitted waves, respectively, in
relation to the incident SWs. It is noteworthy that one of
the physical consequences of those phase shifts can be the
occurrence of a lateral shift �r or �t of the beam spots along
the interface in the respective effects. Known from optics
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and demonstrated for reflected light in 1947 by Hänchen and
Goos [31], this wave phenomenon is referred to as the Goos-
Hänchen effect (GHE). It occurs also in acoustics, where it is
known as the Schoch displacement [32], in electronics [33],
and in neutron waves [34].

Although shown theoretically not to occur in magnetostatic
waves (i.e., SWs in the limit of negligible exchange interac-
tion [35]), the GHE has been demonstrated, also theoretically,
in reflection of purely exchange SWs (i.e., high-frequency
SWs with neglected dipole-dipole interactions) by an interface
between two semi-infinite ferromagnetic films [36]. The
effect was later confirmed by micromagnetic simulations for
exchange-dipolar SWs reflected by the edge of a magnetic
thin film [37]. The magnetic properties at the film edge have
been shown to be crucial for the lateral shift of the SW
beam; specifically, the value of �r is very sensitive even to
slight changes in the magnetic surface anisotropy at the film
edge [38].

Full elucidation of SW reflection and refraction and the
influence of the boundary conditions on the reflectance,
transmittance, and phase shifts would open the possibility of
manipulating not only the amplitudes but also the phases of
SWs at very short distances. This could be critical for the future
development of magnonic devices.

In this paper we analyze theoretically and numerically
SW refraction by an ultranarrow interface between two
ferromagnetic materials. We consider high-frequency SWs and
study the influence of the interface on their reflection and,
especially, refraction. In particular, we investigate the role of
the magnetic anisotropy introduced at the interface and focus
on the transmittance and the Goos-Hänchen (GH) shifts of
the transmitted SW beams. We propose an analytical model
for purely exchange SWs in two semi-infinite materials and
derive formulas for the reflectance and transmittance and the
respective GH shifts.

These results are verified by micromagnetic simulations
(MSs) of a SW beam passing through an interface between
two semi-infinite ferromagnetic thin films. The performed MSs
also take into account the dipolar interaction. The data obtained
demonstrate that the reflection and transmission of SWs are
sensitive to even slight changes in the magnetic anisotropy
introduced at the interface, the thickness of which is much
smaller than the wavelength of the SWs. The transmittance is
shown to decrease and the GH shift is shown to grow with
decreasing SW frequency and angle of incidence.

Our findings can be of interest and use wherever SW
phase and amplitude manipulation is required, including logic
and microwave applications. Moreover, we believe that the
control of SWs at subwavelength distances could initiate a new
research direction, which, by analogy with photonics, could
be called magnonic metasurfaces. We have also developed an
efficient method for SWB excitation in MSs, which can be
easily exploited in magnonic studies.

This paper is organized as follows. In Sec. II we present
the analytical model of SW reflection and refraction and the
micromagnetic simulations. The obtained analytical results
and simulation data are discussed in Sec. III. Conclusions are
provided in Sec. IV. The derived analytical formulas for the
GH shifts are presented in Appendix A, while Appendix B
describes the method of SWB excitation used in the MSs.
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FIG. 1. Schematic representation of the system used in the
analytical model. Two semi-infinite ferromagnetic materials, FM-1
and FM-2, are separated by an interface (gray semitransparent
plane) lying in the yOz plane. The external magnetic field, static
magnetization, and anisotropy field are all oriented along the z axis.
The plane of incidence is the xOy plane.

II. METHODS

A. Analytical model

Let us begin by constructing an analytical model of SW
reflection and refraction by an interface, extending along the y

and z axes, between two semi-infinite ferromagnetic materials,
FM-1 and FM-2 (Fig. 1). We assume uniform magnetization
of the system by an external magnetic field H = [0,0,H0]
parallel to the interface (yOz plane) and perpendicular to the
plane of incidence (xOy plane). In both materials we consider
the same direction of magnetocrystalline anisotropy, parallel
to that of the surface magnetic anisotropy, along the z axis:
n(1) = n(2) = ez. We will analyze here only high-frequency
short-wavelength SWs (i.e., exchange SWs), in which case
the influence of the dipolar interaction can be neglected. The
considered SWs are also assumed to be uniform along the z

axis.
The total energy of the system composed of two ferromag-

netic materials (indicated with superscripts (1) and (2)) can be
written as

W =
∫
V

dv
[
w

(1)
H + w

(2)
H + w(1)

ex + w(2)
ex

+w(1)
anis + w(2)

anis + w(12)
ex + w(12)

anis

]
, (1)

where the integration runs over the whole volume. The
term w

(l)
H = −M(l) · H is the Zeeman energy density, where

M(l) = [m(l)
x ,m(l)

y,Ml] denotes the magnetization vector in the
lth ferromagnet and Ml is its saturation magnetization.
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The next two terms, w(l)
ex = 1

2αl(x)(∇M(l))
2
, are the ex-

change energy densities; αl = Al/M
2
l denotes the exchange

length, and Al is the exchange constant. The term w(l)
anis =

− 1
2βl(x)(M(l) · n(l))

2
is the magnetic anisotropy energy density

in the lth ferromagnet; βl = Kl/M
2
l , where Kl is the uniaxial

magnetic anisotropy constant, and n(l) is a unit vector pointing
in the direction of the easy axis in the lth ferromagnet.

The term w(12)
ex = A12M(1) · M(2)�H(x)�H(−x + δ) is the

energy density of interlayer exchange coupling at the interface
between the ferromagnets. �H(x) is the Heaviside step
function, δ is the width of the interface, and A12 is a parameter
of uniform exchange interaction. A12 = ξAint,S/(M2

intδ), where
Aint,S denotes the effective surface exchange constant of the in-
terface (Aint,S = Aint/δ, with Aint being the exchange constant
of the interface region), Mint is the saturation magnetization of
the interface, and ξ is a proportionality coefficient (we assume
ξ = 400).

The last term in Eq. (1), w(12)
anis = − 1

2 [β12(M(1) · n(1))(M(2) ·
n(2))]�H(x)�H(−x + δ), is the energy density of surface
magnetic anisotropy at the interface; β12 = K12/M

2
int is an

anisotropy parameter, with K12 denoting the uniaxial magnetic
anisotropy constant at the interface (which can be regarded as
stemming from the surface magnetic anisotropy, K12 ≡ KS/δ).

The SW dynamics in this system can be described by
the Landau-Lifshitz (LL) equations for both ferromagnetic
materials:

∂M(1)

∂t
= |γ |M(1) × H(1)

eff

(2)
∂M(2)

∂t
= |γ |M(2) × H(2)

eff ,

where γ is the gyromagnetic ratio. We will use the linear
approximation based on the assumption that the dynamic
components of the magnetization are much smaller than
the saturation magnetization, m(l)

x,y � Ml , and the latter can

be treated as constant. The effective magnetic field H(l)
eff in

each material can be determined as the functional derivative
of the total energy, defined in Eq. (1), with respect to the
magnetization vector [39,40]:

H(l)
eff = − δW

δM(l)
= − ∂w

∂M(l)
+

∑
ζ∈{x,y,z}

d

dζ

∂w

∂
(

dM
dζ

) , (3)

where w is the energy density, the integral kernel in Eq. (1).
Assuming plane-wave solutions of the LL equations (2),

m(l)
x,y ∝ exp[i(kl · r − ωlt)], in each of the ferromagnetic ma-

terials, we obtain the SW dispersion relation:

ωl(kl) = |γ |(H0 + βlMl + Mlαlk
2
l

)
, (4)

where kl is the wave vector and ωl is the angular frequency of
SWs in the lth ferromagnet [41,42].

The LL equations (2) can be integrated over the interface
region in the limit of infinitely narrow interface [43]:∫ +0

−0

[
∂M(l)

∂t
− |γ |M(l) × H(l)

eff

]
dx = 0. (5)

The integration of the above equations (for l = 1 and l = 2)
with the effective magnetic field as expressed in (3) yields the
boundary conditions in the form of a set of equations linking

the dynamic components of the magnetization on both sides
of the interface:(

δA12m
(2)
n + Dm(1)

n + α1
∂m(1)

n

∂x

)∣∣∣∣
x=−0

= 0,

(
δA12m

(1)
n + Cm(2)

n − α2
∂m(2)

n

∂x

)∣∣∣∣
x=+0

= 0, (6)

where n = x,y,D = −[(A12−β12)ζ −β1]δ, C =−[(A12 −
β12)/ζ + β2]δ, and ζ = M2/M1. The physical meaning of
parameters D and C is that of effective values obtained by
averaging the finite width δ over the interface region (see
Ref. [44], Sec. 4).

Having the boundary conditions (6), we can derive the
Fresnel equations for exchange SWs. To this end we describe
incident and reflected circularly polarized SWs in FM-1 and
refracted SWs in FM-2 as monochromatic plane waves:(

m(1)
x + im(1)

y

) = ei(ki·r−ωt) + rei(kr·r−ωt+ϕr)

(7)(
m(2)

x + im(2)
y

) = tei(kt·r−ωt+ϕt),

where r and t are the reflection and transmission coefficients,
respectively. A SW incident at an angle θi has a wave vec-
tor ki = (ki,xex + ki,yey) = ki(ex cos θi + ey sin θi). Similarly,
the reflected and transmitted SWs have wave vectors kr =
(kr,xex + kr,yey) and kt = (kt,xex + kt,yey), respectively. Due
to the translational symmetry along the interface the wave-
vector component tangential to the interface is conserved,
ki,y = kr,y = kt,y . Moreover, the isotropic dispersion relation
implies ki,x = −kr,x .

The substitution of Eq. (7) into the boundary conditions (6)
yields the Fresnel amplitude coefficients for reflected and
refracted SWs:

r =
√√√√ (

δ2A2
12−CD−α1α2kr,xkt,x

)2+(
Dα2kt,x −Cα1kr,x

)2(
δ2A2

12−CD + α1α2kr,xkt,x
)2+(

Dα2kt,x + Cα1kr,x
)2 ,

(8)

t = 2δA12α1kr,x√(
δ2A2

12−CD+α1α2kr,xkt,x
)2+(Dα2kt,x +Cα1kr,x)2

.

(9)

Reflectance R and transmittance T describe how the energy
carried by a SW changes as a result of reflection and refraction,
respectively, in relation to the incident wave. Thus, in addition
to their dependence on the amplitude coefficients, those
parameters can also vary with angle of incidence. In the case
of reflection θi = θr and

R = r2. (10)

In refraction

T = t2 cos(θt)

cos(θi)
. (11)

We can also determine the phase differences ϕt and ϕr

between transmitted/reflected and incident SWs. The phase
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FIG. 2. Schematic representation of the simulated system. The
structure is a thin film with a thickness Lz much smaller than its
lateral dimensions Lx and Ly . The red area at y = 0 is an interface
layer with a width δ; ki, kr, and kt are the wave vectors of incident,
reflected, and transmitted SW beams, respectively; the wave vectors
of GH shift-free reference reflected and refracted beams are denoted
as kr,ref and kt,ref , respectively; �t is the total lateral shift (along the
interface) of the transmitted SW beam with respect to the incident
beam.

shift of a reflected SW with respect to the incident wave is

ϕr = arcctg

⎛
⎜⎝−

Dα2

√
k2

t −k2
r,y + Cα1

√
k2

r −k2
r,y

δ2A2
12−CD + α1α2

√(
k2

r −k2
r,y

)√(
k2

t −k2
r,y

)
⎞
⎟⎠

+ arcctg

⎛
⎜⎝ Dα2

√
k2

t −k2
r,y −Cα1

√
k2

r −k2
r,y

δ2A2
12−CD−α1α2

√(
k2

r −k2
r,y

)√(
k2

t −k2
r,y

)
⎞
⎟⎠.

(12)

The phase of a transmitted SW is shifted by

ϕt = arcctg

⎛
⎜⎝−

Dα2

√
k2

t −k2
r,y + Cα1

√
k2

r −k2
r,y

δ2A2
12−CD + α1α2

√(
k2

r −k2
r,y

)√(
k2

t −k2
r,y

)
⎞
⎟⎠.

(13)

According to Refs. [36,45,46], the following relation exists
between the phase shifts in reflection and transmission and the
respective GH shifts:

�r(t) = − ∂ϕr(t)

∂kr(t),y
, (14)

where the tangential components of the reflected and transmit-
ted wave vectors are equal, kr,y = kt,y . The final formulas for
the GH shifts are presented in Appendix A.

Below we assume FM-1 and FM-2 are the same material.
Thus, in Eq. (11) θi = θt, which implies T = t2.

B. Micromagnetic simulations

Micromagnetic simulations are a proven and efficient tool
for the calculation of the SW dynamics in various geome-
tries [47–50]. We have used the MS program MUMAX3 [51],
which solves the time-dependent LL equation with a Landau
damping term by the finite-difference method.

Shown in Fig. 2, the simulated system consists of two
extended Py thin films with dimensions Lx/2 × Ly × Lz,

separated by a narrow interface slice with a width δ = 2 nm.
The interface is parallel to the yOz plane and has a magnetic
anisotropy different from that in Py. The surface magnetic
anisotropy KS at the interface between the Py films is
introduced in the MSs by assuming a uniaxial magnetic
anisotropy value K12 in the interface slice. Its other parameters
are the same as elsewhere in this magnetic system, comprising
the films and the interface region.

We assumed a Py saturation magnetization M1 = M2 =
MS = 0.7 × 103 Gs and an exchange constant A1 = A2 =
1.1 × 10−6 erg/cm. The simulations were performed for a
magnetically saturated film with a thickness Lz = 10 nm.
A magnetic field H0 = 15 kOe was applied along the z

axis. The structure was discretized into cuboid elements
with in-plane dimensions 2 nm × 2 nm, much smaller than
both the exchange length of Py (6 nm) and the wavelength
of the SWs. In the z direction each cuboid extended across
the thickness of the film. To speed up the simulations,
the lateral dimensions Lx × Ly of the simulated area were
assumed depending on the angle of incidence. Nonetheless,
in all the cases considered these dimensions were large
enough (several micrometers) to prevent the influence of
the finite size of the system on the propagation of SWs.
Moreover, absorbing boundary conditions were assumed in
order to prevent SW reflection by the edges of the simulated
structure [37].

The MSs were performed in two stages, static and dynamic.
In the first stage, the static stage, an equilibrium magnetic
configuration of the system was obtained by relaxing a random
magnetic configuration in the presence of strong damping
(α = 0.5). In the dynamic stage of the simulations, the static
configuration was slightly perturbed by a harmonic dynamic
external magnetic field Hdyn(x,y,t) = Hx(x,y) sin (2πf t)êx

(i.e., H ⊥ Hdyn) to induce continuous SW excitation. The
frequency f of the field Hdyn determines the frequency of
the excited SWs. The spatial profile of this field Hx(x,y) and
its correspondence to the SW dispersion determine the shape
of the SW excitation and its direction of propagation [30].
The shape and amplitude of the dynamic field were designed
to excite a Gaussian SW beam (see Appendix B for a
detailed description of the SW beam generation procedure).
The generated Gaussian SW beam was 500 nm wide in its
waist and had a frequency f = 100 GHz. After sufficiently
long continuous SW excitation, when the transmitted beam
became clearly visible, data necessary for further analysis
were acquired and saved. In the dynamic simulations we
assumed a reduced finite value of the damping parameter,
α = 0.0005 [52], to ensure long-distance propagation of the
SW beam.

The acquired simulation data were then processed in order
to extract the reflectance R and transmittance T and the GH
shift �t of the transmitted beam. First, time-average SW
intensity color maps (SWICs) were drawn for all the simulation
results, with the time-average SW intensity I (x,y) calculated
from the equation

I (x,y) = f

4

∫ 4/f

0
[mx(x,y,t)]2dt.
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FIG. 3. Sample results of the micromagnetic simulations for θi =
60◦, with intensity maps obtained from (a) the reference simulation of
SW propagation in a homogeneous Py film and (b) simulations of SWs
transmitted through an interface with a strong magnetic anisotropy,
K12 = −4.5 × 106 erg/cm3. The green dashed line in (b) is the ray of
the refracted SW beam; the black dashed line is the ray of the reference
beam, taken from (a). The horizontal white solid line represents the
interface, and the horizontal gray solid lines show the intervals used
for calculating the intensities of the transmitted and reflected SW
beams. The extracted value of the GH shift of the transmitted beam
is �t = 3.1 nm.

Then, the value of T was extracted as the ratio of the SW
power flowing through a plane parallel to the interface and
shifted from it by a distance x0 and the SW power in the
reference simulation:

T =
[∫ y1

y0

I (x0,y)dy

]/[∫ y1

y0

Iref(x0,y)dy

]
;

the integration limits y0 and y1 along the y axis are indicated in
Figs. 3(a) and 3(b) (thick gray lines), where they play the role
of numerator and denominator integration limits, respectively.
The reference simulation SWIC Iref(x,y) was obtained from
simulations performed for a uniform Py thin film without any
perturbation in the interface area.

The reflectance R can be calculated in a similar way, with
the intensity of SWs flowing through a surface located at the
position −x0, normalized with the reference simulation result
at x0:

R =
[∫ y1

y0

I (−x0,y)dy

]/[∫ y1

y0

Iref(x0,y)dy

]
.

We used this approach to discard the influence of the finite
damping in the MSs. The relation R + T = 1 is fulfilled with
good accuracy by our simulation results.

A similar approach was used for extracting the GH shift
from the simulation data [38]. By Gaussian fitting we extracted
the positions of the centers of the intensity profiles I (x,yi)

along many lines (over 100 of points i) perpendicular to
the interface at y = yi . Then, having the coordinates of the
centers of the incident and transmitted beams, we calculated
the coefficients of the straight lines corresponding to the beams
[dashed black line in Figs. 3(a) and 3(b) for the incident beam
and dashed green line in Fig. 3(b) for the transmitted beam].
Finally, we calculated the GH shift �t, i.e., the horizontal
shift between the transmitted and reference beams. Because
of the weak reflectance and an ambiguity in the choice of the
reflection plane in the numerical extraction of the reference
beam we do not estimate here the GH shift �r of the reflected
beam. It is noteworthy that the value of �t is free of such
ambiguity since it does not depend on the choice of the
interface position.

III. RESULTS

A. Analytical model

Let us first analyze the results obtained from the analytical
model for high-frequency SWs in a structure (schematically
depicted in Fig. 1) composed of two semi-infinite Py films
separated by an interface with a width much smaller than
the wavelength of the SWs (δ � λ). In the calculation of
the effective material parameters in the interface region we
assumed the same value of the interface width as in the
micromagnetic simulations, δ = 2 nm. The transmittance
defined in Eqs. (11) and (9) is a symmetric function of K12;
obviously, for K12 = 0 (which corresponds to a homogeneous
medium) reflection does not occur and T = 1. At a fixed angle
of incidence the value of T decreases with increasing |K12| [see
Fig. 4(a)]; T decreases also with increasing angle of incidence
[Fig. 4(c)]. A similar behavior is observed in electromagnetic
waves. However, in the case considered, at a fixed angle of
incidence the transmission of SWs through an interface with
an increased magnetic anisotropy increases with increasing
SW frequency [Fig. 4(e)] [53].

In the case of identical materials with zero anisotropy (K1 =
K2 = 0) the GH shifts for reflected and refracted SWs are
equal, �t = �r. This results from identical expressions for
the phase shifts ϕr and ϕt [see Eqs. (12) and (13)]. From those
equations it also follows that the dependence of the GH shift on
the magnetic anisotropy at the interface is an antisymmetric
function of K12, taking on positive and negative values for
K12 < 0 and K12 > 0, respectively [see Fig. 4(b)]. This is
caused by the change from easy-axis to easy-plane magnetic
anisotropy upon reversal of the sign of K12 [37].

The absolute value of the GH shift |�t| increases with
increasing angle of incidence for |K12| � 6 × 106 erg/cm3

[see Figs. 4(b) and 4(d)]. As in other types of waves, the GH
shift increases substantially with the angle of incidence, up
to values comparable to the wavelength of the SWs (around
60 nm at 100 GHz). However, for absolute values |K12| of
the magnetic anisotropy larger than those considered here
|�t| decreases to approach zero in the limit |K12| → ∞. This
dependence is similar to that observed in reflection by the edge
of a ferromagnetic material with a surface anisotropy [37].

Another observation is a decrease in the GH shift with
increasing frequency, shown in Fig. 4(f). This implies small
phase shifts in transmission of high-frequency SWs. In general,
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FIG. 4. (a) Transmittance and (b) GH shift vs magnetic anisotropy
at the interface between two semi-infinite materials (Py). Green solid,
blue dashed, and red dash-dotted lines correspond to different angles
of incidence θi: 45◦, 60◦, and 70◦, respectively. (c) Transmittance and
(d) GH shift vs angle of incidence for K12 = 4.5 erg/cm3. (a)–(d)
were obtained for SWs of frequency f = 100 GHz. (e) Transmittance
and (f) GH shift vs frequency for K12 = 4.5 erg/cm3 and θi = 60◦.
The results presented here were obtained for H0 = 15 kOe.

analysis of the plots in Fig. 4 leads to the conclusion that the
GH shift increases with decreasing transmission. However, this
applies to only a limited range of interface anisotropy constant
values, i.e., until |�t| reaches a maximum.

B. Simulations

The results of the analytical modeling were obtained for
exchange SWs uniform along the z axis, propagating in an
infinitely thick material (Py). The micromagnetic simulations,
however, take into account the dipolar interaction and the
finite thickness of the sample; thus, in the MSs we investigate
reflection and transmission of SWs in a thin-film system of
finite thickness, consisting of two films connected by an edge
interface with a width δ = 2 nm (Fig. 3). The considered range
of K12 values in the interface region is |K12| � 4.5 × 106

erg/cm3, a physically realistic magnetic anisotropy [54]. Note
that in pure Py the volume anisotropy is usually negligible.

Figure 5 shows T (left column) and �t (right column)
plotted vs K12 for three angles of incidence: 45◦, 60◦, and 70◦.
The simulation results are represented by red dashed lines
and labeled with a subscript s. These results are qualitatively
consistent with those obtained from the analytical model
(green dashed lines and subscript a in Fig. 5). However, the
transmittance values are higher and the GH shifts are smaller
than the respective analytical results.
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FIG. 5. Analytical results and simulation data. The MS results
(red dashed lines with diamonds) were obtained for a Py thin film
divided by an interface with anisotropy K12. In the analytical model
we considered two semi-infinite materials (Py) separated by an
interface plane with anisotropy K12, with internal magnetic field
H0 (green dashed lines), later artificially reduced to H0 − 4πMS

(blue solid line). (a), (c), and (e) Transmittance vs K12 for angles
of incidence 45◦, 60◦, and 70◦, respectively. Plotted as a dashed gray
line with circles, the sum of the MS values of transmittance and
reflectance is in very good approximation equal to 1. (b), (d), and (f)
Goos-Hänchen shift �t vs K12 for angles of incidence 45◦, 60◦, and
70◦, respectively.

We suppose this is due to the finite thickness of the
Py film and the dipolar interaction in the MSs. In the
perpendicular configuration of the magnetization with respect
to the film plane the dipolar interaction creates a strong static
demagnetizing field, which reduces the internal magnetic field
by 4πMS. Indeed, the substitution of a reduced value of
the external magnetic field H

′
0 = H0 − 4πMS for H0 in the

analytical formulas (9) and (14) for T and �t provides a far
better match between the analytical results and the simulation
data (see Fig. 5, where the updated analytical results are plotted
as solid blue lines).

However, the MS values of transmittance are still higher
than those obtained from the analytical model. The difference
increases with the angle of incidence and with |K12|. We think
this increase in transmission may result from the dynamic
magnetostatic interaction, which is neglected in the model.
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FIG. 6. Results of MSs for a Py film divided by an interface with
anisotropy K12: (a) �t and (b) T vs K12 for five SW frequencies, 30,
40, 50, 75, and 100 GHz. The angle of incidence is 60◦.

The GH shift obtained from Eq. (14) with the reduced
magnetic field is in very good agreement with the MS results.
Still, there are some discrepancies for large angles of incidence
and negative values of K12 [see Fig. 5(f) for θi = 70◦ and
K12 < 0]. Below we address this asymmetry observed in the
�t(K12) function.

Let us analyze how the transmission of SWs changes with
decreasing SW frequency in this context. Figure 6 shows the
results of MSs with the same structure as above for θi = 60◦
and five different frequencies: 100, 75, 50, 40, and 30 GHz. As
predicted analytically (Fig. 5), the transmittance decreases, and
the absolute value of the GH shift increases with decreasing
SW frequency. However, as the SW frequency decreases,
the �t(K12) function becomes increasingly asymmetric: for
negative values of K12 the absolute value of the GH shift
is larger than for positive anisotropy values [see, e.g., the
dependence for 30 GHz, represented by a line with dots in
Fig. 6(a), or the plot in Fig. 5(f)].

The analytical model was developed for purely exchange
SWs and further extended by including the static demagnetiz-
ing field. This approximation is well suited to high-frequency
SWs. However, with decreasing SW frequency the role of the
dynamic dipolar interaction increases, and larger discrepancies
between analytical results and simulation data can be expected.

We attribute the observed differences in transmittance to
the dynamic dipolar interaction (at K12 = −4.5 × 106 the
discrepancy between the analytical predictions and the MS
results grows from 0.05 for 100 GHz to 0.1 for 50 GHz).
However, the influence of the dipolar interaction on SW
transmission has not been fully elucidated to date; this requires
the development of a new model, which goes beyond the scope
of this paper.

Nevertheless, the dipolar interaction does not provide an
explanation of the asymmetry, which also increases with
decreasing SW frequency in the MSs, in the K12 dependence of
the GH shift. We suppose it is due to different SW polarizations
at the interface for positive and negative K12 (easy axis and
easy plane, respectively). In the case of K12 < 0 an increase of
the my component with respect to mx can be expected (and is

confirmed by MSs), resulting in a larger GH shift along the y

axis. Indeed, whereas for K12 > 0 the GH shift obtained in the
simulations is in good agreement with the analytical results
(with circular precession of the magnetization assumed), as
shown in Fig. 5(f), for K12 < 0 the MS values of �t are larger,
and the difference increases with decreasing K12.

IV. SUMMARY

We have studied theoretically the reflection and transmis-
sion of obliquely incident SWs by a thin interface between
two extended ferromagnetic media and between two semi-
infinite films connected by an edge. The interface area has
a different uniaxial anisotropy with respect to the extended
areas. We have derived analytical formulas describing the
reflectance and transmittance of exchange SWs, as well as the
phase shifts and lateral GH shifts for refracted and reflected
SWs. Moreover, using micromagnetic simulations, we have
demonstrated that these results of analytical modeling also
describe qualitatively SWs in the thin-film geometry. It is
noteworthy that, in spite of a number of assumptions in the
analytical approach (negligible dipolar interaction, infinite
extent of the ferromagnetic materials, and circular precession
of SWs), the results obtained by the two techniques are in very
good agreement for high-frequency SWs.

In the numerical study we have focused on the transmission
of SWs and the related GH shift. The GH shift of transmitted
SWs proves to increase with increasing anisotropy in the
interface region and with decreasing SW frequency. We point
out the increased role of the dynamic dipolar interaction in SW
transmission and the influence of the elliptical polarization
of the SW beam at the interface on the GH shift at lower
frequencies. The influence of these two factors on the GH shift
of transmitted SWs needs to be elucidated in detail, which
requires further investigation and the development of a new
analytical model.

The demonstrated lateral GH shift of SWs refracted by an
interface with a width much smaller than the wavelength of
the considered waves points to the possibility of steering SWs
in thin films at subwavelength distances. Although the lateral
shift found in a Py thin film divided in two parts by a narrow
(2-nm-wide) interface with increased magnetic anisotropy is
not significant, we have shown possible ways to increase it.
Further investigation can lead to the development of more
methods of phase modulation at subwavelength distances.
This sets a promising direction in the study of magnonic
metasurfaces, a novel field in magnonics, next to the graded
index magnonics [55].

In the present paper we have also proposed an efficient
method for the excitation of SW beams, which should be of
use in further numerical investigations.

ACKNOWLEDGMENTS

This project has received funding from the European
Union’s Horizon 2020 research and innovation program
under Marie Skłodowska-Curie Grant Agreement No. 644348
and from the Polish National Science Centre, project
UMO-2012/07/E/ST3/00538. P.G. also acknowledges support

014421-7



P. GRUSZECKI, M. MAILYAN, O. GOROBETS, AND M. KRAWCZYK PHYSICAL REVIEW B 95, 014421 (2017)

from Adam Mickiewicz University Foundation. The numerical
calculations were performed at the Poznan Supercomputing
and Networking Center (Grant No. 209).

APPENDIX A

The formula for the lateral GH shift of SWs reflected by an
interface between two ferromagnetic materials reads

�r = − ∂ϕr
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For SWs transmitted through the interface the GH shift is expressed by

�t = − ∂ϕt

∂kt,y
= −

α1kr,y√
k2

r − k2
r,y

[
Dα2

2

(
k2

t − k2
r,y

) − C
(
δ2A2

12 − CD
)] + α2kr,y√

k2
t − k2

r,y

[
Cα2

1

(
k2

r − k2
r,y

) − D
(
δ2A2

12 − CD
)]

(
δ2A2

12 − CD + α1α2

√
k2

r − k2
r,y

√
k2

t − k2
r,y

)2 + (
Cα1

√
k2

r − k2
r,y + Dα2

√
k2

t − k2
r,y

)2
. (A2)

APPENDIX B: SPIN-WAVE BEAM EXCITATION METHOD
FOR MICROMAGNETIC SIMULATIONS

In our previous papers [37,38] we used a simple method
for the excitation of a SW beam with a wave vector par-
allel to the x axis based on the application of an external
microwave magnetic field in the form Hdyn(x,y) = h�H(x +
w/2)�H(−x + w/2)G(y), where �H is the Heaviside step
function, G(y) is the Gaussian distribution function G(x) =
exp [2x2/(Lσ )2], w denotes length, L is the width of the
excitation area, and σ � 0.2. This method is very simple to
implement in MSs and provides good quality beams in most
cases. However, it is far from experimental realization and
involves the excitation of some additional, undesirable waves
due to the finite discretization used in the finite-difference
method. Usually, this disadvantage can be neglected, but in
our study, which required very high accuracy for the deter-
mination of the GH shifts, the additional waves represented
a substantial interference. Therefore, we have developed an
advanced SW beam excitation method, in which numerical
artifacts due to discretization of the applied magnetic field
are almost entirely eliminated. Moreover, the profiles of
the applied field are more realistic [30] than those used
previously [37,38].

Let us assume a dynamic field in the form

Hx(x,y,t) = A(x,y)B(y) sin(2πf t), (B1)

where the function B(y) describes the envelope of the magnetic
field amplitude along the y axis. Usually, especially in the case
of SW excitation in waveguides or in homogeneous structures,
we can assume B(y) = 1. However, sometimes, particularly
for oblique SW beam excitation in planar structures, other
envelopes should be used, which we will present later.

The function A(x,y) approximates the profile
of the field generated by a coplanar waveguide

exciting

not exciting

-1

min

max

0

am
pl
itu
de

-0.1 0 0.1

(a) (b)

(d)

(c)

(e)

FIG. 7. (a) Profile of dynamic magnetic field Hdyn for B(y) = 1.
(b) Magnetic field profiles along the x axis: H1 = Hx(y = 0) (red
line) and H2 = Hx(y = L/2) (blue line). (c) Fourier transforms of
the magnetic field profiles presented in (b): H̃1 = F{H1} (red) and
H̃2 = F{H2} (blue). Note that H̃1 has a maximum for k = k(f )
corresponding to a zero of H̃2. (d) Profile of dynamic magnetic
field Hdyn for B(y) = G(y). (e) Sample SW beam excited using the
dynamic magnetic field profile in (d).
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antenna [30]:

A(x,y) = C

[
1

[x + x1(y)]2 + 1
− 1

[x + x0(y)]2 + 1

− 1

[x − x0(y)]2 + 1
+ 1

[x − x1(y)]2 + 1

]
, (B2)

where C is a constant, the value of which determines the
maximal value of Hx .

The functions x0(y) and x1(y) describe the geometry of the
generated field and determine the efficiency of SW excitation.
According to an analysis presented in Ref. [30], for such a
profile the maximally efficient resonant excitation of SWs with
a wavelength λ is achieved when x0(0) and x1(0) fulfill the
equation:

2

λ
= 1

x0(0) + x1(0)
, (B3)

where λ is a function of frequency, λ(f ) = 2π/k(f ), via the
inverse dispersion relation k(f ).

In the case of exchange-dominated SWs Eq. (4) can be
used; the general dispersion relation is presented in Ref. [56].

On the other hand, with the geometrical parameters x0(ynE)
and x1(ynE) fulfilling

1

λ
= 1

x0(ynE) + x1(ynE)
, (B4)

the excitation of SWs will be inefficient. The solution of this
set of equations leads to

2x0(0) + 2x1(0) = x0(ynE) + x1(ynE). (B5)

For simplicity, let us assume a constant value of x0(y) ≡ x0 .
Thus,

x1(ynE) = x0 + 2x1(0). (B6)

We assume x1(y) is a continuous linear function:

x1(y) = x1(0) + 2

L
[x0 + x1(0)]y, (B7)

where L/2 = ynE is the length over which the value of x1(y)
changes from x1(0) (corresponding to resonant SW excitation)
to x1(ynE) (corresponding to inefficient SW excitation). Note
that L can be regarded as the length of the antenna; for y > L/2
SWs will not be excited.

This approach applies only to the case L � λ. Moreover,
the substitution of G(y) for B(y) is recommended for further
improvement of the quality of the simulated beam. Exemplary
magnetic field profiles for B(y) = 1 and B(y) = G(y) are
presented in Figs. 7(a) and 7(d), respectively. SW beam excited
by the field profile from Fig. 7(d) is presented in Fig. 7(e).
Alternatively, sech2 can be used instead of the Gaussian
function as an additional envelope of the dynamic magnetic
field.

In the MSs presented in this paper 500-nm-wide SW
beams were excited with the following parameter values:
L = 1200 nm, σ 2 = 0.1, and C = 0.02H0.
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