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We present numerical evidence that the spin-1/2 Heisenberg model on the two-dimensional checkerboard
lattice exhibits several magnetization plateaus for m = 0, 1/4, 1/2, and 3/4, where m is the magnetization
normalized by its saturation value. These incompressible states correspond to somewhat similar valence-bond
crystal phases that break lattice symmetries, though they are different from the already established plaquette
phase for m = 0. Our results are based on exact diagonalization as well as density-matrix renormalization-group
large-scale simulations and interpreted in terms of simple parameter-free trial wave functions.
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I. INTRODUCTION

Corner-sharing lattices, such as kagomé or checkerboard
ones in two dimensions and hyperkagomé and pyrochlore
lattices in three dimensions, are known to be ideal playgrounds
for study of geometrical frustration. At the classical level, the
Heisenberg model can we rewritten up to a constant as

H = J
∑

〈ij〉
Si · Sj = J

2

∑

simplex α

S2
α + Cst, (1)

where the second sum runs over all simplexes (triangles or
tetrahedra) α and J > 0 is the antiferromagnetic exchange.
Thus, classical configurations must satisfy a local constraint
Sα = 0, ∀α, which implies a continuous degeneracy and
an extensive entropy. This is the paradigmatic example of
magnetic frustration leading to a disordered state for all
temperatures [1]. Some famous examples are found in the
three-dimensional pyrochlore lattice [2,3], which can be
realized in several materials [4]. Henceforth, we concentrate
on the two-dimensional analog, known as the checkerboard
lattice (see Fig. 1), which is a square lattice of tetrahedra and
thus more amenable to numerical simulations.

One expects on general grounds that quantum fluctuations
will select some configurations among this manifold (the so-
called order-by-disorder phenomenon [5]). Indeed, spin-wave
calculations have shown that the magnetically ordered Néel
state is unstable towards a paramagnetic one for any spin
S [6]. Early numerical studies on the S = 1/2 Heisenberg
model pointed towards a nonmagnetic state with a large spin
gap [7] (i.e., a plateau for zero magnetization), corresponding
to some plaquette ordering [8–11]. In principle, other (more
exotic) phases are also possible when considering different
couplings, inter- and intratetrahedra and anisotropic, along the
two axes [10,12–15].

In the presence of a magnetic field h, the Hamiltonian is
simply changed to include a Zeeman term:

H = J
∑

〈ij〉
Si · Sj − h

∑

i

Sz
i . (2)
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We fix J = 1 as the unit of energy in the following. For such
a frustrated system, one generically expects magnetization
plateaus to appear in the magnetization curve. This is simply
because at the classical level, for instance, the system remains
very frustrated so that the situation is analogous to the
zero-field case. For example, in the classical XY case, thermal
fluctuations will select some ↑↑↑↓ state, thus leading to
a plateau at m = 1/2 (the magnetization m = 2〈∑i S

z
i 〉/N ,

where N is the number of sites, is normalized to its saturation
value 1) [16]. The same plateau can also be stabilized in the
classical Heisenberg model on a three-dimensional analogous
pyrochlore lattice when spins are coupled to the lattice [17].
A similar mechanism can also occur in the quantum case:
as an example, let us mention recent studies on the spin-1/2
Heisenberg model on a kagomé lattice, where magnetization
plateaus corresponding to incompressible phases that break
lattice symmetries, so-called valence-bond crystal (VBC)
states, have been established numerically for m = 1/3, 5/9,
and 7/9 in Refs. [18] and [19].

Another clue that plateaus may appear is provided via
an exact localized magnon state that can be constructed
close to the saturation field on such lattices [20]. For the
checkerboard lattice, one thus expects [21,22] a plateau at
m = 3/4, corresponding to a fourfold degenerate VBC with a
finite gap to all excitations.

Let us remember also that a commensurability criterion
has to be satisfied in one dimension [23], which was also
generalized to any dimension [24]: a unique featureless gapped
state is possible iff nS(1 − m) ∈ Z, where n is the number of
sites in the unit cell, i.e., n = 2 for the checkerboard lattice.
Therefore, any plateau at finite 0 < m < 1 must correspond
either to a VBC with a larger unit cell, n > 2, or to a topological
state. Clearly the latter possibility is an exciting one, and
indeed it was suggested for the m = 1/9 plateau on a kagomé
lattice [19]. On the checkerboard lattice, our study will provide
numerical evidence for several plateaus, at m = 0, 1/4, 1/2,
and 3/4, all of which correspond to VBC phases that are either
twofold or fourfold degenerate, depending on m.

Let us mention that similar results were recently
reported [25] using density-matrix renormalization-group
(DMRG) computations and are discussed accordingly in
Sec. III.
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FIG. 1. Sketch of the VBC phase, where a and b denote
eigenstates of a plaquette with total spin a and b, respectively. For
instance, the product state obtained with (a,b) = (1,2) is an exact
ground state [26] for m = 3/4. We argue that similar phases with
(0,1) and (0,2) are also realized for m = 1/4 and 1/2, respectively.
In the m = 0 case, the ground state can be understood using the (0,0)
product state [8,9,11].

The outline of this paper is as follows: we provide simple
variational states that describe the various VBCs in Sec. II
together with exact diagonalization results. Then, in Sec. III,
we present large-scale DMRG data as well as an extension to
spin anisotropic interaction. A discussion and conclusion are
given in Sec. IV.

II. VARIATIONAL STATES AND EXACT
DIAGONALIZATION STUDY

A. Magnetization curves

We have performed extensive exact diagonalization (ED)
using the Lanczos algorithm in order to compute the mag-
netization curve for various lattices using periodic boundary
conditions to minimize finite-size effects. Basically, one
simply needs to compute the total ground-state energy vs the
total spin S tot

z (without any magnetic field h) and then perform
a Legendre transform to obtain m(h).

As mentioned, exact localized ground states can be built
at m = 3/4, and they correspond to the pattern shown in
Fig. 1 (see Ref. [26]), which possesses an eight-site unit
cell. As a consequence, we have chosen clusters that can
accommodate such a VBC, such as N = 32 (which has
additional symmetry [8]), N = 40, and N = 64. This localized
magnon state corresponds to

∣∣�3/4
VBC

〉 =
∏

j

|L,↓〉j
∏

�

|↑〉�, (3)

where the first product runs over an ordered pattern of all
nonoverlapping squares denoted a in Fig. 1 and the second
product runs over the remaining, b sites. The localized-magnon
state on a square is the ground state with a single spin-down.
Therefore, this exact VBC state can be viewed as a product
state using the S� = 1 ground state on a plaquettes and S� = 2
(i.e., polarized state) on b ones. We denote this product state
(a,b) = (1,2).
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FIG. 2. Magnetization curves of the S = 1/2 Heisenberg model
on the checkerboard lattice for clusters that can accommodate the
VBC shown in Fig. 1 for all interesting m. Solid lines correspond to
ED with periodic boundary conditions, and dashed lines to DMRG
with CBC; see text. Inset: Widths of the m = 0, 1/4, 1/2, and
3/4 plateaus obtained from ED (open symbols) and DMRG (filled
symbols) on various clusters, plotted as a function of the inverse
diameter. Data are consistent with finite values for all plateaus in the
thermodynamic limit.

Similarly, to what we have observed on the kagomé
lattice [18], we may construct similar product-state variational
wave functions by simply flipping more spins on the a or
b plaquettes, hence getting a trial wave function at m = 1/2
corresponding to (0,2) or even m = 1/4 for (0,1). Of course,
these are no longer exact eigenstates, and nothing guarantees
that they have any physical meaning for our microscopic
model. So let us now present our unbiased numerical data. It
is noteworthy that product-state wave functions can naturally
appear to describe some one-dimensional plateaus too [27].

In Fig. 2, we plot the magnetization curve obtained on our
particular choice of clusters, thus extending data published
in Ref. [26]. First, we recover some known features, such
as the finite spin gap (m = 0 plateau), estimated at � � 0.6J

previously [8,11], as well as the exact saturation field, h = 4J ,
which can be understood in terms of the localized magnon
eigenstates and a jump to m = 3/4. Moreover, we observe
several finite-size plateaus, including rather large ones for m =
1/2 and m = 1/4. A finite-size analysis for these values is
performed in Fig. 2 but it is rather difficult to draw conclusions
about the thermodynamic stability, especially for m = 1/4.
However, general arguments require that the m = 3/4 plateau
should be finite [21,22] and we remind the reader that the spin
gap (i.e., plateau for m = 0) is believed to be finite from the
literature (see above).

B. Energy spectroscopy from exact diagonalization

Moreover, we can gain additional spectral signatures of
these plateaus from ED data on low-energy-level excitations.
More specifically, possible symmetry breaking can be inves-
tigated using the low-energy levels labeled by their quantum
numbers. Since we are using periodic boundary conditions, we
can label each eigenstate with magnetization Sz and with its
momentum, plus, when allowed, the irrep of the point-group
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FIG. 3. Energy gaps vs m for N = 40 lattice labeled with their
quantum numbers. Relevant momenta are labeled as � = (0,0),
M = (π,0) and 2-fold degenerate (π/2,π/2). For m = 1/4, 1/2 and
3/4, the lowest states correspond to the expected four ones in the
Brillouin zone. The magnetization sectors with a gray background
are not visited in the magnetization curve, i.e., they are obscured by
a magnetization jump.

symmetry. Note that we use the square-lattice Brillouin zone,
which has to be folded for a checkerboard lattice with two-site
unit cell.

For the proposed fourfold degenerate VBC states at finite
m, a symmetry analysis leads to four degenerate states: one
at the � point, one at M = (π,0), and one at each (twofold
degenerate) (π/2,π/2) momentum. In Fig. 3, we plot the
energy gaps for each magnetization sector on an N = 40
cluster, and we do observe a very good (quasi-)degeneracy
of these four states and a sizable gap above for m = 1/4 and

m = 3/4. At m = 1/2, these are also the lowest states but the
separation is less clear, presumably due to the larger correlation
length.

C. Correlations

Another piece of evidence comes from the computation
of specific correlations using the unique finite-size ground
state. More specifically, for each magnetization m, we have
computed connected spin correlation functions

〈
Sz

i S
z
j

〉
c
= 〈

Sz
i S

z
j

〉 − 〈
Sz

i

〉〈
Sz

j

〉
(4)

as well as connected dimer-dimer correlations

〈(Si · Sj )(Sk · S�)〉c
= 〈(Si · Sj )(Sk · S�)〉 − 〈(Si · Sj )〉〈(Sk · S�)〉 (5)

using ED on various lattices.
Similarly to what was done on the kagomé lattice [18],

one can obtain an exact expression for the m = 3/4 VBC
state [see Fig. 1 or Eq. (3)]. Discarding short-distance data
that require a separate calculation, one can easily get that
(i) the average 〈Si · Sj 〉 = 1/16; (ii) connected correlations
between “strong” plaquette bonds are 9/256 � 0.035; and
(iii) connected correlations between strong and weak plaquette
bonds are −7/256 � −0.027. These are exactly the numbers
we get in Fig. 4 (with small deviations due to the finite overlap
of the four localized magnon states in a finite cluster). A similar
calculation can be performed for any trial state (a,b), and in
Fig. 4 we compare ED data to the simple VBC, respectively,
given as (a,b) = (0,0) for m = 0, (0,1) for m = 1/4, (0,2) for
m = 1/2, and (1,2) for m = 3/4. In all cases, we do observe
a (semi-)quantitative agreement, which strongly supports the
description of all these plateau states in terms of the simple
VBC as sketched in Fig. 1.

FIG. 4. Dimer-dimer correlations [cf. Eq. (5)] computed on an N = 40 cluster: positive and negative values are shown by blue and red
lines, respectively, and the width is proportional to the data; the reference bond is shown in black. From left to right, data correspond to the
ground state for m = 0, 1/4, 1/2, and 3/4. The top row corresponds to simple VBC states where computation is done analytically without any
free parameter (see text); the bottom row corresponds to ED results for the Heisenberg model.
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FIG. 5. Bond strengths for m = 0, m = 1/4, m = 1/2, and m = 3/4 (from top to bottom and left to right) on a 16 × 8 cylinder using
DMRG simulations and keeping up to 6000 states. In each plot, the top and bottom lines are identical due to periodic boundary conditions
along this direction (CBC). Data larger than 0.01 (in absolute value) are written in the plot.

III. DMRG RESULTS

A. Simulations on large cylinders

We now turn to large-scale simulations using the two-
dimensional DMRG algorithm [28], which can be applied to
cylinders provided that the width is not too large. We have kept
up to m = 6000 states in order to obtain a good convergence
of our results and a small discarded weight. We use cylindrical
boundary conditions (CBCs).

In Fig. 2, we have plotted the magnetization curve on a
few cylinders which exhibit large plateaus for the expected
magnetizations. Note that the m = 3/4 plateau is slightly
shifted due to boundary effects, so that we have systematically
taken the plateau next to the jump to saturation instead (which
converged to 3/4 in the thermodynamic limit). A finite-size
scaling can be performed to check that all four proposed
VBCs are stable in the thermodynamic limit; see the inset
in Fig. 2, with data obtained on 12 × 8, 16 × 12, and 16 × 16
cylinders.

In Fig. 5, we plot the local bond strengths 〈Si · Sj 〉 −
〈Sz

i 〉〈Sz
j 〉 for various magnetizations. Data are compatible with

a fourfold degenerate ground state at m = 1/4, m = 1/2,
and m = 3/4 but only twofold for m = 0, as expected from
our trial wave-function guess. We remind the reader that the
DMRG algorithm will target one particular VBC, and not
a superposition, since it converges to so-called minimally
entangled states [29]. In addition, while for m = 0, all sites
have a vanishing magnetization on average (〈Sz

i 〉 = 0 ∀i),
which is an exact result [30], we have found a clear modulation
in this quantity for all m > 0 plateaus states, in agreement with
the proposed VBC states. More precisely, for the plateaus

corresponding to m = 1/4, 1/2, and 3/4, we have argued that
they could be understood using simple product states with total
spin a and b on alternating four-site plaquettes. Respectively,
we have proposed (a,b) = (0,1), (0,2), and (1,2) (see Fig. 1).
So in principle, using a DMRG simulation on cylinders that
target one particular state, we can directly measure the local
magnetization 〈Sz

i 〉 to characterize the state. This is shown in
Fig. 6 for a 16 × 8 cylinder. In all cases, the total magnetization
on each four-site plaquette is very close to the expected one
in a simple product state, i.e., Sz

� = 0, 1, or 2. We note also
that there are strong edge effects so one should be cautious
with boundary conditions and extrapolations. This is also why,
for instance, we have fixed m = 3/4 + 2/N , where N is the
number of sites, so that the bulk resembles more the genuine
m = 3/4 ground state.

Similar results for the bond pattern and the local mag-
netizations were obtained in Ref. [25] using the DMRG as
well, but with modified boundary conditions to minimize
finite-size effects, at the cost of having to fix the magnetic field
and not the total magnetization (grand-canonical approach).
Both studies agree on the existence and nature of the
plateau phases at m = 0, 1/4, 1/2, and 3/4. Moreover, Morita
and Shibata argue in favor of a small plateau at m = 3/8
and maybe also at m = 1/8, where they observe a small
anomaly.

B. Quantum phase transition away from the SU(2) case

In order to make connections with related strongly corre-
lated models on the same lattice, it proves useful to investigate
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FIG. 6. Local magnetization for m = 1/4, m = 1/2, and m =
3/4 (from top to bottom) on a 16 × 8 cylinder using DMRG
simulations and keeping up to 6000 states. The radius is proportional
to the absolute value. Due to edge effects, for the m = 3/4 plot, we
have used a slightly higher total magnetization (m = 3/4 + 2/128)
to get a clearer picture of the bulk behavior. Top and bottom lines are
identical (CBC).

the (spin) anisotropic XXZ model,

H =
∑

bonds (i,j )

1

2

(
S+

i S−
j + S−

i S+
j

) + �Sz
i S

z
j , (6)

where � quantifies the anisotropy. Here, we focus on the
m = 1/2 plateau and we show how increasing � leads to
a quantum phase transition and a qualitative change in the
physical properties.

Indeed, for strong � 	 1, the model maps onto a purely
kinetic quantum dimer model, which is defined on a new
square lattice whose sites are at the center of the crossed
plaquettes of the original one. The mapping simply consists
of associating a dimer with each down-spin and the hard-
core constraints simply reflect the ice rule (one down-spin

FIG. 7. Connected Sz correlations between the reference site
(black circle) and the neighboring ones computed using DMRG at
m = 1/2 on a 16 × 8 cylinder using CBC. Top panel, � = 1; bottom
panel, � = 5. Only data within the bulk are shown. Positive and
negative values are shown in blue and red, respectively.

per crossed plaquette). The quantum dimer model ground
state is known to be columnarlike [31–34], so that the
ground state is also fourfold degenerate, but of a different
kind.

By computing the ground state with m = 1/2 at � = 5
with the DMRG, we have observed that there are qualitatively
distinct features with respect to the SU(2) case (� = 1): both
local magnetization and bond strengths become uniform in
the bulk (data not shown), i.e., no evidence of a simple
VBC was found at � = 1. To clarify the different nature
of these ground states, we plot in Fig. 7 the connected
correlations 〈Sz

i S
z
j 〉 − 〈Sz

i 〉〈Sz
j 〉 in both regimes. For � = 1,

we have previously shown that the ground state is a VBC
with inhomogeneous sites )see Fig. 6), so that in principle we
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would need to compute different correlations depending on the
reference site. However, this is for illustration only since we
already know the nature of this VBC and these correlation data
simply reflect that we have a low-entangled state, close to a
product-state, so that correlations between plaquettes are very
small, and inside one plaquette, they show the expected pattern
for (here) a singlet state. On the contrary, for � = 5, Fig. 7
provides strong evidence that the ground-state at m = 1/2 is
similar to the columnar phase of the effective quantum dimer
model: in spin language, we have diagonal lines that repeat a
simple ↓↑↑↑ pattern, thus explaining the observed pattern. So
in spin language, it corresponds to a ferrimagnetic phase, not
a VBC one.

IV. CONCLUSION

We have provided strong numerical evidence in favor of the
existence of magnetization plateaus in the spin-1/2 Heisenberg
model on a two-dimensional checkerboard lattice for m = 0,
1/4, 1/2, and 3/4 of its saturation value. While the m = 0
plateau (due to the finite spin gap) was previously known from
the literature [6–11] and corresponds to a twofold degenerate
VBC, we find that the three others are well described by a
fourfold degenerate VBC, analogous to the exact localized
magnon eigenstate that can be constructed at m = 3/4 [26].
Thus, the situation is rather similar to another famous corner-
sharing geometry, namely, the kagomé lattice, where the
same phenomenology was recently observed [18,19]. It seems
that the finite-field situation can be better understood from
the large-field limit, which is presumably more amenable to
theoretical techniques, or less frustrated in a sense. Moreover,
these product states can also be interpreted as having quantized
spin imbalance (obtained by measuring magnetization in
different blocks), which could be interpreted as a remnant
of the classical degeneracy through an order-by-disorder
mechanism [27].

We would also like to comment on the adiabatic connections
(or not) between these plateau phases and similar ones that
have been observed in different contexts [35]. For m = 0, there
is recent numerical evidence of the plaquette phase persisting
in the antiferromagnetic XY limit [36]. In the opposite XXZ
limit with dominant Ising interaction, the m = 0 and m =
1/2 low-energy configurations can be easily seen to be in
one-to-one correspondence with the quantum loop [37] and
quantum dimer configurations on a square lattice, respectively.
Both effective constrained models are of the Rokhsar-Kivelson
type [38], with purely kinetic terms, and have been investigated

quite extensively. This quantum loop model (also known
as square ice) has a twofold degenerate plaquette ground
state [37,39], i.e., a structure similar to that of our (0,0)
product state, hence pointing to a robust feature present
for any anisotropy in the XXZ sense. On the contrary, the
quantum dimer model with purely kinetic terms has a fourfold
degenerate columnar ground state [40], which, when translated
into spin language, would correspond to a ferrimagnetic
state with fixed local magnetization ±1/2, i.e., qualitatively
different from the resonating state that we have found in the
SU(2) case. Therefore, we predict the existence of a quantum
phase transition when increasing the anisotropy of the XXZ
model between a VBC and an ordered ferrimagnetic phase,
which is confirmed numerically (see Sec. III B). The nature
of this phase transition is potentially interesting (continuous
vs first order; see, for instance, Ref. [41]) but a complete
analysis is postponed to a future study. In a similar manner,
it would be natural to investigate the fate of m = 1/4 and
3/4 plateaus when moving away from the SU(2) case. In
addition, it would be interesting to prove whether supersolidity
can be stabilized in the vicinity of some of these plateaus, a
phenomenon which is common on frustrated lattices but not
present on the checkerboard lattice for interacting hard-core
bosons with nonfrustrated hopping [42].

As far as fermionic Hubbard-like models on the same lattice
are concerned, it has been shown that various VBCs can also
be stabilized at commensurate fillings [43–45]. Generalization
of spin models with SU(N ) symmetry (using a fundamental
representation at each site) can also host other kinds of valence-
bond solid states [46]. Hence, a global picture of the effect
of strong quantum correlations is emerging thanks to all of
these studies and provides new exotic phases compared to the
classical ones.

Note added. During the completion of this work, a related
DMRG study appeared [25] that fully agrees on the nature and
stability of the proposed VBCs here.
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lattice [47,48].
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