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The von Neumann entanglement entropy is used to estimate the critical point hc/J � 0.143(3) of the mixed
ferro-antiferromagnetic three-state quantum Potts model H = ∑

i[J (XiX
2
i+1 + X 2

i Xi+1) − h Ri], where Xi and
Ri are standard three-state Potts spin operators and J > 0 is the antiferromagnetic coupling parameter. This
critical point value gives improved estimates for two Kosterlitz-Thouless transition points in the antiferromagnetic
(β < 0) region of the �-β phase diagram of the three-state quantum chiral clock model, where � and β

are, respectively, the chirality and coupling parameters in the clock model. These are the transition points
βc � −0.143(3) at � = 1

2 between incommensurate and commensurate phases and βc � −7.0(1) at � = 0
between disordered and incommensurate phases. The von Neumann entropy is also used to calculate the central
charge c of the underlying conformal field theory in the massless phase h � hc. The estimate c � 1 in this
phase is consistent with the known exact value at the particular point h/J = −1 corresponding to the purely
antiferromagnetic three-state quantum Potts model. The algebraic decay of the Potts spin-spin correlation in the
massless phase is used to estimate the continuously varying critical exponent η.

DOI: 10.1103/PhysRevB.95.014419

I. INTRODUCTION

The N -state asymmetric or chiral clock model was origi-
nally introduced to provide a simple description of monolayers
adsorbed on rectangular substrates [1,2]. The clock models
can be considered as discrete versions of the continuous XY

model. The asymmetry or chirality in the model Hamiltonian
induces incommensurate floating phases with respect to the
periodicity of the underlying lattice, with commensurate-
incommensurate phase transitions of the Kosterlitz-Thouless
type [3,4] corresponding to the melting of the incommensurate
phase. The model we consider here is the one-dimensional
quantum version of the three-state chiral clock model. The
most general one-dimensional three-state quantum chiral clock
model considered by Howes et al. [5] is defined by the
Hamiltonian

H = −
∞∑

j=1

[cos a(pj − �p) + β cos a(θj+1 − θj − �θ )],

(1)

where a = 2π/3 and the variables pj ,θj take the three
eigenvalues 0,1,2. They obey the commutation relations

eiapj eiaθk = ωδjk eiaθk eiapj , (2)

with ω = eia . We set the chiral parameters to �p = �θ = �.
The three-state quantum chiral clock model is a candidate
for exhibiting non-Abelian bound states beyond Majorana
fermions, for which the chiral interactions � play a key
role [6].
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This model has a rich phase diagram in terms of the
parameters � and β, which was originally mapped out using
strong coupling series expansion techniques [5]. The coupling
parameter β plays the role of inverse temperature. For chirality
parameter � = 0 and β > 0 the model reduces to the three-
state quantum Potts chain with purely ferromagnetic inter-
actions [7,8]. Recent work on the ferromagnetic three-state
quantum Potts chain has been motivated by the connection to
topological phases and edge modes in Z3 parafermion spin
chains [9–13], and has also manifested the relation between
degenerate ground states and spontaneous symmetry breaking
[14,15].

On the other hand, for � = 0 and β < 0 the model
reduces to the much less studied quantum Potts model with
mixed ferro-antiferromagnetic interactions. Importantly, in the
antiferromagnetic region of the phase diagram of the chiral
clock model in the �-β plane, the line � = 0, β < 0 is dual
to the line � = 1/2, 1/β < 0 [5], so that results obtained for
the mixed ferro-antiferromagnetic three-state quantum Potts
chain apply directly to the phase diagram of the more general
antiferromagnetic chiral clock model at � = 1/2. Using
strong coupling series expansion analysis, Kosterlitz-Thouless
transitions were identified [5] at the critical points (0,βc)
and (1/2,1/βc), where βc = −10 ± 5. These are, respectively,
points E and G in the phase diagram in Fig. 2 of Ref. [5].
The quantum critical point E is between disordered and
incommensurate phases and point G is between incommen-
surate and commensurate phases. Other estimates for βc were
obtained from the quantum formulation of the mixed ferro-
antiferromagnetic three-state quantum Potts model [16,17].
Based on an analysis of small chain sizes, a massless phase was
identified for some critical field value βc, with βc < −5 [16].
The approximation βc � −5 was estimated using a mean-field
renormalization group method [17].
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In this paper we use the von Neumann entanglement
entropy to investigate quantum criticality in the mixed ferro-
antiferromagnetic quantum Potts model of relevance to the
antiferromagnetic region of the �-β phase diagram of the
three-state quantum chiral clock model. For conformally
invariant one-dimensional critical quantum spin chains entan-
glement entropy has been demonstrated to be a useful tool for
calculating the central charge c of the underlying conformal
field theory. More generally, various measures of entanglement
have been demonstrated to be a useful means for the detection
and classification of quantum phase transitions [18,19]. For
quantum spin chains, the ground state entanglement entropy of
a subsystem formed by contiguous 	 sites of an infinite system,
with respect to the complementary subsystem, has the leading
behavior S = c

3 log2 	 if the system is critical, or S = c
3 log2 ξ

if the system is near critical, with correlation length ξ [20–22].
We numerically calculate the ground state energy and

wave function of the mixed ferro-antiferromagnetic three-state
quantum Potts model using the infinite matrix product state
(iMPS) representation with the infinite time-evolving block
decimation (iTEBD) algorithm [23] in order to determine
the critical point βc and the central charge in the massless
phase from the von Neumann entanglement entropy. We also
estimate the critical exponent η of the spin-spin correlation in
the massless phase.

The paper is arranged as follows. In Sec. II we outline
the relationship between the chiral clock model and the
related mixed ferro-antiferromagnetic three-state quantum
Potts model. In Sec. III we use the iMPS approach to calculate
the von Neumann bipartite entanglement entropy and obtain
the critical coupling βc. The central charge of the underlying
conformal field theory in the massless phase is determined
from the von Neumann entropy and correlation length in
Sec. IV. Results for the spin-spin correlation function, and
thus the critical exponent η in the massless region, are given
in Sec. V. Concluding remarks are given in Sec. VI.

II. MODEL HAMILTONIAN

A. The three-state chiral clock model and the three-state
quantum Potts model

We begin by writing the chiral clock Hamiltonian (1) in a
different form in terms of the operators

Zj = eiapj , Xj = eiaθj , (3)

for which the commutation relations (2) become

ZjXk = ωδjkXkZj , (4)

where we recall ω = ei2π/3. The Hamiltonian (1) is then

2H = −
∞∑

j=1

[
e−iφZj + eiφZ −1

j + β
(
eiφXjX

−1
j+1

+ e−iφX −1
j Xj+1

)]
, (5)

with φ = a�. In terms of the usual Potts spin operators

Zj =
⎛
⎝

1 0 0
0 ω 0
0 0 ω2

⎞
⎠, Xj =

⎛
⎝

0 1 0
0 0 1
1 0 0

⎞
⎠, (6)

h
J

massless massive

1 0
J

ch
J

FIG. 1. The phase diagram of Hamiltonian (9). The critical
point hc separates massless and massive phases. For h > 0 the
model is known as the mixed ferro-antiferromagnetic three-state
quantum Potts model. The point h/J = −1 is the exactly solved
antiferromagnetic three-state quantum Potts model.

acting at site j of the infinite chain, the model reduces to the
three-state quantum Potts Hamiltonian

2H = −
∞∑

j=1

[
Rj + β

(
XjX

2
j+1 + X 2

j Xj+1
)]

, (7)

when � = 0. Here the Potts spin operator Rj is given as

Rj = Zj + Z −1
j =

⎛
⎝

2 0 0
0 −1 0
0 0 −1

⎞
⎠, (8)

with the identities Z3
j = X3

j = 1.
The Hamiltonian we thus consider is defined by

H =
∞∑

j=−∞

[
J
(
XjX

2
j+1 + X 2

j Xj+1
) − h Rj

]
, (9)

where J/h = −β > 0 is the antiferromagnetic interaction
strength and h represents the transverse field. This mixed
ferro-antiferromagnetic three-state quantum Potts model has
been studied by a variety of conventional techniques in both
the classical [24–29] and quantum formulations [5,16]. This
quantum formulation of the mixed ferro-antiferromagnetic
Potts model was studied by Herrmann and Martin [16]. Based
on an analysis of small chain sizes, a massless phase was
identified for some critical field value hc, with hc < 0.2J .
The approximation hc � 0.2J has been estimated using a
mean-field renormalization group method [17]. These values
are to be compared with the first estimate [5] hc/J = 0.1±0.10

0.03,
obtained from a series analysis of the quantum version of the
clock model.

Note that we consider only the case of antiferromagnetic
coupling J > 0 in the Potts Hamiltonian (9), corresponding
to the antiferromagnetic region β < 0 in the phase diagram
of the chiral clock model. Given however, that the parameters
appearing in the two Potts Hamiltonians (7) and (9) are related
by β = −J/h, we do not restrict ourselves to the values h > 0
of direct relevance to the antiferromagnetic region of the clock
model. Rather we also consider Hamiltonian (9) in the wider
parameter space with h < 0. The phase diagram of this model
is depicted in Fig. 1.

B. iMPS ground state energy at the exactly solved point

In order to study the mixed ferro-antiferromagnetic Potts
model (9) for an infinite-size chain, the iTEBD method [23]
is used to obtain the iMPS ground state wave function |ψ〉
and the ground state energy for given parameter values.
Fortunately, the model Hamiltonian (9) has been exactly
solved at the particular field value h/J = −1, at which point
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TABLE I. iMPS estimates for the ground state energy per site
of the antiferromagnetic three-state quantum Potts chain (9) at the
exactly solved point h/J = −1 with increasing truncation dimension
χ . Comparison is with the exact result (10).

χ 30 60 100 150

eχ −1.81606688 −1.81607095 −1.81607153 −1.81607168
Error 2.7 ×10−6 4.5 ×10−7 1.3 ×10−7 5.0 ×10−8

the Hamiltonian is simply minus the Hamiltonian of the
ferromagnetic three-state quantum Potts model at the self-dual
critical point. For h/J = −1, the Hamiltonian can be written
simply in terms of the underlying Temperley-Lieb algebra [30]
and exact results for the eigenspectrum can either be obtained
by mapping to the equivalent spin- 1

2 XXZ chain or by solving
the three-state model directly. Using the latter approach, the
ground state energy per site for the infinite chain is [31]

e∞ = 4

3
− 3

√
3

2
−

√
3

π
= −1.816 071 77 . . . . (10)

For comparison with this result at h/J = −1, the iMPS
ground state energy per site has been calculated. Specifically,
we used first-order Trotter decomposition in the iTEBD
algorithm, with an initial time step dt = 0.1 decreasing
according to a power law until dt = 10−6 as the ground
state is approached. The numerical iMPS values are listed
for several truncation dimensions χ in Table I. Note that the
computational iMPS approach reproduces the exact result (10)
to five significant figures already with truncation dimension
χ = 30. The significant figures for χ = 150 reach to seven
digits. This shows that the iMPS approach gives a reliable
numerical result for the ground state energy per site. We adapt
this same approach for values of h away from the exactly
solved point.

III. ENTANGLEMENT ENTROPY AND QUANTUM PHASE
TRANSITION

A quantum critical point in a given system can be detected
by exploring thermodynamic properties for which the system
exhibits characteristic common singular behavior. It has been
demonstrated recently that various entanglement measures are
a useful means for detecting and classifying quantum phase
transitions [18,19]. Especially, the von Neumann entropy has
been shown to quantify quantum entanglement of a system
and thus to detect singular behavior of quantum entanglement
indicating the occurrence of a quantum phase transition.

In the iMPS approach the Schmidt decomposition coef-
ficients of the bipartition between the semi-infinite chains
L(−∞, . . . ,i) and R(i + 1, . . . ,∞), the elements of the
diagonal matrix λ[i]

αi
at site i can be used to evaluate the

von Neumann entropy S [32,33]. In terms of the density
matrix � = |ψ〉〈ψ | for the iMPS ground state wave function
|ψ〉, the von Neumann entanglement entropy is defined by
S = −Tr[�L log �L] = −Tr[�R log �R] where �L and �R are
the reduced density matrices of the semi-infinite chains L and
R. In the iMPS representation, the von Neumann entropy is

FIG. 2. (a) The von Neumann entanglement entropy S(χ ) for the
mixed ferro-antiferromagnetic three-state quantum Potts Hamiltonian
(9) as a function of the transverse field h/J for increasing truncation
dimension χ . (b) The location of the peaks of the von Neumann
entropies in (a) as a function of truncation dimension χ . The solid
line is the fitting function used to estimate the critical point hc/J =
0.143(3) in the thermodynamic (χ → ∞) limit (see text).

then calculated from [32,33]

S(χ ) = −
χ∑

α=1

λ2
α log2 λ2

α, (11)

where χ is the truncation dimension.
The von Neumann entropy is plotted in Fig. 2(a) as

a function of the transverse field for increasing truncation
dimension χ . The von Neumann entropies are seen to exhibit a
predominant peak structure with a singular point. The singular
points hc(χ ) are indicative of a quantum phase transition.
As the truncation dimension χ increases, the phase transition
point hc(χ ) decreases. For an increment of χ , the amplitude
of the von Neumann entropy increases for h < hc(χ ), with
little change for h > hc(χ ). This characteristic behavior of
the von Neumann entropy implies that there are two distinct
phases distinguished by the singular peak for a given truncation
dimension.

In order to estimate the quantum critical point hc in the
thermodynamic (χ → ∞) limit, the phase transition points are
plotted as a function of the truncation dimension χ in Fig. 2(b).
The fitting function hc(χ )/J = hc/J + aχb is employed to
perform the extrapolation of phase transition points [32].
With the numerical fitting coefficients a = 0.56(3) and b =
−0.66(3), we have obtained the estimate hc(∞)/J � 0.143(3)
for the quantum critical point in the three-state quantum Potts
Hamiltonian (9) with antiferromagnetic coupling J . According
to the parameter relations between the three-state clock model
(1) and the three-state Potts model in (9), the corresponding
critical point of the three-state quantum clock model can
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be estimated as βc = −J/hc(∞) � −7.0(1) for � = 0. The
duality symmetry for the three-state quantum clock model [5],
i.e., the duality transformation β ↔ 1/β and � ↔ 1/2 − �,
gives the corresponding critical point βc � −0.143(3) for
� = 1/2.

IV. MASSLESS PHASE AND CENTRAL CHARGE

A. Criticality at the exactly solved point h/J = −1

As discussed in Sec. II B, the three-state Potts Hamiltonian
(9) is an exactly solved model at h/J = −1. At this point the
exact result c = 1 for the central charge has been obtained
from the finite-temperature thermodynamics derived from the
Bethe ansatz solution [34,35]. This is also the known value for
the purely antiferromagnetic three-state quantum Potts model
[36–40]. From the exact solution at this point it was established
that the underlying conformal field theory is surprisingly given
in terms of Z4 parafermions.

In the iMPS representation, for a critical ground state, the
central charge c can be studied and estimated from the scaling
relations [32,33]

S(χ ) ∼ cκ

6
log2 χ, (12a)

ξ (χ ) ∼ aξ χκ, (12b)

where κ is a finite entanglement scaling exponent and aξ is a
constant. The correlation length ξ is defined in terms of the
largest and second largest eigenvalues of the transfer matrix
for a given truncation dimension in the iMPS representation
by 1/ξ (χ ) = log2[ε0(χ )/ε1(χ )]. To obtain the central charge
at h/J = −1 in our iMPS calculation, we plot the correlation
length and the von Neumann entropy as a function of truncation
dimension χ in Fig. 3. Both the correlation length and the
von Neumann entropy increase as the truncation dimension χ

increases. We first obtain the finite entanglement scaling ex-
ponent κ by using a simple power law fitting on the correlation
length in Eq. (12b). The fitting constants are κ = 1.27(2) and
aξ = 0.35(3). We then perform a best fit S(χ ) = a + b log2 χ

for the von Neumann entropy to determine the coefficients
a = 0.15(1) and b = cκ/6 = 0.217(1). Combining these
results gives the central charge estimate c = 1.02(2). Our
numerical result obtained from the von Neumann entropy
is thus consistent with the known exact result c = 1 at the
particular value h/J = −1.

B. Massless and massive phases

As was noticed in Sec. III, the amplitude of the von
Neumann entropy increases with increasing truncation dimen-
sion χ for h � hc(∞). Such behavior of the von Neumann
entropy reveals a scaling behavior of the von Neumann entropy
in a critical phase. More specifically, diverging behavior
of the von Neumann entropy can characterize universality
classes of a massless (critical) phase through the central
charge c of the underlying conformal field theory. In the
iMPS representation, the central charge c for h � hc can
thus be studied and estimated from the scaling relations.
Either massless phases or phases with a mass gap can then
be readily distinguished by their scaling behavior in this
approach.

FIG. 3. Correlation length ξ (χ ) and von Neumann entanglement
entropy S(χ ) as a function of the iMPS truncation dimension χ at
the exactly solved point h/J = −1. The solid lines are the numerical
fitting functions (see text).

By using the scaling relations (12a) and (12b), we can
thus obtain the central charge c throughout the critical phase.
Figure 4 shows plots of the correlation length ξ (χ ) and
the von Neumann entropy S(χ ) as a function of truncation
dimension χ at various values of h. For h � hc in Fig. 4(a),
the correlation length and the von Nuemann entropy diverge
as the truncation dimension χ increases. In order to esti-
mate first the finite entanglement scaling exponent κ , we
have performed power law fitting on the correlation length
in Eq. (12b). The numerical pairs of fitting constants are
obtained as (i) κ = 0.124(2) and aξ = 0.35(7) for h/J =
0.06, (ii) κ = 1.24(1) and aξ = 0.34(2) for h/J = 0.1, and
(iii) κ = 1.26(2) and aξ = 0.30(3) for h/J = 0.143. These
results show that for the chosen parameters, including the
critical point hc(∞) � 0.143J , the finite entanglement scaling
exponent κ has a value very close to the numerically obtained
exponent at the exactly solved point h/J = −1 discussed in
Sec. IV A. Next, to obtain the prefactor b of the logarithmic
divergence for the von Neumann entropy, we perform a best
fit S(χ ) = a + b log2 χ . The fitting constants obtained in
this way are (i) a = 0.21(2) and b = 0.211(4) for h/J =
0.06, (ii) a = 0.20(1) and b = 0.212(2) for h/J = 0.1, and
(iii) a = 0.19(1) and b = 0.218(1) for h/J = 0.143. Thus the
relation c = 6b/κ gives the central charge estimates shown
in Table II. These results indicate that the central charge is
almost certainly c � 1 throughout the region h � hc and thus
the system is in a critical regime, i.e., a massless phase for
h � hc. In the language of the chiral Potts model, this is an
incommensurate phase.

For h > hc in Fig. 4(b), the correlation length and the von
Neumann entropy exhibit a simple saturation behavior as the
truncation dimension increases. Such saturation behavior in
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FIG. 4. Correlation length ξ (χ ) and the von Neumann entangle-
ment entropy S(χ ) as a function of the iMPS truncation dimension
χ in the (a) massless and (b) massive regions. The corresponding
values of the field h are indicated. Dashed lines for the plots in (a)
correspond to the fitting functions discussed in the text.

TABLE II. Estimates for the central charge c in the massless phase
of the mixed ferro-antiferromagnetic three-state quantum Potts model
obtained from the von Neumann entanglement entropy at different
values of h.

h/J −1 0.06 0.1 0.143
c 1.02(2) 1.02(3) 1.02(2) 1.03(2)

both the correlation length and the von Neumann entropy
indicate that the system is in a noncritical ground state, i.e.,
a massive phase. In Fig. 4(b), one can notice that the von
Neumann entropy is bigger for h = 0.5J than for h = 0.8J .
As can be seen in Fig. 2(a), the von Neumann entropy becomes
smaller as h increases. Actually, for h → ∞, the Hamiltonian
(9) becomes H � −∑∞

−∞ Rj and then the ground state is in
a product state, which means that the von Neuman entropy
becomes zero if the magnetic field h → ∞. Consequently, our
iMPS results show distinct diverging or saturation behavior
of the correlation and the von Neumann entropy above and
below the critical point hc, characteristic of the massless
phase for h � hc or a massive phase for h > hc, respectively.
Correspondingly the Potts Hamiltonian (7) has a massless
phase for β � βc and a massive phase for β > βc.

V. SPIN-SPIN CORRELATIONS AND CRITICAL
EXPONENT η

So far we have studied the quantum entanglement entropy
and thus the characteristic behavior distinguishing the massless
and massive phases in the three-state quantum Potts model
(9) and the corresponding three-state quantum clock model.
In order to understand more about the physical nature of the
massless and massive phases in these models, we investigate
properties of the Potts spin-spin correlation defined by

C12(|i − j |) = 〈
XiX

2
j

〉
. (13)

In the iMPS approach, once the ground state wave function is
obtained, the expectation values of local or nonlocal physical
operators can be calculated [41]. In contrast to a finite-size
lattice calculation, in principle, any lattice distance r = |i − j |
can then be considered for the Potts spin-spin correlation with
the iMPS ground state wave functions |ψ〉.

A. Critical exponent η at the exactly solved point h/J = −1

From the exact calculations, the exactly solved point h/J =
−1 in the three-state quantum Potts model (9) is known to have
the spin-spin correlation length critical exponent η = 1/3.
In order to compare with this exact value at h/J = −1, in
Fig. 5(a), we plot the Potts spin-spin correlation as a function
of the lattice distance r = |i − j | with the iMPS ground
state wavefunction for various truncation dimensions. For
all truncation dimensions, the spin-spin correlation shows an
algebraic decay to its saturated value. The algebraic decaying
part of the spin-spin correlation increases in distance from
a few hundreds to a few thousands of the lattice distance
as the truncation dimension increases. Correspondingly, the
saturation value decreases. From the observed trend, one
may expect that the algebraic decaying range of the spin-
spin correlation reaches an infinite lattice distance in the
thermodynamic limit if the truncation dimension χ → ∞ with
the saturation value tending to zero. For a confirmation of this
behavior, we consider a reasonably large lattice distance r =
|i − j | = 3 × 104 and plot the saturation values of the Potts
spin-spin correlation as a function of truncation dimension
in Fig. 5(b). The saturated value decreases as the truncation
dimension χ increases. To quantify this behavior, we fit the
function C12(3 × 104) = aχb + d, which gives a = 0.32(3),
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FIG. 5. (a) Potts spin-spin correlation C12(r) as a function of the
lattice distance r = |i − j | at field value h/J = −1. (b) Saturation
value of Potts spin-spin correlation C12(χ ) in (a) as a function of
truncation dimension χ at r = 3 × 104. (c) Spin correlation exponent
η as a function of truncation dimension. The exponent η is given from
the fitting function C12(r) = a0 r−η with the numerical constants a0

and η for the algebraic decaying part in (a). The details are discussed
in the text.

b = −0.40(7), and d = 1.56(1) × 10−5. This indicates that
the saturation value of the Potts spin-spin correlation tends
to zero as χ → ∞. The observed saturation behavior is thus
indeed a finite truncation effect.

To estimate the critical exponent η for the Potts spin-spin
correlation in the thermodynamic limit, we consider the
exponents of the algebraic decaying part of the spin-spin
correlation. We performed a numerical fit to the algebraically
decaying part with the function C12(r) = a0 r−η in Fig. 5(a).
The dashed lines in Fig. 5(a) are fits with the parameter values
(i) a0 = 0.533(2) and η = 0.361(2) for χ = 12, (ii) a0 =
0.5108(5) and η = 0.3398(2) for χ = 40, (iii) a0 = 0.5089(3)
and η = 0.3379(2) for χ = 80, and (iv) a0 = 0.5070(4) and
η = 0.3356(2) for χ = 150. These η values show that the
exponent of χ in the fitting function appears to be approaching
the exact value η∞ = 1/3 in the thermodynamic limit. To
obtain η∞ in our iMPS calculation, we plot the estimates for
η for finite truncation dimensions in Fig. 5(c). To extrapolate
the critical exponent in the thermodynamic limit, we fit the

FIG. 6. (a) Potts spin-spin correlation C12(r) as a function of the
lattice distance r = |i − j | at field value h/J = 0.06. (b) Saturation
value of Potts spin-spin correlation C12(χ ) in (a) as a function of
truncation dimension χ at r = 3 × 104. (c) Spin correlation exponent
η as a function of truncation dimension. The η is given from the fitting
function C12(r) = a0 r−η with the numerical constants a0 and η for
the algebraic decaying part in (a). The details are discussed in the
text.

function η(χ ) = η0χ
b + η∞, with result η0 = 0.8(3), b =

−1.3(1), and η∞ = 0.3346(9). This estimate at h/J = −1 is
in excellent agreement with the exact value η = 1/3.

B. Critical nature of the massless phase

As was shown in Sec. IV B, the central charge c � 1 for
h � hc indicates that the system defined by the Hamiltonian
(9) is in a massless phase. In this section, we investigate
the Potts spin-spin correlation in the massless phase. In
order to compare with the detailed behavior of the spin-spin
correlation at h/J = −1, in Fig. 6(a), we plot the spin-spin
correlation as a function of the lattice distance r = |i − j |
at h/J = 0.06 for various truncation dimensions. For all
truncation dimensions, the spin-spin correlations exhibit a
similar behavior with those shown in Fig. 5(a) for h/J = −1,
i.e., they undergo a similar algebraic decay to their saturated
values. Similar to the case h/J = −1, the saturation behavior
is a finite truncation effect. To quantify this behavior, we
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TABLE III. Extrapolated estimates for the correlation length
exponent η in the massless phase of the mixed ferro-antiferromagnetic
three-state quantum Potts model at different values of h.

h/J −1 −0.9 −0.8 −0.7 −0.6
η∞ 0.3346(9) 0.3278(8) 0.3200(4) 0.3119(3) 0.3031(7)
h/J −0.5 −0.4 −0.3 −0.2 −0.1
η∞ 0.293(1) 0.2815(8) 0.269(1) 0.258(2) 0.238(2)
h/J −0.06 0.01 0.06 0.12
η∞ 0.236(1) 0.237(2) 0.248(1) 0.270(1)

plot the saturation values of the spin-spin correlation as a
function of truncation dimension χ for the lattice distance r =
|i − j | = 3 × 104 in Fig. 6(b), which shows that the saturated
value decreases as the truncation dimension χ increases.
We fit the function C12(3 × 104) = aχb + d, which gives
a = 0.35(1), b = −0.23(5), and d = −0.01(3). Similarly to
the case h/J = −1, this indicates that the saturation value of
the spin-spin correlation tends to zero as χ → ∞. We then
performed a numerical fit to the algebraically decaying part of
the spin-spin correlation with the function C12(r) = a0 r−η in
Fig. 6(a). The dashed lines in Fig. 6(a) are fits with
the parameter values (i) a0 = 0.696(9) and η = 0.313(4)
for χ = 12, (ii) a0 = 0.6381(4) and η = 0.2601(6) for
χ = 40, (iii) a0 = 0.629(6) and η = 0.2518(6) for χ = 80,
and (iv) a0 = 0.627(2) and η = 0.2492(7) for χ = 150.
These estimates for η indicate that the exponent of χ in
the fitting function decreases as the truncation dimension
increases. To estimate η∞ we plot the η estimates for
finite truncation dimensions in Fig. 6(c). The extrapolation
is performed with η(χ ) = η0χ

b + η∞ where η0 = 2.6(5)
and b = −1.48(8), which gives η∞ = 0.248(1). The critical
exponent for h/J = 0.06 in the thermodynamic limit is thus
η∞ = 0.248(1). This exponent value clearly differs from the
value at h/J = −1.

To further investigate the Potts spin-spin correlation in the
massless phase we have performed similar calculations in the
parameter range −J � h � 0.12J and have observed similar
finite truncation effects (the details are not presented here) for
the spin-spin correlations. To obtain the critical exponents η

in the thermodynamic χ → ∞ limit, a similar extrapolation
has been performed. The estimates obtained in this way for
the spin-spin correlation exponent η as a function of the field
strength h are tabulated in Table III and plotted in Fig. 7. This
figure clearly shows that the critical exponent of the Potts spin-
spin correlations is continuously varying and has a minimum
value in the parameter range of the massless phase. The overall
shape of this plot is similar with the estimates observed for the
(Kosterlitz-Thouless) exponent η for the purely ferromagnetic
three-state quantum chiral chain [42]. By combining exact
results for the quantum sine-Gordon model with the Kosterlitz-
Thouless theory of melting, such curves have been predicted
[1,43,44] to have a minimum value of 2/q2 and thus 2/9 =
0.222 . . . for q = 3. However, Fig. 7 shows that our estimates
may well be higher than the expected minimum value η = 2/9
and also the expected (Kosterlitz-Thouless) exact value η =
1/4 at the critical point hc. This discrepancy possibly originates
from the difficulty of fitting finite-truncation dimension data
to a power scaling law with a sufficient degree of accuracy.

FIG. 7. Estimates for the Potts spin-spin correlation exponent η

as a function of the transverse field h/J for the indicated values of the
iMPS truncation dimension χ . In the thermodynamic limit χ → ∞,
the exponents are extrapolated in similar fashion to the estimates
shown in Figs. 5(c) and 6(c).

Then our data appears to show an overestimation of the Potts
spin-spin correlation exponents in the thermodynamic limit
due to the finite truncation effects in the iMPS approach. The
value c � 1 of the central charge is consistent with that of the
Kosterlitz-Thouless type.

In Fig. 8, to compare with the behavior of the Potts spin-
spin correlations in the massless phase, we plot the spin-spin
correlation as a function of the lattice distance r = |i − j | for
h = 0.5J in the massive phase. In contrast to the massless
phase, the spin-spin correlation exponentially decays to zero
in the massive phase for h � hc. The log-linear plots show that
the slope of the spin-spin correlation is readily saturated for the
truncation dimension χ = 150. To quantify this behavior of the
Potts spin-spin correlation for h = 0.5J , we fit the Potts spin-
spin correlation for χ = 150 by using the function C12(r) =
c0e

−r/ξ0 with the fitting constant c0 = 0.18(1) and the Potts
spin correlation length ξ0 = 4.21(1). As expected, when the
magnetic field value approaches the critical point, the Potts
spin correlation length ξ0 becomes larger (the details are not
presented here). Consequently, the spin-spin correlations in the
three-state quantum Potts model (9) with antiferromagnetic
coupling J show characteristic behavior, i.e., algebraic decay
to zero for the massless phase h � hc and exponential decay
to zero for the massive phase h > hc.

FIG. 8. Potts spin-spin correlation C12(r) as a function of the
lattice distance r = |i − j | in the massive phase at h/J = 0.5.
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VI. CONCLUSION

The von Neumann entanglement entropy has been demon-
strated here to be an effective tool for estimating the quantum
critical point of the mixed ferro-antiferromagnetic three-state
quantum Potts model (9). The critical point estimate hc/J �
0.143(3) gives an improved estimate for two Kosterlitz-
Thouless transitions in the antiferromagnetic region of the
�-β phase diagram of the quantum version of the three-state
chiral clock model (1). The first transition point is located
at βc = −J/hc � −7.0(1) for � = 0 between disordered and
incommensurate phases. The second transition point is located
at βc � −0.143(3) for � = 1/2 between incommensurate and
commensurate phases. The latter point is deep within the phase
diagram of the chiral clock model and follows from the duality
transformation β ↔ 1/β, � ↔ 1

2 − � [5].
We also used the von Neumann entropy with the correlation

length to calculate the central charge of the underlying
conformal field theory in the massless phase h � hc. Our
estimate c � 1 indicates that the known exact value c = 1
at the particular point h/J = −1 (the antiferromagnetic three-
state quantum Potts model) extends throughout the massless
phase of the mixed ferro-antiferromagnetic model, and thus
into the massless phase of the three-state quantum chiral
clock model for β < 0. This is an interesting feature of the
�-β phase diagram of the three-state quantum chiral clock
model. Previously it was demonstrated that the ferromagnetic
three-state Potts model plays a key role in the ferromagnetic
region β > 0 of the phase diagram [5]. It was not clear,

however, to what extent the antiferromagnetic three-state
Potts model featured in the antiferromagnetic region β < 0
of this phase diagram. Here we have seen that although the
antiferromagnetic three-state Potts model does not make a
direct appearance in the �-β phase diagram—in contrast to
the ferromagnetic three-state Potts model—it rather manifests
itself indirectly through the value c = 1 of the central charge
in the massless incommensurate phase. This is consistent
with a recent DMRG study of the three-state quantum chiral
clock model (in terms of different variables) where it has
been shown that the value c = 1 extends deep into the
incommensurate phase [11]. We conclude by noting that the
estimated continuously varying spin-spin correlation exponent
η in the parameter range of the massless phase shown in Fig. 7
appears to be the typical shape of Kosterlitz-Thouless exponent
estimates in models of this kind [42].
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