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Spin nematic phase is a phase of frustrated quantum magnets with a quadrupolar order of electron spins.
Since the spin nematic order is usually masked in experimentally accessible quantities, it is important to develop
a methodology for detecting the spin nematic order experimentally. In this paper we propose a convenient
method for detecting quasi-long-range spin nematic correlations of a quadrupolar Tomonaga-Luttinger liquid
state of S = 1/2 frustrated ferromagnetic spin chain compounds, using electron spin resonance (ESR). We
focus on linewidth of a so-called paramagnetic resonance peak in ESR absorption spectrum. We show that a
characteristic angular dependence of the linewidth on the direction of magnetic field arises in the spin nematic
phase. Measurements of the angular dependence give a signature of the quadrupolar Tomonaga-Luttinger liquid
state. In our method we change only the direction of the magnetic field, keeping the magnitude of the magnetic field
and the temperature. Therefore, our method is advantageous for investigating the one-dimensional quadrupolar
liquid phase that usually occupies only a narrow region of the phase diagram.
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I. INTRODUCTION

Spin nematic phase is an intriguing phase of quantum mag-
nets characterized by the presence of spontaneous quadrupolar
order and by the absence of spontaneous dipolar order. It
arises out of interplay between geometrical frustration and
interaction effects of electron spins. Geometrical frustration
obstructs growth of the spontaneous dipolar order, and the
interaction effect facilitates growth of the quadrupolar order.
An attractive interaction is necessary for magnons to form a
pair and to condense prior to a single-magnon condensation
[1–5]. As a natural but nontrivial phenomenon, the spin
nematic phase has been actively investigated.

Many models are known to exhibit spin nematic
phases [1,5–7]. In particular, an S = 1/2 frustrated ferro-
magnetic spin chain is of great interest [2,5,8–12]. The spin
nematic phase of the S = 1/2 frustrated ferromagnetic chain
can be seen as a quadrupolar Tomonaga-Luttinger liquid
(TLL) phase [3,9,13,14]. While a “standard” TLL phase
of antiferromagnetic spin chains [15] is accompanied by a
quasi-long-range dipolar antiferromagnetic order [16], the
quadrupolar TLL phase is accompanied by a quasi-long-range
spin nematic order. The S = 1/2 frustrated ferromagnetic
chain also draws much attention for a simple experimental real-
ization in edge-sharing CuO2 chains. Thanks to these features,
many S = 1/2 frustrated ferromagnetic chain compounds have
been synthesized and investigated until today [17–23].

Nevertheless, there remains an issue of how to detect
experimentally the quasi-long-range nematic order. Basi-
cally experimental techniques are sensitive only to dipo-
lar correlations 〈Sa

r Sa
0 〉 and not to quadrupolar correlations

〈Sa
r Sb

r+eS
a
0 Sb

e 〉. Several theoretical proposals were made to
solve the issue. A power-law temperature dependence of the
nuclear magnetic resonance (NMR) relaxation rate 1/T1 ∝
T 2K−1 gives a signature of the spin nematic phase, where K is
a field-dependent TLL parameter [13,14]. Unfortunately, the
predicted power law is not yet observed in experiments [24]
probably because the 1D spin nematic phase appears only
in a narrow temperature range. Changing the temperature, we
easily go out of the ideally 1D region of the spin nematic phase.

It was also pointed out recently that the resonant inelastic x-ray
scattering method can detect a quadrupolar operator [25]. This
proposal is yet to be examined experimentally.

In this paper we propose a practical way of detecting
quasi-long-range spin nematic correlations of S = 1/2 frus-
trated ferromagnetic chain compounds. It is to investigate
dependence of linewidth of an electron spin resonance (ESR)
absorption peak on the direction of magnetic field. We point
out that the linewidth is sensitive to nematic correlations of
electron spins. As a result of the sensitivity, our method gives a
qualitative characterization of the quadrupolar TLL. The main
result is summarized in Fig. 1 and Table I. Changing the field
direction on a plane, we can distinguish the quadrupolar TLL
from the standard TLL. They are distinguished by a period of
an angle θ of the magnetic field that maximizes the linewidth.
The linewidth of the standard TLL becomes maximum at θ = 0
or π/2 mod π . The angle θ that maximizes the linewidth
depends on anisotropies (Table I) and also on the definition
of θ . However, in any case, the period is π . In contrast
to the standard TLL, the linewidth of the quadrupolar TLL
becomes maximum at intermediate angles θ = π/4 mod π/2
(Table I). The period is π/2. This distinction is effective
(1) when the temperature is lower than a single-magnon
excitation gap [10,12], (2) when a weak anisotropic exchange
interaction and/or a weak staggered Dzyaloshinskii-Moriya
(DM) interaction are present, and (3) when the magnetic
field is weak compared to temperature. The condition on
the temperature is necessary to rule out effects of gapped
single-magnon excitations and that on the magnetic field is
to make the linewidth finite.

This paper is planned as follows. In Sec. II we review the
quadrupolar TLL phase of the S = 1/2 frustrated ferromag-
netic chain. Section III is an introduction to ESR of quantum
spin systems, where we will get a glimpse of the way to
detect nematic correlations through the main peak of the ESR
spectrum. We call in this paper the main peak a paramagnetic
(resonance) peak. The idea of detecting the nematic correlation
is clarified in Sec. IV, where we find that various anisotropic
interactions result in characteristic angular dependence of
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FIG. 1. The angular dependence of the ESR linewidth of (a) the
standard TLL and (b) the quadrupolar TLL induced by an intrachain
exchange anisotropy. The angle θ specifies direction of magnetic
field. At θ = 0, the magnetic field is parallel to direction of an
anisotropic spin-spin interaction. The periodicity of the maximum
linewidth against θ enables us to distinguish the quadrupolar TLL
from the standard one.

sin2 θ cos2 θ in the quadrupolar TLL phase. We consider
intrachain exchange anisotropies (Sec. IV A), staggered DM
interactions (Sec. IV B), and interchain exchange anisotropies
(Sec. IV C). To discuss effects of those anisotropic interactions,
we employ the so-called Mori-Kawasaki approach [26]. It
requires a reasonable but nontrivial assumption that the
paramagnetic peak has a single Lorentzian lineshape. In fact,
in several cases of the standard TLL, we can justify the
assumption based on another approach called a self-energy ap-
proach (also known as the Oshikawa-Affleck theory [27,28]).
In Sec. V we discuss the linewidth of the paramagnetic peak
of the standard TLL for two purposes. One is to compare
the angular dependence of the linewidth of the standard TLL
with that of the quadrupolar TLL. The other is to extend the
Oshikawa-Affleck theory, originally developed for a single
spin chain, to coupled spin-chain systems. For these purposes,
we first review the Oshikawa-Affleck theory in Sec. V B for
a longitudinal intrachain anisotropy. At the same time, we
also derive angular dependence of the linewidth based on the
Mori-Kawasaki approach (Sec. V C) and see its consistency
with the Oshikawa-Affleck theory. The angular dependence of
the linewidth of the standard TLL induced by the staggered
DM interaction was derived in Refs. [27,28] and is summarized
in Sec. V D. Next we show that we can deal with interchain
exchange anisotropies using the extended version of the
Oshikawa-Affleck theory in Sec. V E. All these results are
briefly given in Table I. Finally, we summarize the paper
in Sec. VI. We also discuss in the Appendix an interesting
example of anisotropy to which the self-energy approach is
applicable but the Mori-Kawasaki approach is not.

II. QUADRUPOLAR TLL

The S = 1/2 frustrated ferromagnetic chain has the Hamil-
tonian,

HFF
0 =

∑
j

(
J1 Sj · Sj+1 + J2 Sj · Sj+2 − gμBHSz

j

)
, (2.1)

where Sj = (Sx
j ,S

y

j ,Sz
j ) is an S = 1/2 spin, J1 < 0 < J2, g

and μB are the g factor and the Bohr magneton of electron,
and H is the magnitude of the magnetic field. In what follows
we take �, the Boltzmann constant kB , and the lattice spacing
a as unity: � = kB = a = 1. Moreover, we include the factor
gμB into H and thus denote gμBH as H .

Spin nematic phases emerge usually under a high magnetic
field near the saturation field. If excitation of a bound
magnon pair costs lower energy than an unpaired magnon
in the fully polarized phase, reduction of the magnetic field
induces a condensation of the bound magnon pair, that is, a
quantum phase transition from the fully polarized phase to the
spin nematic phase. Let us denote creation and annihilation
operators of a bound magnon pair at the j th site as b

†
j and bj ,

respectively. In the fully polarized phase, creation of the bound
magnon pair corresponds to a flipping of neighboring spins
represented by an operation of S−

j S−
j ′ , where S±

j ≡ Sx
j ± iS

y

j .

Thus, a pair flipping operator S−
j S−

j ′ corresponds to b
†
j and the

spin-nematic phase is a condensed phase of these excitations.
In the S = 1/2 frustrated ferromagnetic chain (2.1), bj and b

†
j

are related to the spin operator at j th site as follows [9]:

Sz
j = 1

2 − 2b
†
j bj , (2.2)

S−
j S−

j+1 = (−1)j b†j . (2.3)

The bound magnon pair is a boson and bj and b
†
j satisfy

the canonical commutation relation [bj ,b
†
j ′ ] = δj,j ′ . In fact,

the canonical commutation relation is necessary to respect
a commutation relation of spins, [

∑
j Sz

j ,
∑

j ′ S
+
j ′ S

+
j ′+1] =

2
∑

j S+
j S+

j+1. We note that the mapping of Eqs. (2.2) and (2.3)
is valid basically in the low-energy limit and that the bound
magnon pair is a hard-core boson since (b†j )2 = (S−

j S−
j+1)2

vanishes in S = 1/2 systems. In general, the collective motion
of the hard-core boson in 1D is described by two bosons �

and �, which satisfy [15,29]

b
†
j =

(
ρ̄ − 1

π
∂x�

)1/2 ∑
n∈Z

ei2n(πρ̄x+�)e−i�, (2.4)

b
†
j bj =

(
ρ̄ − 1

π
∂x�

) ∞∑
n=0

cos(2πnρ̄x + 2n�). (2.5)

TABLE I. Angular dependences of the linewidth of the paramagnetic resonance peak for the standard TLL and the quadrupolar TLL when
the temperature T is lower than the single-magnon gap (4.5) and the magnetic field and the magnetization are weak (4.10). θ is the angle
between the direction of the magnetic field and a direction of an anisotropy.

Anisotropy Standard TLL Quadrupolar TLL

Intrachain exchange interaction (4.21) 1 + cos2 θ sin2 θ cos2 θ

Staggered DM interaction (4.25) sin2 θ sin2 θ cos2 θ

Unfrustrated interchain exchange interaction (4.36) 2 cos4 θ + sin2 θ sin2 θ cos2 θ

Frustrated interchain exchange interaction (4.45) cos4 θ + cos2 θ sin2 θ cos2 θ
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� and � are a conjugate of each other related through a
commutation relation, [�(x),∂x ′�(x ′)] = iπδ(x − x ′). ρ̄ is the
average density of the bound magnon pair, ρ̄ = ∑

j 〈b†j bj 〉 /N

where N is the number of sites. Equation (2.2) relates the
magnetization density M and ρ̄,

ρ̄ = 1
2

(
1
2 − M

)
. (2.6)

It can be rephrased as a relation between the magnetization
density and an incommensurate wave number of 〈SzSz〉 (ω,q)
along the spin chain. Let us denote the wave number q0.
According to Eqs. (2.2) and (2.5), we find that

q0 = π
(

1
2 − M

)
. (2.7)

The validity of the relation (2.7) is numerically confirmed for
quite a wide range of M in the quadrupolar TLL phase [12].

At low energies, the S = 1/2 frustrated ferromagnetic chain
is well described by an effective field theory of the quadrupolar
TLL [9,13],

HFF
0 ≈ v

2π

∫
dx

(
K(∂x�)2 + 1

K
(∂x�)2

)
, (2.8)

where K is so-called the TLL parameter [15]. In the effective
field theory (2.8), the unpaired magnon excitation is discarded
for a large cost of excitation energy. The gap of an unpaired
magnon is numerically estimated in Refs. [10,12]. The
quadratic TLL has the quasi-long-range nematic order as well
as the quasi-long-range spin-density-wave (SDW) order. This
fact can be found in spatial correlations of 〈S+

r S+
r+1S

−
0 S−

1 〉
and 〈Sz

r S
z
0〉. They are gradually decaying with a power law of

|r| [9]:

〈S+
r S+

r+1S
−
0 S−

1 〉 = (−1)r
[

C0

|r| 1
2K

+ C1 cos(2πρ̄r)

|r|2K+ 1
2K

+ C2 cos(4πρ̄r)

|r|8K+ 1
2K

+ · · ·
]
, (2.9)

and 〈
Sz

r S
z
0

〉 − M2 = − K

2π2r2
+ A1 cos(2πρ̄r)

|r|2K

+ A2 cos(4πρ̄r)

|r|8K
+ · · · , (2.10)

where Cn and An for nonnegative integers n are constants
undetermined at the level of the field theory. 〈Sx

r Sx
0 〉 and

〈Sy
r S

y

0 〉 decay exponentially with |r| and thus the transverse
antiferromagnetic order is absent. The first term of the right
hand side of Eq. (2.9) represents the presence of the quasi-
long-range nematic order. Likewise, the second term of the
right hand side of Eq. (2.10) represents the quasi-long-range
SDW order. The first term proportional to |r|−2 merely reflects
the fact that the TLL is critical. When K > 1/2, the nematic
correlation decays slower than the SDW correlation does.
This means that the spin nematic order is more developed
than the SDW order. Thus the spin nematic phase of the
S = 1/2 frustrated ferromagnetic chain is defined as a region
of K > 1/2. Since the TLL parameter increases monotonically
with increase of the magnetization [9], the quadrupolar TLL
phase is split into two phases: an SDW phase (K < 1/2) on
the lower-field side and a spin nematic phase (K > 1/2) on the

SDW2

(K < 1
2 )

spin nematic
(K > 1

2 )
vector 
chiral

Hc1

fully 
polarized

HsH∗
quadrupolar TLL

H

FIG. 2. The ground-state phase diagram of the S = 1/2 frustrated
ferromagnetic chain (2.1). The quadrupolar TLL phase is spread in
a field range Hc1 < H < Hs . For H < Hc1, the ground state belongs
to the vector chiral phase. For H > Hs , the ground state is fully
polarized. The SDW2 phase and the spin nematic phase are separated
at H = H ∗ where K = 1/2.

higher-field side (Fig. 2). This SDW phase is conventionally
referred to as an SDW2 phase.

We emphasize that the SDW2 and the spin nematic phases
of the S = 1/2 frustrated ferromagnetic chain are essentially
the same phase, the quadrupolar TLL phase. There is no
singularity at the boundary between those phases. In fact, the
SDW2 phase has the quasi-long-range spin nematic order and
the spin nematic phase has the quasi-long range SDW order.

In Sec. IV, we focus on the SDW2 phase, the low-field
region of the quadrupolar TLL phase, because of the following
reasons. First, the SDW2 phase is more easily accessible
in experiments including ESR ones. Second, the qualitative
characterization of the quadrupolar TLL (Table I) is clearer
when the magnetic field is weaker. We will come back to this
point in Sec. IV A 2.

III. ELECTRON SPIN RESONANCE

A. Introduction

ESR is a unique experimental probe to correlations of
electron spins in materials. It basically probes only uniform
correlations at the wave vector q = 0. Actually the limitation
of the wave vector makes ESR a unique technique sensitive to
anisotropy of the spin-spin interaction [27,28,30]. Therefore,
ESR can detect magnetic excitations invisible to other ex-
perimental techniques [31–36]. Thanks to the sensitivity, the
ESR spectroscopy has been used for specifying and modeling
anisotropic interactions of electron spins [30,37,38].

ESR experiments measure absorption of microwave going
through a target material under the static magnetic field.
According to the linear response theory, absorption intensity
I (ω) is related to a dynamical susceptibility χαα(ω),

Iαα(ω) = H 2
Rω

2
χ ′′

αα(ω), (3.1)

where HR and ω are strength and frequency of the oscillating
magnetic field transmitting the material. We denote the
direction of the polarization of the oscillating field as α

axis. χ ′′
αα(ω) = − ImGR

SαSα (ω) is the imaginary part of the
susceptibility and represented in terms of a retarded Green’s
function of the target material,

GR
SαSα (ω) = −

∫ ∞

0
dt eiωt 〈[Sα(t),Sα(0)]〉. (3.2)

S = ∑
r Sr is the total spin or the q = 0 component of

the Fourier transform, Sq = ∑
r e−iq·r Sr . In general, the
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absorption intensity (3.1) depends on the polarization of the
microwave.

We consider the so-called Faraday configuration where α̂

is perpendicular to the direction of the magnetic field. Here
and in what follows, we denote the unit vector along the α

axis as α̂. If we apply the magnetic field along the z axis, α̂ is
obtained from x̂ after a rotation around the z axis. As far as
only the main peak of the ESR spectrum is concerned, which is
the case throughout this paper, the direction of the polarization
within the xy plane is not important [see Eq. (3.8)]. Instead of
considering Iαα(ω) with Sα , we may deal with a simpler one
I+−(ω) with S± ≡ Sx ± iSy as we see below.

Let us consider a system with a Hamiltonian,

H = HSU(2) − HSz + H′, (3.3)

where HSU(2) is an SU(2) symmetric (i.e., isotropic) spin-spin
interaction, −HSz is the Zeeman energy, and H′ is an
anisotropic interaction. All the models we consider in this
article have Hamiltonians of the form (3.3). Besides, we regard
H′ as a perturbation to the Hamiltonian,

H0 = HSU(2) − HSz. (3.4)

The ESR spectrum of the unperturbed system (3.4) is ex-
tremely simple. Let us denote an unperturbed retarded Green’s
function as GR . Likewise, we also use G for full Green’s
functions such as Matsubara and time-ordered ones and use
G for unperturbed ones throughout the paper. Interestingly,
GR

S+S− (ω) is exactly given by

GR
S+S− (ω) = −i

∫ ∞

0
dt eiωt 〈[S+(t),S−(0)]〉0 (3.5)

= 2 〈Sz〉0

ω − H + i0
. (3.6)

Here 〈·〉0 means an average with respect to the unperturbed
Hamiltonian (3.4). The Green’s function (3.6) immediately
leads to

I+−(ω) = πNH 2
Rω 〈Sz〉0 δ(ω − H ), (3.7)

where N is the number of spins. Ixx and Iyy contain another
term proportional to δ(ω + H ). However, it is not important
because ω + H > 0 by definition. The paramagnetic peak of
the unperturbed system is located exactly at ω = H in the ESR
spectrum and has zero linewidth.

An anisotropic interaction H′ shifts and broadens the
paramagnetic peak [27,30,39] and even yields an additional
absorption peak [34,36]. Still, if we focus on the ESR spectrum
in the vicinity of ω = H , we can obtain a simple relation,

GR
SxSx (ω) ≈ GR

SySy (ω) ≈ 1
4G

R
S+S− (ω). (3.8)

A derivation is given in Appendix A. The relation (3.8) is
derived from the following identity [28],

GR
S+S− (ω)= 2 〈Sz〉

ω − H
− 〈[A,S−]〉

(ω − H )2
+ 1

(ω − H )2
GR
AA† (ω),

(3.9)

where ω − H is shorthand for ω − H + i0 and A is the
operator determined from the anisotropic interaction H′ so

that

A = [H′,S+]. (3.10)

In the absence of the anisotropy, the identity (3.9) immediately
reproduces the exact result (3.6). Note that the relation (3.8) is
approximate but the identity (3.9) is exact.

B. Mori-Kawasaki approach

There is a perturbation theory of shift and linewidth of
the paramagnetic peak called Mori-Kawasaki (MK) theory
after an original work of Mori and Kawasaki [26]. In the MK
approach, we need to make a single nontrivial assumption that
the lineshape of the paramagnetic peak is single Lorentzian.
That is, GR

S+S− (ω) is given in the form of

GR
S+S− (ω) = 2 〈Sz〉

ω − H − �(ω)
, (3.11)

where �(ω) is assumed to be analytic at ω = H . Given
the Green’s function (3.11), �(ω) is directly related to the
resonance frequency ωr and the linewidth η of the paramag-
netic peak: ωr = H + Re �(H ) and η = Im �(H ). One can
find a similar argument in a memory function formalism of
conductivity [40].

The assumption of the lineshape is nontrivial although the
lineshape tends to be Lorentzian in systems with a strong
exchange interaction at low temperatures [41]. Furthermore, it
is quite a subtle problem especially in 1D spin systems whether
it has the single Lorentzian lineshape [42,43]. The Oshikawa-
Affleck theory provided a justification to the assumption in
the S = 1/2 XXZ spin chain and the S = 1/2 Heisenberg spin
chain under a staggered magnetic field [27,28].

Once we accept the assumption of the single Lorentzian
lineshape, we obtain the following perturbative formulas (MK
formulas) for the resonance frequency ωr and the linewidth
η [28],

ωr − H ≈ −〈[A,S−]〉0

2 〈Sz〉0
, (3.12)

η ≈ − 1

2 〈Sz〉0
Im GR

AA†(H ). (3.13)

Note that we kept leading terms only on the right hand sides
of Eqs. (3.12) and (3.13). Actually we can derive the MK
formula (3.12) for the resonance frequency without relying on
the assumption of the Lorentzian lineshape if the paramagnetic
peak is not split [44]. In contrast, the validity of the other
MK formula (3.13) for the linewidth is less evident. The
validity is confirmed only in limited cases [27,28]. In our
case, the assumption is reasonable because the paramagnetic
peak of an S = 1/2 frustrated ferromagnetic chain compound
LiCuVO4 is well fitted by the Lorentzian curve at various
temperatures [45] and it is also true for several cases of the
standard TLL as we will see later. On the other hand, we will
see in Appendix D a case where the assumption breaks down.

C. Nematic correlation and ESR

The MK formulas (3.12) and (3.13) imply that ESR can
detect nematic correlations of electron spins. Those formulas
depend crucially on details ofA. TheA operator is quadratic in
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spin operators if H′ is quadratic. For the same reason, [A,S−]
is also quadratic.

Because spin nematic order parameters are quadratic in
spin operators, Eq. (3.12) implies that the resonance frequency
is related to a spin nematic order parameter and Eq. (3.13)
implies that the linewidth is determined from a nematic
correlation. The quadrupolar TLL phase of the S = 1/2
frustrated ferromagnetic chain has zero spin nematic order
parameter because its spin nematic order is not a long-range
but a quasi-long-range one. For detecting the quasi-long-range
spin nematic order of the quadrupolar TLL phase, we need
to focus on its dynamical aspect. This is the motivation to
consider the ESR linewidth as a probe to the spin nematic
order of the S = 1/2 frustrated ferromagnetic chain. The
implication of the resonance frequency (3.12) for detecting
a long-range spin nematic order parameter is discussed in
detail elsewhere [46]. Here, let us discuss it only briefly. An
anisotropic exchange interaction on nearest-neighbor bonds,
H′ = δ

∑
〈j,j ′〉(S

x
j Sx

j ′ − S
y

j S
y

j ′ ), enables us to measure the order
parameter of the long-range spin nematic order. In fact, the
anisotropic interaction leads to [A,S−] = 2δ

∑
〈j,j ′〉 S

−
j S−

j ′ ,
which is nothing but the ferroquadrupolar order parameter.

IV. ESR LINEWIDTH OF THE QUADRUPOLAR TLL

Let us take a close look at the linewidth of the S = 1/2 frus-
trated ferromagnetic chain with an anisotropic interaction H′,

HFF = HFF
0 + H′. (4.1)

In this section we use the MK formula (3.13), making
the assumption of the single Lorentzian lineshape. As an
anisotropy, we consider an intrachain exchange anisotropy
(Sec. IV A), a staggered DM interaction (Sec. IV B), and an
interchain exchange anisotropy (Sec. IV C).

A. Exchange anisotropy

An exchange anisotropy,

H′ =
∑

p=a,b,c

δp

∑
j

S
p

j S
p

j+1, (4.2)

is a representative of anisotropic interactions. Here (a,b,c) de-
notes the crystalline coordinate. We call (x,y,z) the laboratory
coordinate. We assume that both of the sets {â,b̂,ĉ} and {x̂,ŷ,ẑ}
form right-handed orthogonal coordinate systems. In what
follows we fix the direction of the magnetic field to ẑ and rotate
the direction of the magnetic field in the crystalline coordinate.

1. Angular dependence

To get insight into the angular dependence of the linewidth,
we first consider a uniaxial case of δa = δb = 0 and next
extend it to the general case. Let θ be the angle formed by
ẑ and ĉ. We may assume that ĉ is on the zx plane. Then the
uniaxial exchange anisotropy is represented in the laboratory
coordinate as

H′ = δc

∑
j

[
Sz

jS
z
j+1 cos2 θ + Sx

j Sx
j+1 sin2 θ

+ (
Sz

jS
x
j+1 + Sx

j Sz
j+1

)
sin θ cos θ

]
. (4.3)

The operator (3.10) is thus expressed as

A = δc

∑
j

[(
Sz

jS
+
j+1 + S+

j Sz
j+1

)
cos2 θ

− (
Sz

jS
x
j+1 + Sx

j Sz
j+1

)
sin2 θ + (

S+
j S+

j+1 + Sx
j Sx

j+1

+ S
y

j S
y

j+1−2Sz
jS

z
j+1

)
sin θ cos θ

]
. (4.4)

It includes the bound magnon pair annihilation operator
S+

j S+
j+1 ≈ (−1)j bj which leads to a power-law temperature

dependence. The Green’s function of Sz
jS

z
j+1 also obeys a

power law but with a different power. In contrast, all the other
terms such as Sz

jS
+
j+1 involve creation or annihilation of gapped

unpaired magnons. Green’s functions of those operators are
exponentially decaying as e−�1/T and negligible when the
temperature is lower than the gap of an unpaired magnon �1,

T < �1. (4.5)

Therefore, at low temperatures (4.5), we may approximate the
operator (4.4) as

A ≈ δc sin θ cos θ
∑

j

(
S+

j S+
j+1 − 2Sz

jS
z
j+1

)
. (4.6)

Interestingly enough, we have already found the angular
dependence of the linewidth (3.13) without calculating details
of the correlation function. Indeed, since 〈Sz〉0 in the numerator
of Eq. (3.13) is independent of θ , Eq. (4.6) gives

η ∝ δ2
c sin2 θ cos2 θ. (4.7)

2. Temperature and field dependences

We obtained the angular dependence (4.7) simply by
identifying contributions of bound magnon pairs. In contrast,
the temperature and field dependences of the linewidth are
more intricate. Let us look into them under an additional
condition,

M � 1, (4.8)

for a technical reason. The condition (4.8) is also rephrased as∣∣ρ̄ − 1
4

∣∣ � 1. (4.9)

Practically, the condition (4.8) can be relaxed to

max{M,H/J2} � T/J2, (4.10)

because Im GR
AA† (H ) is vanishing for max{MJ2,H }/T � 1,

as we will see later in this section. Two inequalities (4.5)
and (4.10) lead immediately to

max{M,H/J2} � �1/J2. (4.11)

The field range (4.11) turns out to be a low-field region of
the quadrupolar TLL phase, which is highly likely to be the
SDW2 phase, because �1/H does not grow very much with
an increase of H [10,12].
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As the summation of Eq. (4.6) indicates, the
linewidth (3.13) picks up the q = 0 parts of the correlation
functions 〈S+

j S+
j+1S

−
0 S−

1 〉 and 〈Sz
jS

z
j+1S

z
0S

z
1〉. According to

the bosonization formulas (2.4) and (2.5), the q = 0 part of
S+

j S+
j+1 is∑

j

S+
j S+

j+1 ≈
∑

j

(−1)j bj

≈ ρ̄

∫
dx eiπx cos(4πρ̄x + 4�)ei�

= ρ̄

∫
dx cos(2πMx − 4�)ei�, (4.12)

where we picked up the most relevant interaction
in the expansion (2.4) that compensates the rapid
oscillation (−1)j = eiπx , using the assumption (4.8). The
approximation (4.12) breaks down when M → 1/2 because
the cosine suffers from the rapid oscillation ei2πMx ≈ eiπx .
According to the bosonization formula (2.4), the correlation
function of the operator

∑
j S+

j S+
j+1 has vanishing intensity

when M → 1/2 (i.e., ρ̄ → 0).
The q = 0 part of Sz

jS
z
j+1 is∑

j

Sz
jS

z
j+1 ≈ ρ̄2

∫
dx cos(8πρ̄x + 8�)

= ρ̄2
∫

dx cos(4πMx − 8�). (4.13)

The operators e±i4�ei� and e±i8� appearing in Eqs. (4.12)
and (4.13) are vertex operators with conformal weights
(�+,�̄+) and (�z,�̄z), respectively. They are related to the
TLL parameter as

(�+, �̄+) =
(

(4K − 1)2

8K
,

(4K + 1)2

8K

)
, (4.14)

(�z, �̄z) = (8K, 8K). (4.15)

Let us suppose that O(t,x) is a vertex operator of
the field theory (2.8) and has a conformal weight
(�,�̄). Using its retarded Green’s function GR

(�,�̄)(ω,q) =
−i

∫ ∞
0 dt ei(ωt−qx)〈[O(t,x),O†(0,0)]〉0, we can write GR

AA† (ω)
for Eq. (4.6) as

GR
AA† (ω) = Nδ2

c sin2 θ cos2 θ

2

×
∑
σ=±

[
ρ̄2GR

(�+,�̄+)(ω,2πMσ )

+ 4ρ̄4GR
(�z,�̄z)(ω,4πMσ )

]
. (4.16)

The precise form of the retarded Green’s function
GR

(�,�̄)(ω,q) is known for general (�,�̄) [15]:

GR
(�,�̄)(ω,q) = − sin(2π�)

v

(
2πT

v

)2(�+�̄−1)

×B

(
� − i

ω + vq

4πT
, 1 − 2�

)

×B

(
�̄ − i

ω − vq

4πT
, 1 − 2�̄

)
. (4.17)

B(x,y) = �(x)�(y)/�(x + y) is the Beta function and �(z)
is the Gamma function. Instead of Eq. (4.17), the following
equivalent representation is useful for later purpose:

GR
(�,�̄)(ω,q) =− 1

v sin(2π�̄)�(2�)�(2�̄)

(
2πT

v

)2(�+�̄−1)

×
∣∣∣∣�

(
�+i

ω + vq

4πT

)
�

(
�̄+i

ω − vq

4πT

)∣∣∣∣
2

× sin

(
π�+i

ω+vq

4T

)
sin

(
π�̄+i

ω − vq

4T

)
.

(4.18)

We used the identity �(z)�(1 − z) = π/ sin(πz) to rewrite it.
The linewidth is determined from GR

AA† (H ) which is
governed by GR

(�+,�̄+)(H, ± 2πM) and GR
(�z,�̄z)(H, ± 4πM).

Since the Gamma functions in Eq. (4.18) vanish rapidly
for max{|ω + vq|,|ω − vq|}/T � 1 and the velocity v is
of the order of J2 [10], the magnetic field H and the
magnetization density M must satisfy the condition (4.10).
The condition (4.10) is directly related to the discussion of the
vanishing spatial integral given below Eq. (4.12).

Let us ask a question of which of GR
(�+,�̄+)(H, ± 2πM)

and GR
(�z,�̄z)(H, ± 4πM) governs mostly the temperature

dependence of Eq. (4.16) at ω = H . The operator S+
j S+

j+1 leads

to the power law (T/v)2(�++�̄+)−3 and the operator Sz
jS

z
j+1

leads to (T/v)2(�z+�̄z)−3. The latter is negligible compared
to the former when T/v < 1 and K > 1/4

√
3 ≈ 0.14. The

former inequality will be easily satisfied because we limit
temperatures to be much lower than the gap of an unpaired
magnon and �v/a is usually larger than the gap. According
to a numerical estimation of K [9], the inequality for K is
also easily satisfied in the SDW2 phase. Based on this fact, we
approximate GR

AA†(ω) as

GR
AA† (ω) ≈ Nδ2

c ρ̄
2 sin2 θ cos2 θ

2

∑
σ=±

GR
(�+,�̄+)(ω,2πMσ ).

(4.19)
It immediately follows that

η ≈ δ2
c ρ̄

2 sin2 θ cos2 θ

2M

∑
σ=±

[−ImGR
(�+,�̄+)(H, ± 2πMσ )

]
.

(4.20)
The temperature dependence of the linewidth is determined
from those of GR

(�+,�̄+)(H, ± 2πM). In principle, the tem-
perature dependence of the linewidth tells us the value of
K which characterizes the quadrupolar TLL similarly to the
NMR relaxation rate [13]. However, it will be challenging to
track the intricate temperature dependence of the complicated
function (4.20) in the narrow 1D phase. This intricacy
motivates us to focus on the angular dependence rather than
the temperature dependence.

3. General exchange anisotropies

We have considered the uniaxial anisotropy for simplicity.
Here we extend our discussion to general cases. Let us rotate
the direction of the magnetic field on the zx plane. For
simplicity, we take b̂ = ŷ. Then the zx plane equals to the
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ca plane and the exchange anisotropy is expressed as

H′ =
∑

j

[
Sz

jS
z
j+1(δc cos2 θ + δa sin2 θ )

+ Sx
j Sx

j+1(δc sin2 θ + δa cos2 θ )

+ (
Sz

jS
x
j+1 + Sx

j Sz
j+1

)
(δc − δa) sin θ cos θ

]
+ δb

∑
j

S
y

j S
y

j+1. (4.21)

It leads to

A =
∑

j

[(
Sz

jS
+
j+1 + S+

j Sz
j+1

)
(δc cos2 θ + δa sin2 θ )

− (
Sz

jS
x
j+1 + Sx

j Sz
j+1

)
(δc sin2 θ + δa cos2 θ )

+ (
S+

j S+
j+1 + Sx

j Sx
j+1 + S

y

j S
y

j+1 − 2Sz
jS

z
j+1

)
× (δc − δa) sin θ cos θ

] − iδb

∑
j

(
Sz

jS
y

j+1 + S
y

j Sz
j+1

)
.

(4.22)

Keeping the relevant terms involved only with bound magnon
pairs, we find

A ≈ (δc − δa) sin θ cos θ
∑

j

(
S+

j S+
j+1 − 2Sz

jS
z
j+1

)
, (4.23)

and also

η ≈ (δc − δa)2ρ̄2 sin2 θ cos2 θ

2M

×
∑
σ=±

[−ImGR
(�+,�̄+)(H, ± 2πMσ )

]
. (4.24)

We found that the angular dependence of the linewidth induced
by the general (intrachain) exchange anisotropy (4.21) is
sin2 θ cos2 θ and that the anisotropy perpendicular to the plane
on which the magnetic field is rotated is negligible.

The sin2 θ cos2 θ dependence of the linewidth is unique and
seems to be independent of details of anisotropies. Namely,
we may expect that the unique angular dependence of the
linewidth characterizes the quadrupolar TLL. To support this
claim, we investigate the linewidth of the quadrupolar TLL
induced by other major anisotropies and also that of the
standard TLL for comparison. In the rest of this section we deal
with the quadrupolar TLL with the staggered DM interaction
or with the interchain exchange anisotropy. The linewidth of
the standard TLL is investigated in the next section.

B. Staggered DM interaction

The DM interaction is another typical anisotropic interac-
tion,

H′ =
∑

j

Dj · Sj × Sj+1. (4.25)

When the DM vector alters the direction as Dj = (−1)j D,
it is called the staggered DM interaction. Several spin
chain compounds are known to have the staggered DM
interaction [31,32]. An S = 1/2 frustrated ferromagnetic chain

compound NaCuMoO4(OH) can also have a tiny staggered
DM interaction [47].

We take D = Dĉ. The staggered DM interaction is actually
removable from the Hamiltonian of the S = 1/2 frustrated
ferromagnetic chain (4.1). A rotation of spin Sj to S̃j ,(

Sa
j

Sb
j

)
=

(
cos α (−1)j sin α

−(−1)j sin α cos α

)(
S̃a

j

S̃b
j

)
, (4.26)

eliminates the staggered DM interaction when the angle α

equals to α = D/2|J1| [48]. Instead an exchange anisotropy
shows up.

HFF =
∑

j

(
J1 Sj · Sj+1 + J2 Sj · Sj+2 − HSz

j

)

+D
∑

j

(−1)j
(
Sa

j Sb
j+1 − Sb

j S
a
j+1

)

=
∑

j

(−√
J 2

1 + D2 S̃j · S̃j+1 + J2 S̃j · S̃j+2 − HSz
j

)

+ (√
J 2

1 + D2 − |J1|
)∑

j

S̃c
j S̃

c
j+1. (4.27)

The uniaxial anisotropy emerged along the c axis of the
crystalline coordinate. Let us relate the laboratory and the
crystalline coordinates. Here again we consider the rotation ĉ

on the zx plane with b̂ = ŷ,

x̂ = −ĉ sin θ + â cos θ,

ŷ = b̂,

ẑ = ĉ cos θ + â sin θ. (4.28)

Then, up to the first order of D/|J1|, the Hamiltonian (4.27) is
approximated as

HFF ≈
∑

j

(J1 S̃j · S̃j+1 + J2 S̃j · S̃j+2)

−
∑

j

(
HS̃z

j + (−1)jhS̃
y

j

)
, (4.29)

with an effective staggered field,

h = DH

2|J1| sin θ. (4.30)

In contrast to the standard TLL phase [48], the staggered field
in the quadrupolar TLL phase is irrelevant because it involves
unpaired magnons. Although the staggered field can prevent
magnons from forming the quadrupolar TLL by inducing the
Néel order, when once the quadrupolar TLL is formed, the
weak staggered field has little impact on the Green’s function
of GR

AA† .
The leading interaction which governs GR

AA† is the ex-
change anisotropy,(√

J 2
1 + D2 − |J1|

)∑
j

S̃c
j S̃

c
j+1

≈ D2

2|J1|
∑

j

[
S̃z

j S̃
z
j+1 cos2 θ + S̃x

j S̃x
j+1 sin2 θ

− (S̃z
j S̃

x
j+1 + S̃x

j S̃x
j+1) sin θ cos θ

]
. (4.31)
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The staggered DM interaction as well as the exchange
anisotropy induces the linewidth (4.20), where δc is replaced
to D2/2|J1|:

η ∝ D4

J 2
1

sin2 θ cos2 θ. (4.32)

We have again obtained the dependence of the sin2 θ cos2 θ

type. Under the additional condition (4.9), the linewidth is
given by

η ≈ D4ρ̄2 sin2 θ cos2 θ

8J 2
1 M

∑
σ=±

[−ImGR
(�+,�̄+)(H, ± 2πMσ )

]
.

(4.33)

C. Interchain interaction

Interchain interaction also gives rise to the linewidth [49].
The interchain interaction becomes nonnegligible as the
temperature is lowered. Here we show that interchain exchange
anisotropies also yield the sin2 θ cos2 θ dependence of the
linewidth. Note that the effect of the interchain interaction is
investigated within the purely 1D phase where the spin chain
is independent of the other chains in the material.

1. Unfrustrated interaction

Including the interchain interaction, we modify our system.
Here we consider a coupled spin chain system where each
spin chain is composed of N‖ spins and the whole system is
composed of N⊥ = N/N‖ spin chains. A Hamiltonian of this
system is

H =
∑

R

H0
FF,R + Hint, (4.34)

where H0
FF,R and Hint are the Hamiltonian of the frustrated

ferromagnetic chain (2.1) and the interchain interaction,
respectively. The three-dimensional vector R specifies the
location of a spin chain. The spin operator Sj,R also acquires
the additional index R. Restricting ourselves to the 1D phase,
we regard Hint as a perturbation to the Hamiltonian,

H0 =
∑

R

H0
FF,R. (4.35)

The perturbation Hint contains an isotropic interchain in-
teraction as well as an anisotropic one. Since the isotropic
interaction yields no linewidth, we discard it and identify Hint

with an interchain anisotropic interaction H′.
We consider the most important example of an unfrustrated

nearest-neighbor interchain interaction,

H′ =
∑

p=a,b,c

δp

∑
j

∑
〈R,R′〉

S
p

j,RS
p

j,R′ , (4.36)

where 〈R,R′〉 denotes a combination of nearest-neighbor
chains at R and R′. The argument about the nearest-neighbor
exchange anisotropy (4.36) given below is generic, and it is
easy to adapt it to general unfrustrated interchain exchange
anisotropies.

Let us rotate the direction of the magnetic field parallel to
ĉ within the zx plane so that b̂ = ŷ:

H′ =
∑

j

∑
〈R,R′〉

[
Sz

j,RSz
j,R′(δc cos2 θ + δa sin2 θ )

+ Sx
j,RSx

j,R′(δc sin2 θ + δa cos2 θ )

+ (
Sz

j,RSx
j,R′ + Sx

j,RSz
j,R′

)
(δc − δa) sin θ cos θ

]
+ δb

∑
j

∑
〈R,R′〉

S
y

j,RS
y

j,R′ . (4.37)

The operator A = [H′,S+] is

A =
∑

j

∑
〈R,R′〉

[(
Sz

j,RS+
j,R′ + S+

j,RSz
j,R′

)
(δc cos2 θ + δa sin2 θ )

− (
Sz

j,RSx
j,R′ + Sx

j,RSz
j,R′

)
(δc sin2 θ + δa cos2 θ )

+ (
S+

j,RS+
j,R′ + Sx

j,RSx
j,R′ + S

y

j,RS
y

j,R′ − 2Sz
j,RSz

j,R′
)

× (δc − δa) sin θ cos θ
]

− iδb

∑
j

∑
〈R,R′〉

(
Sz

j,RS
y

j,R′ + S
y

j,RSz
j,R′

)
. (4.38)

The operator S+
j,RS+

j,R′ is negligible compared to Sz
j,RSz

j,R′ . In
fact, the nematic correlation function of S+

j,RS+
j,R′ for R �= R′

is split into a product of two dipolar correlation functions,

〈
S+

j1,R1
S+

j1,R′
1
S−

j2,R2
S−

j2,R′
2

〉
0

= 〈
S+

j1,R1
S−

j2,R1

〉
0

〈
S+

j1,R′
1
S−

j2,R′
1

〉
0

× (
δR1,R2δR′

1,R′
2
+ δR1,R′

2
δR′

1,R2

)
, (4.39)

which decays exponentially. Thus we may approximate
Eq. (4.38) as

A ≈ −2(δc − δa) sin θ cos θ
∑

j

∑
〈R,R′〉

Sz
j,RSz

j,R′ . (4.40)

The absence of the S+S+ term is the largest differ-
ence from the intrachain interaction (4.23). The interaction∑

j

∑
〈R,R′〉 S

z
j,RSz

j,R′ effectively turns into

∑
j

∑
〈R,R′〉

Sz
j,RSz

j,R′

≈ ρ̄2
∫

dx
∑

〈R,R′〉
cos(2πρ̄x + 2�) cos(2πρ̄x + 2�′)

≈ ρ̄2

2

∫
dx

∑
〈R,R′〉

cos[2(� − �′)], (4.41)

where � and �′ are the bosonic field of the quadrupolar TLLs
at the chain R and at the chain R′, respectively, and the rapidly
oscillating terms are dropped.

To calculate the retarded Green’s function of ei2(�−�′),
let us take a brief look at the time-ordered Green’s func-
tion. The unperturbed time-ordered correlation function
〈Tte

ia�(t,x)e−ia�(0,0)〉0, which we denote as GT
eia�e−ia� (t,x), is
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precisely given by [15]

GT
eia�e−ia� (t,x)

= −
(

πT

2v

) a2K
2

[
sinh

(
πT

v
(x − vt + iε sgn(t))

)]− a2K
4

×
[

sinh

(
πT

v
(x + vt + iε sgn(t))

)]− a2K
4

, (4.42)

where ε is a positive infinitesimal number. Since the un-
perturbed Hamiltonian (4.35) is free from any interchain
interaction, the time-ordered Green’s function for ei2(�−�′)

is simply given by a product GT
ei2�e−i2� (t,x)GT

e−i2�′
ei2�′ (t,x) =

[GT
ei2�e−i2� (t,x)]2. Equation (4.42) tells us that [GT

ei2�e−i2� (t,x)]2

actually equals to GT

ei2
√

2�e−i2
√

2�
(t,x), which is the time-ordered

Green’s function of the vertex operator ei2
√

2� with the confor-
mal weight (K,K). Considering a fact that a retarded Green’s
function of a vertex operator is proportional to the imaginary
part of a corresponding time-ordered Green’s function [15],
we can conclude that the retarded Green’s function of ei2(�−�′)

equals to that of ei2
√

2�, that is, GR
(K,K)(ω,q). Thus we obtain

GR
AA†(ω) = ζNρ̄4

2
(δc − δa)2 sin2 θ cos2 θGR

(K,K)(ω,0),

(4.43)

where ζ = (
∑

〈R,R′〉 1)/N⊥ is a half of the number of neigh-
boring spin chains. The unfrustrated interchain exchange
interaction generates the linewidth,

η = ζ ρ̄4(δc − δa)2 sin2 θ cos2 θ

4M

[−ImGR
(K,K)(H,0)

]
. (4.44)

The linewidth (4.44) also exhibits the angular dependence of
sin2 θ cos2 θ .

2. Frustrated triangular interaction

Geometrically frustrated interchain interactions in general
affect temperature and angular dependences of the linewidth.
For the standard TLL, we will discuss its effect later in
Sec. V G. The quadrupolar TLL is much simpler. The frustra-
tion has no impact on the temperature and angular dependences
of the linewidth. To see this, we consider a frustrated interchain
interaction which forms triangular networks of spin chains,

H′ =
∑

p=a,b,c

δp

∑
j

∑
〈R,R′〉

S
p

j,R

(
S

p

j,R′ + S
p

j+1,R′
)
. (4.45)

In the quadrupolar TLL phase, A = [H′,S+] of the frustrated
interaction (4.45) is

A ≈ −(δc − δa) sin θ cos θ
∑

j

∑
〈R,R′〉

{
Sz

j,R

(
Sz

j,R′ + Sz
j+1,R′

)
+ (R ↔ R′)

}
≈ −ρ̄2(δc − δa) sin θ cos θ

×
∫

dx
∑

〈R,R′〉
{1 + cos(2πρ̄)} cos[2(� − �′)]. (4.46)

Thus the frustrated interchain interaction yields the linewidth
of

η = ζ ρ̄4(δc − δa)2 sin2 θ cos2 θ

2M
{1 + cos(2πρ̄)}2

× [−ImGR
(K,K)(H,0)

]
, (4.47)

which is identical with the linewidth (4.44) induced by
the unfrustrated interchain interaction except for the minor
modification of the coefficient.

D. Short summary and discussion

We have dealt with the linewidth of the quadrupolar TLL
induced by three major anisotropic interactions: the exchange
anisotropies within a chain [Eq. (4.24)] and between chains
[Eq. (4.44)] and the staggered DM interaction [Eq. (4.33)].
The linewidth of the paramagnetic peak of the quadrupolar
TLL induced by these anisotropic interactions exhibits the
angular dependence of sin2 θ cos2 θ (Table I).

The angular dependence of sin2 θ cos2 θ follows from the
simple fact that the q = 0 component of correlation functions
involved with unpaired magnons are negligible compared to
those of bound magnon pairs. This argument is independent
of dimensionality and applicable to spin nematic phases in
higher-dimensional systems. Moreover, in higher-dimensional
systems, the paramagnetic resonance frequency (3.12) will
give an order parameter of long-range spin nematic order [46].

We did not deal with an important case of the uniform DM
interaction because of the following reason. Our argument
in this section relies crucially on the assumption that the
paramagnetic peak has the single Lorentzian lineshape. As
we discuss in Appendix D, this assumption breaks down in
the standard TLL of a system with a uniform DM interaction.
It is unclear whether the uniform DM interaction also splits
the paramagnetic peak of the quadrupolar TLL. We keep as
an open problem investigation of effects of the uniform DM
interaction on ESR of the quadrupolar TLL.

V. ESR OF THE STANDARD TLL

This section has a twofold aim. First, we investigate
the ESR linewidth of the standard TLL for comparison
with that of the quadrupolar TLL. Second, we extend the
Oshikawa-Affleck theory and discuss the linewidth of coupled
TLL systems induced by interchain exchange anisotropies. In
Ref. [49], the author used the MK formula (3.13) to investigate
the linewidth of the standard TLL induced by interchain
exchange anisotropies without justifying the assumption of
the lineshape. Using the extended Oshikawa-Affleck theory,
we prove that its lineshape affected by interchain interactions
is indeed the single Lorentzian one.

A. Non-Abelian bosonization

In the previous sections we dealt with the S = 1/2 frustrated
ferromagnetic chain (4.1) and discussed the quadrupolar TLL
with the aid of the Abelian bosonization technique (2.4)
and (2.5). Here, in order to discuss the standard TLL, we
investigate an S = 1/2 Heisenberg antiferromagnetic (HAFM)
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chain described by a Hamiltonian,

HHAFM = HHAFM
0 + H′, (5.1)

with

HHAFM
0 = J

∑
j

Sj · Sj+1 − HSz, (5.2)

and an anisotropic perturbation H′ to it. Moreover, we use a
non-Abelian bosonization technique to describe the standard
TLL instead of the Abelian one. Although those bosonization
techniques are equivalent, the non-Abelian one is practically
more convenient in this section.

Let us start our discussion from the fully SU(2) symmetric
case, that is, the unperturbed system (5.2) at zero magnetic
field. Its low-energy effective Hamiltonian is given by

H0 = v

2

∫
dx {(∂xφ̃)2 + (∂xφ)2}. (5.3)

Here v is the velocity of the TLL and φ and φ̃ are U(1)
compactified boson fields of the TLL. They are compactified
as

φ ∼ φ + 2πNR,
(5.4)

φ̃ ∼ φ̃ + Ñ

R
,

with a compactification radius R = 1/
√

2π and N,Ñ ∈ Z.
The symbol ∼ means an identification through the compact-
ification. The Green’s function of φ is related to that of φ̃

thanks to the following duality of φ and φ̃. Since they satisfy
a commutation relation [φ(x),∂x ′ φ̃′(x)] = iδ(x − x ′), they are
subject to equations of motion given by

∂0φ = ∂1φ̃, ∂0φ̃ = −∂1φ, (5.5)

with ∂0 = v−1∂t and ∂1 = ∂x . The two fields φ and φ̃ are dual
in the sense of Eq. (5.5).

The effective Hamiltonian (5.3) results from the bosoniza-
tion of the spin chain. The non-Abelian bosonization formulas
are given by

Sz
j = 1√

8π2

(
J z

R + J z
L

) + Cs cos(πx)nz, (5.6)

S±
j = 1√

8π2
(J±

R + J±
L ) + Cse

iπxn±. (5.7)

Here J is the SU(2) current and JR and JL are its right-moving
and left-moving components and n is a field corresponding to
the Néel order (−1)j Sj . The constant Cs is nonuniversal and
thus undetermined within the field theory. The chiral SU(2)
currents JR and JL have conformal weights (�,�̄) = (0,1)
and (1,0), respectively, and n has the weight (�,�̄) = ( 1

4 , 1
4 ).

Note that the sum � + �̄ is the scaling dimension of the
operator that determines its relevance in the RG sense.

In terms of the SU(2) current, we can rewrite the Hamilto-
nian (5.3) so that the SU(2) symmetry is more explicit:

H0 = v

48π

∫
dx ( JR · JR + JL · JL). (5.8)

Translation rules from the SU(2) fields J and n to the U(1)
fields φ and φ̃ are the following:

J z
R =

√
4π (−∂0 + ∂1)ϕR,

J z
L =

√
4π (∂0 + ∂1)ϕL,

(5.9)
J±

R =
√

2 e±i
√

8πϕR ,

J±
L =

√
2 e∓i

√
8πϕL,

and

nx = cos
√

2πφ̃,

ny = sin
√

2πφ̃,

nz = cos
√

2πφ. (5.10)

The chiral fields ϕR and ϕL represent the right-moving and
left-moving parts of the TLL,

φ(t,x) = ϕR(x − vt) + ϕL(x + vt),

φ̃(t,x) = ϕR(x − vt) − ϕL(x + vt). (5.11)

We discarded in the Hamiltonian (5.8) a marginally irrelevant
interaction in the RG sense, g JR · JL with g ∝ J . Since this
interaction is isotropic, we may discard it as far as we focus
on ESR induced by perturbations H′ which keep the chiral
symmetry. We will investigate in Appendix D a case where the
condition of the chirality breaks down.

The Zeeman energy −HSz turns effectively into

−HSz = − H√
8π2

∫
dx

(
J z

R + J z
L

) = − H√
2π

∫
dx ∂xφ.

(5.12)
The Zeeman energy is absorbed into the quadratic Hamilto-
nian (5.3) by shifting

ϕR → ϕR + 1√
8π

Hx

v
,

ϕL → ϕL + 1√
8π

Hx

v
. (5.13)

The shift (5.13) modifies the non-Abelian bosonization for-
mulas (5.6) and (5.7) into

Sz
j = H

2πv
+ 1√

8π2

(
J z

R + J z
L

)
+Cs{cos[(π + H/v)x]nz − sin[(π + H/v)x]ε},

(5.14)

S±
j = 1√

8π2
(J±

R e±iHx/v + J±
L e∓iHx/v) + Cse

iπxn±,

(5.15)

where ε = sin
√

2πφ corresponds to the dimerization
(−1)j Sj · Sj+1. In particular, S± is represented as

S± = 1√
8π2

∫
dx (J±

R e±iHx/v + J±
L e∓iHx/v). (5.16)

In addition, the Zeeman energy affects the compactification
radius R in Eq. (5.4) because it reduces the SU(2) symmetry
to U(1) [48,50]. Nevertheless, we may neglect this effect in
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the ESR problem when the magnetic field is weak [28]. The
Zeeman energy thus results only in the shift of φ. As a result,
even in the presence of the magnetic field, correlation functions
of 〈J a

μJ b
ν 〉 for μ,ν = R,L satisfies simple SU(2) symmetric

relations, 〈
J a

μJ b
ν

〉
0

= δμ,νδ
a,b

〈
J z

μJ z
μ

〉
0
. (5.17)

The same relation holds for the retarded Green’s function of
the SU(2) currents.

The relation (5.16) allows us to write the unperturbed
retarded Green’s function GR

S+S− (ω) in terms of GR
(�,�̄)(ω,q)

[Eq. (4.17)].

GR
S+S− (ω) = N

4π2

[
GR

(0,1)(ω, − H/v) + GR
(1,0)(ω,H/v)

]
= N

2π2
GR

(1,0)(ω,H/v)

≈ NH

πv

1

ω − H + i0
. (5.18)

We approximated ω ≈ H in the last line. According to
Eq. (5.14), the total magnetization is given by 〈Sz〉0 =
NH/2πv. Substituting it into Eq. (5.18), we reproduce the
exact result (3.6).

B. Oshikawa-Affleck theory: Longitudinal exchange anisotropy

Now that we confirmed that the non-Abelian bosonization
approach reproduces the exact result (3.6) for the unperturbed
system (5.2), we move on to investigation of influence of
anisotropic interactions H′. In what follows we discuss the
linewidth in two independent ways: the self-energy approach
and the MK approach. The self-energy approach is also known
as the Oshikawa-Affleck theory. The self-energy approach is
important for providing a justification to the assumption of the
lineshape even though its application scope is more limited
than the MK approach.

For later convenience we review the Oshikawa-Affleck
theory for the linewidth caused by the uniaxial intrachain
exchange anisotropy,

H′ = δ
∑

j

Sz
jS

z
j+1. (5.19)

In the language of the non-Abelian bosonization at zero
magnetic field, it becomes effectively

H′ = λ

∫
dx J z

RJ z
L, (5.20)

with λ ∝ δ. The magnetic field shifts J z
R and J z

L by an amount
of H/

√
2 [Eq. (5.13)] and modifies H′ into

H′ = λ

∫
dx J z

RJ z
L + λH√

2

∫
dx

(
J z

R + J z
L

)
. (5.21)

The second term is an effective magnetic field generated by
the anisotropic interaction and causes a shift of the resonance
frequency from ω = H to ω = H (1 − 2πλ). Thus it has no
impact on the linewidth. Below we discuss the influence of the
quadratic interaction (5.20) on the linewidth.

For a while we set v = 1 and recover it in the final
result [Eq. (5.37)] from dimensional analysis. The correlation

function 〈S+S−〉 (ω) is written in terms of the SU(2) current
as

〈S+S−〉 (ω) = N

8π2

[〈
J x

RJ x
R

〉
(ω, − H ) + 〈

J x
LJ x

L

〉
(ω,H )

+ 〈
J

y

RJ
y

R

〉
(ω, − H ) + 〈

J
y

LJ
y

L

〉
(ω,H )

]
.

(5.22)

Oshikawa and Affleck used a trick to develop the self-energy
approach. Performing a π/2 rotation on the az plane, they
rewrote the correlation 〈J a

RJ a
R〉 as 〈J z

RJ z
R〉 in the rotated system.

The correlation of the rotated system is denoted as 〈J z
RJ z

R〉
a→z

.
The rotation simplifies 〈S+S−〉 to

〈S+S−〉 (ω)= N

8π2

[〈
J z

RJ z
R

〉
x→z

(ω,−H ) + 〈
J z

LJ z
L

〉
x→z

(ω,H )

+ 〈
J z

RJ z
R

〉
y→z

(ω,−H ) + 〈
J z

LJ z
L

〉
y→z

(ω,H )
]

= N (ω + H )2

4π
〈φφ〉x→z (ω,H )

+ N (ω + H )2

4π
〈φφ〉y→z (ω,H ). (5.23)

Now our task is reduced to calculation of 〈φφ〉 in the presence
of rotated perturbations. Thus the retarded Green’s function
GR

S+S− (ω) is derived from that of φ,

GR
φφ(ω,q) = −i

∫ ∞

0
dt

∫ ∞

−∞
dx ei(ωt−qx) 〈[φ(t,x),φ(0,0)]〉

= 1

ω2 − q2 − �R(ω,q)
. (5.24)

�R(ω,q) is the self-energy of the retarded Green’s function
of φ. Writing the self-energy of GR

φφ in the rotated system as
�R

a→z, we can write the Green’s function GR
S+S− as follows:

GR
S+S− (ω) = N (ω + H )2

4π

∑
a=x,y

1

ω2 − H 2 − �R
a→z(ω,H )

.

(5.25)

Near ω = H , it is approximated as

GR
S+S− (ω) ≈ NH

2π

1

ω − H − 1
2H

�R
a→z(H,H )

. (5.26)

The self-energy �R
a→z is related to the linewidth of the param-

agnetic peak. If �R
x→z = �R

y→z, the paramagnetic resonance
peak is composed of the single Lorentzian peak with the
linewidth,

η = − 1

2H
Im �R

a→z(H,H ). (5.27)

The imaginary-time formalism is more convenient in
derivation of the self-energy. The retarded Green’s function
GR

φφ(ω,q) is obtained from a corresponding Matsubara Green’s
function,

Gφφ(iωn,q) = 1

(iωn)2 − q2 − �(iωn,q)
, (5.28)

after analytic continuation iωn → ω + i0. The self-energy
�R(ω,q) is also obtained via the analytic continuation:
�R(ω,q) = �(iωn → ω + i0,q).
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The self-energy �(iωn,q) is obtained as follows. Let r
be a coordinate r = (τ,x) of the Euclidean spacetime. The
Matsubara Green’s function Gφφ

a→z(r) under the rotation
a→z satisfies the Dyson equation,

Gφφ
a→z(r) = Gφφ(r) +

∫
d r1d r2 Gφφ(r1)�a→z

× (r2 − r1)Gφφ
a→z(r − r3)

= Gφφ(r) +
∫

d r1d r2 Gφφ(r1)�a→z

× (r2 − r1)Gφφ(r − r3) + · · · . (5.29)

�a→z(r) is the inverse Fourier transform of �a→z(iωn,q).
In the present case, we obtain a perturbative expression

of �x→z(r) as follows. The rotation x → z transforms the
longitudinal anisotropy (5.20) to

H′
x→z = λ

∫
dx J x

RJ x
L

= λ

∫
dx (cos

√
8πφ + cos

√
8πφ̃). (5.30)

Up to the second order of λ, two cosines cos
√

8πφ and
cos

√
8πφ̃ can be dealt with independently to calculate the

self-energy �x→z(r) because of 〈eiaφeibφ̃〉0 = 0 for any a,b ∈
R [15]. Moreover, cos

√
8πφ and cos

√
8πφ̃ give exactly the

same contribution to �x→z thanks to the duality (5.5) [28].
The perturbation (5.30) has no contribution to the self-

energy at the first order of λ because of 〈e±i
√

8πφ〉0 =
〈e±i

√
8πφ̃〉0 = 0. At the second order of λ, the cosine

λ cos
√

8πφ enters into the expansion (5.29) as follows:∫
d r1dr2 Gφφ(r1)�x→z(r2 − r1)Gφφ(r − r2)

= λ2

2!

∫
d r1d r2

∑
σ=±

1

4
〈φ(0)eiσ

√
8πφ(r1)e−iσ

√
8πφ(r2)φ(r)〉0

=πλ2
∑
σ=±

∫
d r1d r2

× [〈φ(0)φ(r1)〉0 〈eiσ
√

8πφ(r1)e−iσ
√

8πφ(r2)〉0 〈φ(r2)φ(r)〉0

+ 〈φ(0)φ(r2)〉0 〈eiσ
√

8πφ(r1)e−iσ
√

8πφ(r2)〉0 〈φ(r1)φ(r)〉0

− 〈φ(0)φ(r1)〉0 〈eiσ
√

8πφ(r1)e−iσ
√

8πφ(r2)〉0 〈φ(r1)φ(r)〉0

−〈φ(0)φ(r2)〉0 〈eiσ
√

8πφ(r1)e−iσ
√

8πφ(r2)〉0 〈φ(r2)φ(r)〉0

]
.

(5.31)

Here we used the Wick’s theorem. Performing the Fourier
transform on the both hand sides, we extract the following
self-energy

�x→z(iωn,q) = 4πλ2[G(1,1)(iωn,q) − G(1,1)(0,0)]. (5.32)

Including the contribution from cos
√

8πφ̃, we obtain

�x→z(iωn,q) = 8πλ2[G(1,1)(iωn,q) − G(1,1)(0,0)]. (5.33)

and

�R
x→z(ω,q) = 8πλ2

[
GR

(1,1)(ω,q) − GR
(1,1)(0,0)

]
. (5.34)

The imaginary part of the retarded Green’s function in a
limit, max{|ω − q|,|ω + q|} � T , is easily obtained from
Eq. (4.18). Keeping the leading term only, we find

Im GR
(1,1)(ω,q) ≈ −π2ωT . (5.35)

and

�R
x→z(H,H ) = 8π3λ2HT. (5.36)

It is obvious from these calculations that H′
y→z =

λ
∫

dx (− cos
√

8πφ + cos
√

8πφ̃) gives rise to the identical
self-energy �R

y→z(H,H ) = 8π3λ2HT . In the end, we found
that the paramagnetic peak is the single Lorentzian peak with
the linewidth

η = 4π3λ2T

v2
, (5.37)

derived initially by Oshikawa and Affleck [28]. Here we
recovered v from the dimensional analysis. The formulation
reviewed here is straightforwardly extended to quasi-one-
dimensional systems in Sec. V E.

C. Mori-Kawasaki approach: General angles

Here we employ the MK approach to calculate the linewidth
induced by an exchange anisotropy

H′ = δ
∑

j

Sc
j S

c
j+1 (5.38)

= δ
∑

j

[
Sz

jS
z
j+1 cos2 θ + Sx

j Sx
j+1 sin2 θ

− (
Sz

jS
x
j+1 + Sx

j Sz
j+1

)
sin θ cos θ

]
(5.39)

and check its consistency with the Oshikawa-Affleck the-
ory (5.37). Equation (5.39) represents a uniaxial exchange
anisotropy along the c axis. In terms of the bosonized effective
field theory, H′ is expressed as

H′ = λ cos2 θ

∫
dx J z

RJ z
L + λ sin2 θ

4

∫
dx (J+

R J+
L + J−

R J−
L + J+

R J−
L ei2Hx/v + J−

R J+
L e−i2Hx/v)

+ λ sin θ cos θ

2

∫
dx

{(
J z

RJ−
L + J+

R J z
L

)
eiHx/v + (

J z
RJ+

L + J−
R J z

L

)
e−iHx/v

}
. (5.40)

Here we discarded the linear terms with respect to JR or JL

that do not contribute to the linewidth.
To obtain A defined as the equal-time commutator (5.16),

we need to know equal-time commutation relations of the
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SU(2) currents. The equal-time commutation relations im-
mediately follow from their operator product expansions
(Appendix B):

1√
8π2

[
J a

R/L(x),J b
R/L(y)

]
= i√

2π
δab∂yδ(x − y) + if abcJ c

R/L(y)δ(x − y), (5.41)

with the completely antisymmetric tensor f abc with f xyz = 1.
The first term of Eq. (5.41) represents the chiral anomaly.
Effects of the chiral anomaly seem not to be discussed
explicitly in Ref. [28]. However, at the end of the day, it turns
out to be negligible. Here we simply ignore the chiral anomaly
and discuss it in Appendix C.

Then the operator A is

A = λ

(
cos2 θ − sin2 θ

2

) ∫
dx

(
J+

R J z
LeiHx/v + J z

RJ+
L e−iHx/v

) − λ sin2 θ

2

∫
dx

(
J z

RJ−
L eiHx/v + J−

R J z
Le−iHx/v

)
+ λ sin θ cos θ

2

∫
dx

(
2J+

R J+
L − 4J z

RJ z
L + J+

R J−
L ei2Hx/v + J−

R J+
L e−i2Hx/v

)
. (5.42)

All the operators of the form J a
RJ b

L for a = x,y,z are an operator with a conformal weight (1,1). Counting the number of the
operator, we find

GR
AA† (ω)=Nλ2

[
2

(
cos2 θ− sin2 θ

2

)2{
GR

(1,1)(ω,−H/v)+GR
(1,1)(ω,H/v)

} + 2

(
sin2 θ

2

)2{
GR

(1,1)(ω,−H/v)+GR
(1,1)(ω,H/v)

}

+
(

sin θ cos θ

2

)2{
32GR

(1,1)(ω,0) + 4GR
(1,1)(ω,2H/v) + 4GR

(1,1)(ω,−2H/v)
}]

. (5.43)

When H/T � 1, the imaginary part of GR
(1,1)(H,q) is independent of q. According to Eq. (4.18), we may approximate it up to

the leading order of H/T as

Im GR
(1,1)(H,q) = −π2HT

v3
. (5.44)

The insensitivity to the wave number simplifies the imaginary part of Eq. (5.43).

Im GR
AA†(ω = H ) = Nλ2

[−ImGR
(1,1)(H,0)

]{
4

(
cos2 θ − sin2 θ

2

)2

+ 4

(
sin2 θ

2

)2

+ 40

(
sin θ cos θ

2

)2}

= −2Nλ2π2HT

v3
(1 + cos2 θ ). (5.45)

It leads to

η = 2π3λ2T

v2
(1 + cos2 θ ). (5.46)

For θ = 0, the result (5.46) is identical to the linewidth (5.37)
by the longitudinal exchange anisotropy.

Thus far we did not include a renormalization effect of the
conformal weight by the magnetic field. In other words, we did
not take into account a fact that 〈S+

j S−
0 〉

0
decays more slowly

than 〈Sz
jS

z
0〉0

under strong magnetic fields. The renormalization
effect affects the angular dependence of the linewidth (5.46).
However, both correlation functions are algebraically decaying
different from the quadrupolar TLL. The qualitative feature of
the angular dependence (5.46) will be kept unchanged up to
a finite magnetic field. The upper limit of the magnetic field
is given similarly to the case (4.10) of the quadrupolar TLL.
That is, since a Gamma function of the Green’s function (4.18)
of a vertex operator gives rise to a sizable magnitude of the
linewidth only for max{|ω + vq|,|ω − vq|}/T � 1, the mag-
netic field H and the magnetization density M need to satisfy

max{M,H/J } � T/J (5.47)

to make the linewidth finite.

D. Staggered DM interaction

The angular dependence of the linewidth of the S = 1/2
HAFM chain with the staggered DM interaction

H′ =
∑

j

(−1)j D · Sj × Sj+1 (5.48)

was already discussed in Refs. [27,28],

η = 1

16

√
π

2

(
�

(
1
4

)
�

(
3
4

)
)

Jh2

T 2
ln(J/T ), (5.49)

where h is a staggered magnetic field effectively generated
from the staggered DM and given by

h = DH sin θ

2J
. (5.50)

It leads to the angular dependence,

η ∝ sin2 θ. (5.51)

The staggered DM interaction as well as the ex-
change anisotropy leads to the angular dependence with
periodicity π .
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E. Unfrustrated interchain interaction: Self-energy approach

Recently the author discussed the linewidth induced by
interchain exchange anisotropies using the MK approach
assuming the single Lorentzian lineshape [49]. Here we
confirm that the assumption is true for a simple case. Let
us consider a system with the following Hamiltonian,

HQ1D = J
∑
j,R

Sj,R · Sj+1,R − HSz + H′. (5.52)

The last term H′ represents interchain interactions. Since
isotropic interaction does not contribute to the linewidth, we
regard H′ as anisotropic interchain exchange interactions, for
example, a transverse unfrustrated one,

H′ = δ⊥
∑

〈R,R′〉

∑
j

Sx
j,RSx

j,R′ . (5.53)

The unperturbed Hamiltonian is

HQ1D
0 = J

∑
j,R

Sj,R · Sj+1,R − HSz. (5.54)

At low energies compared to J , it effectively turns into

HQ1D
0 =

∑
R

v

2

∫
dx {(∂xφ̃R)2 + (∂xφR)2}. (5.55)

The boson field φR and its dual φ̃R describe the TLL on a spin
chain specified by R. At low energies, the perturbation (5.53)
becomes

H′ = λ⊥
∑

〈R,R′〉

∫
dx nx

Rnx
R′ , (5.56)

with λ⊥ ∝ δ⊥. Different from the intrachain exchange
anisotropy, the staggered component of the spin gives the
leading term of the perturbation (5.56).

To discuss the lineshape, we need to extend the Oshikawa-
Affleck theory to the case of N⊥ independent spin chains
perturbed by interchain interactions. Now the total S+ is

S+ =
∑

R

∫
dx (J+

R,ReiHx/v + J+
L,Re−iHx/v). (5.57)

In what follows we set v = 1 again for a while. The Fourier
transform 〈S+S−〉 (ω) of the correlation 〈S+(t)S−(0)〉 is
reduced to that of a single boson �0 = ∑

R φR/
√

N⊥,

〈S+S−〉 (ω)

= N‖
8π2

∑
R,R′

[〈
J x

R,RJ x
R,R′

〉
(ω, − H ) + 〈

J x
L,RJ x

L,R′
〉
(ω,H )

+ 〈
J

y

R,RJ
y

R,R′
〉
(ω,−H ) + 〈

J
y

L,RJ
y

L,R′
〉
(ω,H )

]

= N‖(ω + H )2

4π

∑
R,R′

[〈φRφR′ 〉x→z (ω,H )

+ 〈φRφR′ 〉y→z (ω,H )]

= N (ω + H )2

4π

[ 〈�0�0〉x→z (ω,H ) + 〈�0�0〉y→z (ω,H )
]
.

(5.58)

To write the Hamiltonian in terms of �0, we consider a
recombination of {φR}R. For simplicity of notation, we rename
them to be φ0,φ1,φ2, · · · ,φN⊥−1. A recombination

�0 = φ0 + φ1 + · · · + φN⊥−1√
N⊥

, (5.59)

�1 = φ0 − φ1√
2

, (5.60)

�2 = φ0 + φ1 − 2φ2√
6

, (5.61)

...

�N⊥−1 = φ0 + φ1 + · · · + φN⊥−2 − (N⊥ − 1)φN⊥−1√
N⊥(N⊥ − 1)

,

(5.62)

keeps the unperturbed Hamiltonian (5.55) invariant:

HQ1D
0 =

N⊥−1∑
m=0

1

2

∫
dx {(∂x�̃m)2 + (∂x�m)2}. (5.63)

Since (�0,�̃0) is decoupled from any other (�m�=0,�̃m�=0), we
are able to write the Green’s function GR

S+S− (ω) in terms of
GR

�0�0
(ω,q) in the same fashion as the single-chain case,

GR
S+S− (ω) = NH

2π

∑
a=x,y

1

ω − H − 1
2H

�R
a→z(ω,H )

. (5.64)

Let us derive the self-energy �R
x→z(ω,q) = �x→z(iωn →

ω + i0,q). The perturbation (5.56) is composed of two cosines.

H′
x→z = λ⊥

∑
〈R,R′〉

∫
dx cos

√
2πφR cos

√
2πφR′

= λ⊥
2

∑
〈R,R′〉

∫
dx {cos

√
4π�+ + cos

√
4π�−},

(5.65)

with �± = (φR ± φR′)/
√

2. The second-order term of the
expansion (5.29) is given by

∫
d r1d r2G�0�0 (r1)�x→z(r2 − r1)G�0�0 (r − r3)

= 1

2!

(
λ⊥
2

)2 ∫
d r1d r2

∑
〈R,R′〉

∑
σ=±

∑
σ ′=±

1

4
〈�0(0)eiσ

√
4π�σ ′ (r1)e−iσ

√
4π�σ ′ (r2)�0(r)〉0

= πλ2

8

∫
d r1d r2

∑
〈R,R′〉

∑
σ=±

∑
σ ′=±

[〈�0(0)�σ ′(r1)〉0 〈eiσ
√

4π�σ ′ (r1)e−iσ
√

4π�σ ′ (r2)〉0 〈�σ ′(r2)�0(r)〉0
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+ 〈�0(0)�σ ′(r2)〉0 〈eiσ
√

4π�σ ′ (r1)e−iσ
√

4π�σ ′ (r2)〉0 〈�σ ′(r1)�0(r)〉0

− 〈�0(0)�σ ′(r1)〉0 〈eiσ
√

4π�σ ′ (r1)e−iσ
√

4π�σ ′ (r2)〉0 〈�σ ′(r1)�0(r)〉0

− 〈�0(0)�σ ′(r2)〉0 〈eiσ
√

4π�σ ′ (r1)e−iσ
√

4π�σ ′ (r2)〉0 〈�σ ′(r2)�0(r)〉0]. (5.66)

The unperturbed Hamiltonian (5.55) is invariant under ex-
change of an arbitrary pair of φR and φR′ . This symmetry leads
to 〈�0�−〉0 = 0 and 〈�0�+〉0 = √

2/N⊥ 〈�0�0〉0. Using
these relations, we obtain the self-energy,

�R
x→z(ω,q) = πλ2ζ [F (ω,q) − F (0,0)], (5.67)

where ζ is the number of nearest-neighbor spin
chains per chain. F (ω,q) is the Fourier transform of
the retarded Green’s function GR

ei
√

4π�+ e−i
√

4π�+ (t,x), which

equals to [GR

ei
√

2πφR e−i
√

2πφR
(ω,q)]2 = GR

ei
√

4πφR e−i
√

4πφR
(ω,q) =

GR

( 1
2 , 1

2 )
(ω,q) according to the same argument below Eq. (4.41).

Furthermore, the self-energy �R
y→z(ω,q) is exactly identical

to Eq. (5.67). It follows from the duality of φR and φ̃R and
from

H′
y→z = λ⊥

2

∑
〈R,R′〉

∫
dx {cos

√
4π�̃+ + cos

√
4π�̃−},

(5.68)

with �̃± = (φ̃R ± φ̃R′)/
√

2. Therefore, substituting
Im GR

( 1
2 , 1

2 )
(H,H ) ≈ −π2H/4T [Eq. (4.18)] for H/T � 1

into the self-energy �R
x→z(H,H ), we obtain

η = π3ζλ2

8T
. (5.69)

The self-energy approach turned out to work similarly to the
case of the intrachain exchange anisotropy. It gives a consistent
result with the MK approach [49] and also a justification of
the assumption of the Lorentzian lineshape.

F. Unfrustrated interchain interaction: MK approach

Now we apply the MK formula (3.13) to an interchain
version of the anisotropy (5.39), that is,

H′ = δ⊥
∑

〈R,R′〉

∑
j

[
Sz

j,RSz
j,R′ cos2 θ + Sx

j,RSx
j,R′ sin2 θ

+ (
Sz

j,RSx
j,R′ + Sx

j,RSx
j,R′

)
sin θ cos θ

]
, (5.70)

or in the non-Abelian bosonization language,

H′ = λ⊥
∑

〈R,R′〉

∫
dx

[{
nz

R cos(Hx/v) − εR sin(Hx/v)
}{

nz
R′ cos(Hx/v) − εR′ sin(Hx/v)

}
cos2 θ + nx

Rnx
R′ sin2 θ

+ [{
nz

R cos(Hx/v) − εR sin(Hx/v)
}
nx

R′ + nx
R

{
nz

R′ cos(Hx/v) − εR′ sin(Hx/v)
}]

sin θ cos θ
]
. (5.71)

The next task is to take a commutator with S+. Equal-time commutators involved with n and ε follow from operator product
expansions (Appendix B),

1√
8π2

[nx(x),J+
R/L(y)] = −1

2
{nz(x) ± iε(x)}δ(x − y),

1√
8π2

[nz(x),J+
R/L(y)] = 1

2
n+(x)δ(x − y), (5.72)

1√
8π2

[ε(x),J+
R/L(y)] = ± i

2
n+(x)δ(x − y),

where R and L on the left hand side correspond to the upper and lower signs on the right hand side, respectively. These
commutation relations lead to the equal-time commutator A,

A = λ⊥
∑

〈R,R′〉

[
(cos2 θ − sin2 θ )

{(
nx

1n
z
2 + nz

1n
x
2

)
cos(Hx/v) − (

nx
1ε2 + ε1n

x
2

)
sin(Hx/v)

}
+ i cos2 θ

{(
n

y

1n
z
2 + nz

1n
y

2

)
cos(Hx/v) − (

n
y

1ε2 + ε1n
y

2

)
sin(Hx/v)

} + sin θ cos θ
{
2nx

1n
x
2 + i

(
nx

1n
y

2 + n
y

1n
x
2

)
− nz

1n
z
2 − ε1ε2 − (

nz
1n

z
2 − ε1ε2

)
cos(2Hx/v) − (

nz
1ε2 + ε1n

z
2

)
sin(2Hx/v)

}]
. (5.73)

The unperturbed Hamiltonian (5.55) has the SU(2) × SU(2) � SO(4) symmetry, a combination of the SU(2) symmetry of
the right mover and that of the left mover. The SO(4) symmetry manifests itself in the following relation. Let us introduce
a four-dimensional vector N = (N0,N1,N2,N3) = (ε,nx,ny,nz). Then a retarded Green’s function GR

Na
R,Nb

R′
(t,x) satisfies the
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SO(4) symmetric relation,

GR

Na
R,Nb

R′
(t,x) = δR,R′δa,bGR

N3
R,N3

R
(t,x) = 1

2δR,R′δa,bGR

( 1
4 , 1

4 )(t,x). (5.74)

The following relation is also important.

GR

Na
RNb

R′ ,Na
RNb

R′
(t,x) =

(
1

2

)2

GR

( 1
2 , 1

2 )(t,x), (5.75)

for R �= R′. The SO(4) symmetry and the decoupling of spin chains in the unperturbed system simplifies calculations of GR
AA†(ω).

Counting the number of operators simply leads to

GR
AA† (ω) = Nζλ2

⊥

[
(cos2 θ − sin2 θ )2 + cos4 θ

2

{
GR

( 1
2 , 1

2 )(ω,H/v) + GR

( 1
2 , 1

2 )(ω, − H/v)
}

+ sin2 θ cos2 θ

2

{
4GR

( 1
2 , 1

2 )(ω,0) + GR

( 1
2 , 1

2 )(ω,2H/v) + GR

( 1
2 , 1

2 )(ω, − 2H/v)
}]

. (5.76)

It follows from the imaginary part Im GR

( 1
2 , 1

2 )
(H,q) ≈ −π2H/4T v for H/T � 1 that

Im GR
AA†(H ) = π2HNζλ2

⊥
8T

(2 cos4 θ + sin2 θ ). (5.77)

Combining it with 〈Sz〉0 = NH/2πv, we obtain

η = π3ζλ2
⊥

8T
(2 cos4 θ + sin2 θ ). (5.78)

The result (5.78) is identical to the linewidth (5.46) obtained by the self-energy approach for θ = π/2. The linewidth (5.78)
becomes maximum at θ = 0 mod π as well as the intrachain one. From the period of the angle that maximizes the linewidth,
we can distinguish the quadrupolar TLL and the standard TLL.

G. Frustrated triangular interchain interaction

Frustrated interchain interactions result in a different angular dependence. To see this, we consider the following interchain
interaction,

H′ = δ⊥
2

∑
〈R,R′〉

∑
j

[
Sz

j,R

(
Sz

j,R′ + Sz
j+1,R′

)
cos2 θ + Sx

j,R

(
Sx

j,R′ + Sx
j+1,R′

)
sin2 θ + {

Sz
j,R

(
Sx

j,R′ + Sx
j+1,R′

)
+ Sx

j,R

(
Sz

j,R′ + Sz
j+1,R′

)}
sin θ cos θ + (R ↔ R′)

]
. (5.79)

At low energies the interaction (4.45) turns into

H′ = −λ⊥H

2v

∑
〈R,R′〉

∫
dx

[{(
nz

Rnz
R′ − εRεR′

)
sin(2Hx/v) + (

nz
RεR′ + εRnz

R′
)

cos(2Hx/v)
}

cos2 θ

+ {(
nx

Rnz
R′ + nz

Rnx
R′

)
sin(Hx/v) + (

nx
RεR′ + εRnx

R

)
cos(Hx/v)

}
sin θ cos θ

]
. (5.80)

Note that there is no term proportional to sin2 θ because nx
j,R + nx

j+1,R is nonnegligible for frustration. The operator A is given
by

A = −λH

2v

∑
〈R,R′〉

∫
dx

[{(
n+

1 nz
2 + nz

1n
+
2

)
sin(Hx/v) + (n+

1 ε2 + ε1n
+
2 ) cos(Hx/v)

}
cos2 θ

− {(
nz

1n
z
2 − ε1ε2

)
sin(2Hx/v) + (

nz
1ε2 + ε1n

z
2

)
cos(2Hx/v)

}
sin θ cos θ

]
, (5.81)

which leads to

GR
AA†(ω) =

(
λ⊥H

2v

)2

Nζ

[
cos4 θ

{
GR

( 1
2 , 1

2 )(ω,H/v) + GR

( 1
2 , 1

2 )(ω, − H/v)
}

+ sin2 θ cos2 θ

2

{
GR

( 1
2 , 1

2 )(ω,2H/v) + GR

( 1
2 , 1

2 )(ω, − 2H/v)
}]

. (5.82)

We obtain the linewidth,

η = π3ζλ2
⊥H 2

32v2T
(cos4 θ + cos2 θ ). (5.83)
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The linewidth induced by the frustrated interchain anisotropy
also becomes maximum at θ = 0 mod π differently from the
quadrupolar TLL.

VI. SUMMARY

We proposed the method to detect the quasi-long-range
spin-nematic order of the quadrupolar TLL phase in ESR
measurements. We showed that the linewidth of the paramag-
netic resonance peak exhibits the unique angular dependence
in the quadrupolar TLL phase of the S = 1/2 frustrated ferro-
magnetic chain system. The characteristic angular dependence
originates from the single fact that the transverse correlation
〈Sx

r Sx
0 〉 is decaying much faster than the longitudinal one

〈Sz
r S

z
0〉 and the nematic one 〈S+

r S+
r+1S

−
0 S−

1 〉 at the wave
vector q = 0. Interestingly enough, many anisotropic inter-
actions result in the same angular dependence of sin2 θ cos2 θ

[Fig. 1(b) and Table I] for the quadrupolar TLL. In contrast,
since both the transverse and longitudinal correlations decay
algebraically in the standard TLL phase, the linewidth never
shows the sin2 θ cos2 θ dependence (Table I) at low magnetic
fields. We found that the linewidth of the standard TLL
becomes maximum at a certain angle θ with the period
π at low magnetic fields. This is in sharp contrast to the
linewidth of the quadrupolar TLL which is maximized at
θ = π/4 mod π/2 with the period π/2. Our results relied
crucially on two conditions: the temperature is lower than the
excitation gap of an unpaired magnon [Eq. (4.5)] and both the
magnetization density and the magnetic field are smaller than
the temperature [Eq. (4.10)]. In the case of the standard TLL,
the condition (5.47) similarly to Eq. (4.10) of the quadrupolar
TLL is imposed. Because of those conditions, our results
(Table I) hold true in the low-field region of the quadrupolar
or standard TLL phase.

Our claim about the periodicity of the linewidth will be
applicable to a spin nematic phase in higher dimensional
systems in principle. In addition, as we discussed in Sec. III C,
the resonance frequency (3.12) is expected to give an order
parameter of the long-range spin nematic order in higher
dimensional systems, which is discussed elsewhere [46].

We used in this article the Mori-Kawasaki approach and
the Oshikawa-Affleck theory (or the self-energy approach)
to discuss the linewidth. The former is convenient for its
wide scope of applicability if we accept the assumption that
the paramagnetic peak has the single Lorentzian lineshape.
This is the most nontrivial assumption that we rely on. On
the other hand, the self-energy approach does not require
such an ad hoc assumption although its application scope is
rather limited. We could extend the Oshikawa-Affleck theory,
originally developed for intrachain interactions, in order to deal
with interchain interactions. This extension gave a justification
of the single Lorentzian lineshape of the paramagnetic peak
of the standard TLL governed by interchain interactions,
although only for the limited field direction. In addition to
those arguments of the linewidth to distinguish the quadrupolar
TLL from the standard one, we also gave in Appendix D an
interesting example of the case where the self-energy approach
is applicable but the Mori-Kawasaki approach is not. It is the
S = 1/2 Heisenberg antiferromagnetic chain with the uniform
Dzyaloshinskii-Moriya interaction. It is an open problem

to investigate effects of the uniform Dzyaloshinskii-Moriya
interaction on ESR of the quadrupolar TLL. The author
hopes that the present paper will encourage experimental and
theoretical studies on ESR of the quadrupolar TLL and, more
generally, ESR in the spin nematic phase.
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APPENDIX A: POLARIZATION DEPENDENCE

Here we derive the relation (3.8) from an identity [28],

GR
S+S− (ω) = 2〈Sz〉

ω − H
− 〈[A,S−]〉

(ω − H )2
+ 1

(ω − H )2
GR
AA† (ω),

(A1)
with A ≡ [H′,S+] and H′ is the anisotropic interaction.
Integrating Eq. (3.5) by parts twice, we can derive the
identity (A1) from equations of motion for S±:

dS+

dt
= −iHS+ + iA, (A2)

dS−

dt
= iHS− − iA†. (A3)

Likewise, we can obtain identities for Sx and Sy . Their
equations of motion are

dSx

dt
= HSy − Ai, (A4)

dSy

dt
= −HSx + Ar, (A5)

where Ar and Ai are real and imaginary parts of A. Integrating
by parts, we find a relation

GR
SxSx (ω) = H 〈Sz〉

ω2 − H 2
− iω

ω2 − H 2
GR
AiSx (ω)

− H

ω2 − H 2
GR
ArSx (ω). (A6)

The retarded Green’s functions on the right hand side are
subject to similar identities,

GR
AiSx (ω) = ω

ω2 − H 2

(
〈[Ai,S

x]〉 − iH

ω
〈[Ai,S

y]〉
)

− H

ω2 − H 2
GR
AiAr

(ω) + iω

ω2 − H 2
GR
AiAi

(ω),

(A7)

GR
ArSx (ω) = ω

ω2 − H 2

(
〈[Ar,S

x]〉 − iH

ω
〈[Ar,S

y]〉
)

− H

ω2 − H 2
GR
ArAr

(ω) + iω

ω2 − H 2
GR
ArAi

(ω).

(A8)
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When we restrict ourselves to the region |ω − H | � H , those
relations are greatly simplified to

GR
AiSx (ω) ≈ 〈[Ai,S

−]〉
2(ω − H )

− 1

2(ω − H )
GR
AiA†(ω), (A9)

and

GR
ArSx (ω) ≈ 〈[Ar,S

−]〉
2(ω − H )

− 1

2(ω − H )
GR
ArA†(ω). (A10)

Furthermore, combining them with Eq. (A6), we obtain

GR
SxSx (ω) ≈ 〈Sz〉

2(ω − H )
− 〈[A,S−]〉

4(ω−H )2
+ 1

4(ω−H )2
GR
AA† (ω).

(A11)

Comparing Eqs. (A1) and (A11), we conclude

GR
SxSx (ω) ≈ 1

4G
R
S+S− (ω). (A12)

It is straightforward to confirm a similar relation,

GR
SySy (ω) ≈ 1

4G
R
S+S− (ω). (A13)

APPENDIX B: COMMUTATION RELATIONS

Here we show a list of operator product expansion of
JR , JL, n, and ε and also equal-time commutation relations
derived from them. On the flat two-dimensional plane, those
operators satisfy operator product expansions [51,52],

1√
8π2

J a
R/L(zR/L)J b

R/L(0) = δab

√
8π2z2

R/L

+ if abcJ c
R/L

2πzR/L

,

(B1)
1√
8π2

J a
R/L(zR/L)nb(0) = i

4πzR/L

[f abcnc(0) ± δabε(0)],

(B2)

1√
8π2

J a
R/L(zR/L)ε(0) = ∓ina(0)

4πzR/L

, (B3)

where zR = vτ − ix and zL = vτ + ix are complex coordi-
nates to describe the two-dimensional Euclidean spacetime and
f abc is the three-dimensional completely antisymmetric tensor
with f xyz = 1. They can be rewritten in terms of equal-time
commutation relations as [53]

1√
8π2

[
J a

R/L(x),J b
R/L(y)

]
= i√

2π
δab∂yδ(x − y) + if abcJ c

R/L(y)δ(x − y), (B4)

1√
8π2

[
J a

R/L(x),nb(y)
] = i

2
[f abcnc(y) ± δabε(y)]δ(x − y),

(B5)
1√
8π2

[
J a

R/L(x),ε(y)
] = ∓ i

2
na(y)δ(x − y). (B6)

APPENDIX C: CHIRAL ANOMALY

Now we discuss that the chiral anomaly has no impact on
the linewidth of the paramagnetic peak. That is, the first term

of the commutation relation (5.41) yields no contribution at
ω = H . This term adds the following operators to A:

λ sin2 θ

2

∫
dxdy

(
J+

R e−iHy/v + J+
L eiHy/v

)
∂yδ(x − y)

+ λ sin θ cos θ

∫
dxdy

(
J z

ReiH (x−y)/v + J z
LeiH (−x+y)/v

)
× ∂yδ(x − y)

= iHλ sin2 θ

2

∫
dx (J+

R e−iHx/v − J+
L eiHx/v)

+ iHλ sin θ cos θ

∫
dx

(
J z

R − J z
L

)
. (C1)

Therefore, the chiral anomaly adds

(Hλ)2
[

sin4 θ GR
(0,1)(ω,H/v) + 2 sin2 θ cos2 θ GR

(0,1)(ω,0)
]
,

(C2)

to the retarded Green’s function GR
AA†(ω). According to

Eq. (4.18), the imaginary part of GR
(0,1)(ω,q) is proportional

to a delta function of δ(ω + vq). When H/T � 1, the chiral
anomaly adds the following term to Im GR

AA†(ω),

π (Hλ)2

v
[sin4 θ (ω − H )δ(ω + H ) + sin2 θ cos2 θωδ(ω)].

(C3)
It is zero thanks to ω > 0. In the end, we conclude that
the chiral anomaly has no impact on the linewidth of the
paramagnetic resonance peak at least at the second order of λ.

APPENDIX D: UNIFORM DM INTERACTION

This section is devoted to investigation of the linewidth
of the standard TLL induced by the uniform DM interaction,
which is an example that can be dealt with by the self-energy
approach but not by the MK approach. The model we consider
here is the S = 1/2 HAFM chain (5.1) with a perturbative
uniform DM interaction,

H′ =
∑

j

D · Sj × Sj+1. (D1)

We put the DM vector D on the zx plane and rotate it so
that D = D(ẑ cos θ + x̂ sin θ ). The total Hamiltonian is given
by [54]

H = v

48π

∫
dx ( JR · JR + JL · JL)

− H√
8π2

∫
dx

(
J z

R + J z
L

) + γD cos θ√
8π2

∫
dx

(
J z

R − J z
L

)
+ γD sin θ√

8π2

∫
dx

(
J x

R − J x
L

)
, (D2)

where γ is a nonuniversal constant.

1. θ = 0

Let us start with two simple cases of θ = 0 and π/2. When
θ = 0, the DM vector D is parallel to the magnetic field.
Interestingly, the right mover and the left mover feel different
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effective magnetic fields, H 0
R and H 0

L. In fact, the effective
Hamiltonian (D2) is written as

H = v

48π

∫
dx ( JR · JR + JL · JL)

− H 0
R√

8π2

∫
dx J z

R − H 0
L√

8π2

∫
dx J z

L, (D3)

with

H 0
R = H − γD,

H 0
L = H + γD. (D4)

The chirality-dependent magnetic fields H 0
R/L can be elimi-

nated from the Hamiltonian as we did in Eq. (5.13). First we
rewrite the Hamiltonian in terms of ϕR/L as follows:

H = v

∫
dx {(∂xϕR)2 + (∂xϕL)2} − 2H 0

R√
2π

∫
dx ∂xϕR

− 2H 0
L√

2π

∫
dx ∂xϕL. (D5)

Next we eliminate H 0
R/L, shifting ϕR/L by

ϕR → ϕR + 1√
2π

H 0
Rx

v
,

ϕL → ϕL + 1√
2π

H 0
Lx

v
. (D6)

The shift (D6) modifies the bosonization formula of S± to

S± = 1√
8π2

∫
dx

(
J±

R e±iH 0
Rx/v + J±

L e∓iH 0
Lx/v

)
, (D7)

where two wave numbers H 0
R/L/v emerge. The retarded

Green’s function GR
S+S− (ω) has two poles at ω = H 0

R and
ω = H 0

L:

GR
S+S− (ω) = N

4π2

[
GR

(0,1)

(
ω, − H 0

R/v
) + GR

(1,0)

(
ω,H 0

L/v
)]

≈ NH

2πv

(
1

ω − H 0
R + i0

+ 1

ω − H 0
L + i0

)
. (D8)

In other words, the paramagnetic peak ω = H is split into ω =
H 0

R and ω = H 0
L. The amount of the splitting |H 0

R − H 0
L| =

2γD is proportional to D. The splitting is indeed observed
in Ref. [33], which supports the argument given above. Thus
far the linewidth of the split peaks is yet to be discussed. In
the discussion given above, we induced the DM interaction
up to the first order (D/J )1. A perturbative expansion of the
linewidth starts from a higher order than (D/J )2. Thus we
need to take a look at a correction of the Hamiltonian at higher
order of D/J . To do so, we go back to the lattice Hamiltonian

H = J
∑

j

Sj · Sj+1 − HSz + D
∑

j

(
Sx

j S
y

j+1 − S
y

j Sx
j+1

)
,

(D9)

and perform a rotation,⎛
⎜⎝

Sx
j

S
y

j

Sz
j

⎞
⎟⎠ =

⎛
⎜⎝

cos(αj ) − sin(αj ) 0

sin(αj ) cos(αj ) 0

0 0 1

⎞
⎟⎠

⎛
⎜⎝

S̃x
j

S̃
y

j

S̃z
j

⎞
⎟⎠, (D10)

with an angle α = tan−1(D/J ). The rotation eliminates the
uniform DM interaction from the Hamiltonian and gives rise
to an exchange anisotropy as a price for it,

H =
√

J 2 + D2
∑

j

S̃j · S̃j+1 − HSz

+ (J −
√

J 2 + D2)
∑

j

S̃z
j S̃

z
j+1. (D11)

At the lowest order of D/J , the exchange anisotropy is
expressed as

H′ ≈ −D2

2J

∑
j

S̃z
j S̃

z
j+1 ≈ −D2

2J

∑
j

Sz
jS

z
j+1, (D12)

or

H′ ≈ −�D2

2J

∫
dx J z

RJ z
L, (D13)

with a nonuniversal constant �. Therefore, the uniform DM
interaction with D = Dẑ induces the linewidth

η = 4π3

(
�D2

2J

)2
T

v2
, (D14)

which is of the order of (D/J )4.

2. θ = π/2

When θ = π/2, the DM vector D is perpendicular to
the magnetic field. Then the approach to eliminate the DM
interaction by a rotation is not effective. The rotation is to
be performed around the x axis and affects the Zeeman
energy unpleasantly. The Zeeman energy of the rotated system
oscillates spatially with the wave number of tan−1(D/J ),
which is difficult to be handled in the self-energy approach.
When θ = π/2, the effective bosonized Hamiltonian is given
by

H = v

48π

∫
dx ( JR · JR + JL · JL)

− 1√
8π2

∫
dx

(
HJz

R − γDJx
R

)
− 1√

8π2

∫
dx

(
HJz

L + γDJx
L

)
. (D15)

Note that the right-moving part and the left-moving part are
independent at the level of the effective Hamiltonian (D15).
This observation motivates us to rotate JR and JL differently
so as to simplify the Hamiltonian. Rotations(

J z
R

J x
R

)
=

(
cos αR − sin αR

sin αR cos αR

)(
J ′z

R

J ′x
R

)
, (D16)

(
J z

L

J x
L

)
=

(
cos αL − sin αL

sin αL cos αL

)(
J ′z

L

J ′x
L

)
, (D17)
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with

αR = −αL = tan−1

(
γD

H

)
. (D18)

The rotation simplifies the Hamiltonian to

H = v

48π

∫
dx ( J ′

R · J ′
R + J ′

L · J ′
L)

−
√

H 2 + γ 2D2

8π2

∫
dx

(
J ′z

R + J ′z
L

)
. (D19)

In contrast to the θ = 0 case, the paramagnetic peak is
not split. However, this argument is incomplete because
the decoupling of the right-moving and left-moving parts
is imperfect in general. The S = 1/2 HAFM chain yields
an isotropic interaction g JR · JL with g ∝ J in addition
to Eq. (D2). This interaction was ignored thus far for its
irrelevance in ESR [28]. In fact, it is marginally irrelevant
in the RG sense and yields only a logarithmic correction to
the resonance frequency and the linewidth such as ln(J/T ) in
Eq. (5.49). However, since the interaction g JR · JL is variant
under the chiral rotations (D16) and (D17), we must take it
into account. The rotations modify it to

g JR · JL = g cos(2αR)
(
J ′z

R J ′z
L + J ′x

R J ′x
L

)
+ g sin(2αR)

(
J ′x

R J ′z
L − J ′z

R J ′x
L

) + gJ
′y
R J

′y
L

≈ g J ′
R · J ′

L + 2γgD

H

(
J ′x

R J ′z
L − J ′z

R J ′x
L

)
. (D20)

In the last line we have approximated it for small D/H � 1.
Thus, the chiral rotations (D16) and (D17) effectively generate
the interaction,

H′ = 2γgD

H

∫
dx

(
J ′x

R J ′z
L − J ′z

R J ′x
L

)
. (D21)

Hereafter we omit the prime for simplicity of notation. The
rotated Hamiltonian is thus

H = v

48π

∫
dx ( JR · JR + JL · JL)

−
√

H 2 + γ 2D2

8π2

∫
dx

(
J z

R + J z
L

)
+ 2γgD

H

∫
dx

(
J x

RJ z
L − J z

RJ x
L

)
, (D22)

where we dropped the isotropic irrelevant interaction again.
To investigate the linewidth, we evaluate the self-energy.
When D/H � 1, the retarded Green’s function GR

S+S− (ω) is
approximated as

GR
S+S− (ω) ≈ N

8π2

[
GR

Jx
RJ x

R
(ω, − H ′) + GR

Jx
LJ x

L
(ω,H ′)

+ GR
J

y

RJ
y

R

(ω, − H ′) + GR
J

y

LJ
y

L

(ω,H ′)
]
, (D23)

with H ′ =
√

H 2 + γ 2D2. As we did in Sec. V B, we relate it
to GR

φφ(ω,q) by rotating the system by π/2 around a certain
axis. For example, the rotation y → z (the π/2 rotation around
x̂) changes GR

J
y

RJ
y

R

(ω,q) and H′ into 4π (ω − q)2GR
φφ

y→z
(ω,q)

and H′
y→z, respectively. The rotated perturbation H′

y→z is

H′
y→z = 2γgD

H

∫
dx

(
J x

RJ
y

L − J
y

RJ x
L

)
= 4γgD

H

∫
dx cos

√
8πφ. (D24)

Therefore, the self-energy �R
y→z of the retarded Green’s

function GR
φφ

y→z
(ω,q) is given by

�R
y→z(ω,q) = 4π2

(
4γgD

H

)2[
GR

(1,1)(ω,q) − GR
(1,1)(0,0)

]
.

(D25)
Calculations of the Green’s functions involved with J x

R/L

are trickier. First we perform the rotation y → z that changes
GR

Jx
RJ x

R
(ω,q) and H′ into GR

Jx
RJ x

R

y→z
(ω,q) and Eq. (D24). The

anisotropy (D24) can also be written in terms of nz =
cos

√
2πφ as

H′
y→z = 8γgD

H

∫
dx (nz)2. (D26)

Next we perform further rotation z → x so that the Green’s
function is changed to that of J z

R , which we denote
as GR

Jz
RJ z

R

y→z→x
(ω,q) = 4π (ω − q)2GR

φφy→z→x
(ω,q), and the

perturbation is changed to H′
y→z→x = (8γD/H )

∫
dx (nx)2,

that is,

H′
y→z→x = 4γgD

H

∫
dx cos

√
8πφ̃. (D27)

As it is discussed in Ref. [28], we may identify GR
φφ

and GR
φ̃φ̃

at the lowest order of the perturbation. Finally,
the problem is reduced to investigation of the self-energy
�R

y→z→x of the Green’s function GR
φ̃φ̃

y→z→x
(ω,q) under the

perturbation (D27), which obviously gives the same result
with Eq. (D25). Combining all these results, we find that the
Green’s function GR

S+S− (ω) is approximated at the lowest order
of D/H as

GR
S+S− (ω) = NH ′

2π

1

ω − H ′ − 1
2H ′ �R

y→z(H
′,H ′)

. (D28)

The linewidth η is thus given by

η = 2π2

(
4γgD

H

)2

T , (D29)

which is quadratic in D/J .

3. General angles

The results of two specific cases of θ = 0 and π/2 are
easily extended to a case of general θ . When D/H �
1, chiral rotations (D16) with αR = tan−1(γD sin θ/(H −
γD cos θ )) and (D17) with αL = − tan−1(γD sin θ/(H +
γD cos θ )) transform the Hamiltonian (D2) into

H = v

48π

∫
dx( JR · JR + JL · JL) −

∫
dx

(
HRJ z

R + HLJ z
L

)
+ 4γgD sin θ

H

∫
dx

(
J x

RJ z
L − J z

RJ x
L

)
, (D30)
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with effective magnetic fields,

HR =
√

(H − γD cos θ )2 + (γD sin θ )2

8π2
, (D31)

HL =
√

(H + γD cos θ )2 − (γD sin θ )2

8π2
. (D32)

Note that Eqs. (D31) and (D32) are valid for D/H � 1. The
Green’s function GR

S+S− (ω) have two Lorentzian peaks with a
finite linewidth,

GR
S+S− (ω) = N

8π2

[
GR

Jx
RJ x

R
(ω, − HR) + GR

Jx
LJ x

L
(ω,HL)

+GR
J

y

RJ
y

R

(ω, − HR) + GR
J

y

LJ
y

L

(ω,HL)
]

≈ NHR

2π

1

ω − HR − 1
2H

�R(H,H )

+ NHL

2π

1

ω − HL − 1
2H

�R(H,H )
. (D33)

The self-energy is given by �R(ω,q) =
4π2(4γD sin θ/H )2[GR

(1,1)(ω,q) − GR
(1,1)(0,0)], which leads

to the linewidth,

η = 2π2

(
4γD sin θ

H

)2

T . (D34)

HR
HL
linewidth

0

0.1

0.2

angle 

3 2 1 0 1 2 3

FIG. 3. Angular dependence of the resonance frequencies (D31)
and (D32) of the split paramagnetic resonance peaks and their
linewidth (D34) induced by the uniform DM interaction. Here we
used a value γD/H = 0.2.

The angular dependence η ∝ sin2 θ has the periodicity π

(Fig. 3).
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