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We study the thermodynamics of a spin-1/2 XYZ Heisenberg chain with a Dzyaloshinskii-Moriya interaction.
This model describes the low-energy behaviors of a one-dimensional two-component bosonic model with a
synthetic spin-orbit coupling in the deep insulating region. In the limit U ′/U → ∞, where U is the strength
of the onsite intracomponent repulsion and U ′ is the intercomponent one, we solve our model exactly by
Jordan-Wigner transformation, and thus provide a benchmark for our following numerical approach. In other
cases, we calculate the entropy and the specific heat numerically by the transfer-matrix renormalization-group
method. Their low-temperature behaviors depend crucially on the properties of the zero-temperature phases. A
refined ground-state phase diagram is then deduced from their low-temperature behaviors. Our findings offer an
alternative way to detect those distinguishable phases experimentally.
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I. INTRODUCTION

One-dimensional (1D) quantum magnetism remains an
active research area in condensed-matter physics because
of their intriguing properties arising from strong quantum
fluctuations [1]. In this area, the 1D spin-1/2 antiferromagnetic
(AF) Heisenberg chain is a prototypical model, the ground
state of which is a Tomonaga-Luttinger liquid (TLL) [2]. It
has gapless elementary excitations and is relevant to a variety
of quasi-1D magnetic materials [3–5]. However, its properties
may change significantly in the presence of anisotropy [6–8].

In addition to abundant quasi-1D materials, ultracold
atomic systems in optical lattices have already become an im-
portant platform to simulate quantum spin systems. Spin-spin
interaction using controlled collisions was first proposed [9]
theoretically in 1999 and later successfully realized in exper-
iments with 87Rb atoms [10]. In these experiments, the two
hyperfine states |F = 1,mF = −1〉 and |F = 2,mF = −2〉 of
87Rb atoms are treated as up and down spins [10], respectively.
This two-component boson mixture soon attracted a great
deal of interest. Duan and coworkers suggested that the
Hamiltonian of this two-component system can be mapped
into a spin-1/2 XXZ Heisenberg model [11]. Its ground state
is ferromagnetic (FM) when the intercomponent repulsion U ′
is much larger than the intracomponent one U , while it is
AF when U ′ � U . These studies have provided us valuable
information to understand some long-standing problems in
condensed-matter physics. After these pioneering works, more
complicated spin models have been proposed in the context
of optical lattices. For example, it was demonstrated that
XYZ Heisenberg models can be implemented with p-orbit
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bosons [12] in one dimension, and with Rydberg atoms in two
dimensions [13,14].

Recently, a synthetic spin-orbit coupling (SOC) or, equiva-
lently, gauge field, was successfully realized in experiments
and a variety of phases as well as phase transitions were
observed [15–18]. These experiments have spurred great
interest in studying the artificial SOC as well as gauge field in
ultracold systems [19–34]. In the deep insulating region, such
an SOC can be approximated [21,26] by the Dzyaloshinskii-
Moriya (DM) interaction [35,36]. In many magnetic materials,
DM interaction plays a key role in understanding a variety of
exotic magnetic features, e.g., spiral magnetism [19–21,37]
and skyrmions [38–42]. Therefore, it is expectable that rich
magnetic structure can be experimentally observed in ultracold
atomic systems with the SOC.

The SOC realized in 2011 has equal weight of Rashba and
Dresselhaus terms [15]. Thus it is along one direction in real
space. Loaded into a 1D optical lattice [30], the low-energy
dynamics of such spin-orbit-coupled bosons can be modeled
by the Hamiltonian [25]

Ĥboson = K̂ + T̂soc + U

2

∑
iτ

n̂iτ (n̂iτ − 1)

+U ′ ∑
i

n̂i↑n̂i↓, (1)

where K̂ = −t
∑

iτ (ĉ†iτ ĉi+1τ + H.c.) is the hopping term be-
tween the nearest-neighbor sites with the hopping integral
t . T̂soc = −λ

∑
i(ĉ

†
i↑ĉi+1↓ − ĉ

†
i↓ĉi+1↑ + H.c.) is the SOC. The

strength of the SOC λ can be controlled by the laser frequency.
ĉ
†
iτ (ĉiτ ) is the creation (annihilation) operator of bosons at site

i with spin τ . τ takes ↑ and ↓, representing two internal states
of atoms. U is on-site intracomponent repulsion and U ′ is the
intercomponent one. n̂iτ = ĉ

†
iτ ĉiτ is the boson number operator

with spin τ at site i. μ is the chemical potential to control the
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filling factor. At unit filling and in the strong-coupling limit
t,λ � U,U ′, this model can be effectively written as a spin- 1

2
XYZ Heisenberg chain with a DM interaction (see Ref. [26]
for more details). By setting t = J cos θ , λ = J sin θ , it reads

Ĥ = 4J 2

U

[(
− 2 + U

U ′

)
cos 2θ

∑
i

Ŝz
i Ŝ

z
i+1

− U

U ′ cos 2θ
∑

i

Ŝx
i Ŝx

i+1 − U

U ′
∑

i

Ŝ
y

i Ŝ
y

i+1

− sin 2θ
∑

i

(
Ŝz

i Ŝ
x
i+1 − Ŝx

i Ŝz
i+1

)]
, (2)

where Ŝν
i = ∑

ττ ′ ĉ
†
iτ σ̂

ν
ττ ′ ĉiτ ′ are the pseudospin operators with

σ̂ ν Pauli matrix and ν = x,y,z.
The Hamiltonian (2), or equivalently Hamiltonian (1) at

unit filling in the strong-coupling limit, has been studied
by several groups using the density-matrix renormalization-
group (DMRG) method in combination with some analytic
methods [25–29]. For U ′ = U , the DM interaction can be
eliminated by a site-dependent rotation of the spin oper-
ators, resulting in an isotropic Heisenberg chain with FM
coupling [20]. In this sense, the SOC becomes trivial in
such a case. However, when U ′ 	= U , the DM interaction
cannot be simply eliminated [25] and several phases have
been predicted. For U ′ > U , there is a gapped FM phase,
a gapped AF phase, and in between a TLL phase with a
chiral order [26–28] (without ambiguity, we will call it the
TLL phase below). The transition from the FM (AF) phase
to the TLL phase is of first order [27,29]. For U ′ < U ,
a gapless paramagnetic phase and a gapful FM phase are
found [25,27,28]. The transition between these two phases is
of Berezinskii-Kosterlitz-Thouless (BKT) [43] type. However,
due to the limit of numerical accuracy and finite-size effect,
the critical point has not been determined accurately so far.

The above-mentioned studies are all limited to zero
temperature. The properties of the Hamiltonian (2) at finite
temperature remain unknown. In particular, when approaching
zero temperature, what are the asymptotic behaviors of some
typical quantities such as the entropy and the specific heat?
Understanding these questions is remarkably important for
determining the phase diagram experimentally. On the other
hand, Hamiltonian (2) is quite general although it originates
from the context of ultracold systems. We believe that it is qual-
itatively related to some quasi-1D materials, such as copper
benzoate [44], Cs2CoCl3 [45], CuCl2 · 2(dimethylsulfoxide)
[46,47], copper pyrimidine [48–50], and Yb4As3 [51].

In this work, we study the thermodynamics of the Hamil-
tonian (2) with the transfer-matrix renormalization-group
(TMRG) method [52]. TMRG is a powerful numerical method
for studying the thermodynamics of 1D quantum systems.
It treats infinitely large systems directly, and thus there is
no finite-size effect. We refer the reader to Refs. [52–55]
for more details. During the TMRG iterations, 1000–2000
states are kept in most cases. The truncation error is less
than 10−12 in all calculations. Particularly, we use an addi-
tional reorthogonalization procedure after the left and right
eigenvectors of the reduced density matrix are obtained. This
allows us to keep more states and thus improve accuracy [56].

In Hamiltonian (2), the particle fluctuation is completely
suppressed. Therefore, if we focus only on the magnetism
in spin-orbit-coupled bosonic systems, Hamiltonian (2) is
a more appropriate model for numerical simulations than
Hamiltonian (1). For simplicity, we set 4J 2/U as the energy
unit. One can immediately see that Hamiltonian (2) has a
period of π/2 in θ by performing the transformation Ŝx

2i+1 →
−Ŝx

2i+1, Ŝ
y

2i+1 → Ŝ
y

2i+1, and Ŝz
2i+1 → −Ŝz

2i+1. Moreover, one
can interchange t and λ in Hamiltonian (1) [25,31], so we only
need to consider the parameter region θ ∈ [0,π/4] since the
properties in the region (π/4,π/2] are readily available. It is
straightforward to verify this in Hamiltonian (2) by using the
fact sin θ = cos(π

2 − θ ).
The paper is organized as follows. In Sec. II, we begin our

study in the exactly solvable limit U ′/U → ∞. In Sec. III, we
consider the region U ′/U > 1. The phase transition points are
obtained through the isentropic map. In the low-temperature
limit, the asymptotic behaviors of the specific heat and the
entropy in different phases are compared. In Sec. IV, we focus
on the region U ′ < U . We determine the critical point from
the entropy. In Sec. IV, we give our conclusions.

II. EXACTLY SOLVABLE CASE

In the limit U ′/U → ∞, Hamiltonian (2) is reduced to

Ĥ = −2 cos 2θ
∑

i

Ŝz
i Ŝ

z
i+1

− sin 2θ
∑

i

(
Ŝz

i Ŝ
x
i+1 − Ŝx

i Ŝz
i+1

)
. (3)

One can immediately see that at θ = 0 the Hamiltonian (3)
is just an Ising model with a FM ground state, while at
θ = π/4 it is equivalent to an isotropic XY model, which
has a TLL ground state. For general θ , the Hamiltonian (3)
can be transformed into a Kitaev chain by the Jordan-Wigner
transformation [57], which is exactly solvable, leading to
Ĥ = ∑

k Ek(�̂†
k�̂k − 1/2) with the energy dispersion Ek =

cos 2θ − sin 2θ sin k and �̂
†
k(�̂k) the creation (annihilation)

operator of fermions with the momentum k (see Appendix A
for more details). One can notice that the system undergoes
a quantum phase transition from a gapped phase into a
gapless one at θ = π/8. The thermodynamic properties of
the Hamiltonian (3) can then be exactly calculated from the
partition function Z in a standard way. For example, the
specific heat Cν can be expressed as

Cν = β2 ∂2 ln Z

∂β2

= 1

2π

∫ π

−π

dk(βEk/2)2 cosh−2(βEk/2), (4)

with the inverse temperature β = 1/T . Cν can be evaluated
after a numerical integration. The results are shown in Fig. 1
together with our TMRG results. One can see that our TMRG
results agree perfectly with the exact ones, verifying the
precision of the TMRG data.

The low-temperature behavior of the specific heat reveals
distinguishable features for different values of θ . At θ = 0, the
system is just a classical Ising chain and Ek ≡ 1. One can easily
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FIG. 1. Exact solutions (lines) and TMRG results (symbols) of
the specific heat Cν are plotted as a function of temperature T for a
variety of θ . The inset shows asymptotic behavior of the specific heat
at low temperature for two different cases: (1) θ = π/4 ( ), which
is in the TLL phase, where the specific heat is proportional to T and
(2) θ = π/8 ( ), which is the transition point from the TLL phase to

the gapped FM phase, where the specific heat behaves as
√

T .

obtain Cν = (β/2)2 cosh−2(β/2), which can be approximate
to T −2 exp(−1/T ) under low-T limit. For 0 < θ < π/8,
though the ground state is also an Ising-type FM phase, the
low-temperature behavior is different. Here the low-energy
excitations are the gapful magnons, the dispersion of which
can be approximately written as

εq = � + sin 2θ

2
q2 + O(|q|3), (5)

where q = k − π/2 and � = cos 2θ − sin 2θ is the energy
gap between the ground state and the first excitation at k =
π/2. The q2 dependence of the magnon dispersion results in
Cν ∼ T −3/2 exp(−�/T ) for T � � [55]. These two different
exponential behaviors are shown in Fig. 1 with θ = 0 and
0.05π . At θ = π/8, a phase transition takes place between the
gapful FM phase and the TLL. At this point, the gap is closed,
and the dispersion is proportional to q2. Therefore, one has the
density of states g(Eπ/2) ∼ dk/dE|k=π/2 ∼ 1/

√
Eπ/2. It turns

out that the free energy F reads∫
dE

Eg(E)

exp(E/T ) + 1
∼ T 3/2, (6)

which leads to a T 1/2 dependence of the specific heat as
shown in the inset of Fig. 1. In the TLL phase corresponding
to θ > π/8, one has effectively a Fermi momentum kF =
arcsin(tan 2θ ), which shifts from π/2 towards zero with θ

increasing further from the transition point. As a consequence,
the specific heat exhibits a bump at low temperature and
becomes linear in the very low T regime. An example is given
for θ/π = 0.15 in Fig. 1. The bump reflects the contribution
from the excitations with the dispersion deviating from the
linearity and suggests a crossover from an ideal TLL with
linear excitations and others with k2-dependent excitations.
The bump shifts to higher temperature as the θ increases

and is eventually absorbed by the peak of the specific heat at
θ = π/4. In the TLL phase, the dispersion of the low-energy
excitations is proportional to the momentum, which results in
a T 2 dependence of free energy at very low temperature so that
one has Cν/T = π/3v with v the spin-wave velocity [58]. In
our model, v = √− cos 4θ . Therefore the specific heat has the
following low-temperature behavior:

Cν = π

3
√− cos 4θ

T . (7)

The inset of Fig. 1 illustrates this behavior for θ = π/4 as
compared with TMRG results.

III. U′/U > 1

After benchmarking our TMRG method, we now turn to our
main task, the thermodynamics in the anisotropic interacting
case, i.e., U ′/U is finite but U ′/U 	= 1. Under this condition,
the Hamiltonian in general is not exactly solvable, and thus
we resort to the TMRG method to study it. In this section, we
focus on U ′/U > 1.

A. Entropy

The location of the transition point at zero temperature
can be determined through the isentropic map. It is known
that, at the same temperature, the entropy S has a maximum
at the transition point. As a result, all the isentropic curves
should bend to the transition point. As shown in Fig. 2, one
can easily figure out that at U ′/U = 1.2 the transition point
locates at θ/π = 0.072(1), which agrees well with previous
results obtained by DMRG [26]. Meanwhile, we notice that
the isentropic map shows a clear cooling process similar

0.00 0.05 0.10 0.15 0.20 0.25
0.00

0.01

0.02
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0.04

0.05

c

Tf

T

θ/π

0.00

0.04

0.08

0.12

0.16

0.20

Ti

FIG. 2. Isentropic map of S(T ,θ ) at U ′/U = 1.2. The color
represents the value of S. The transition point θc can be directly
obtained through the tips ( ) of isentropic curves. The dashed line
connecting these tips is a guide to the eye. A cooling process from Ti

to Tf similar to MCE is shown. The black arrow is an isothermal line
with entropy decreasing, and the red arrow is an isentropic line with
gap closing, illustrating a MCE-like process.
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FIG. 3. Specific heat as a function of temperature obtained by
TMRG for a variety of θ at U ′/U = 1.2. Inset: Asymptotic behaviors
of the specific heat at low temperature for θ/π = 0.072 and 0.25.

to magnetocaloric effect (MCE) in magnetic materials [59].
Staring from Ti and decreasing θ , one can design an isothermal
process of entropy decreasing (black arrow). Then following
an isentropic curve with increasing θ (red arrow), it is allowed
to decrease the temperature gradually to Tf . Here the strength
of SOC is used instead of magnetic field in the usual MCE.
The entropy is transferred from gapless states to gapped states
in the isothermal process, then followed by a gap closing in the
isentropic process. As a contrast, common MCE in magnetic
materials contains an isothermal suppression of the entropy
from disordered phases to FM ordered phases, then followed
by an adiabatic demagnetization [59]. In ultracold systems,
a common way for lowering the temperature of the quantum
gas is transferring the entropy from the ground band to higher
bands and removed [60]. The possibility and efficiency of
using the MCE-like process as an alternative technology for
refrigeration in cold atom systems need further experimental
investigations.

B. Specific heat

In Fig. 3, we plot the specific heat as a function of
temperature for a variety of θ at U ′/U = 1.2, which is
qualitatively similar to the results in the exactly solvable
limit. However, at θ = 0, the system is now a gapped XXZ
model, and the specific heat at low temperature is Cν ∼
T −3/2 exp(−�/T ). At the transition point θ = θc � 0.072,
our numerical data show that it deviates from the square-root
behavior, which suggests that the dispersion of the low-energy
excitations is not well approximated by k2 for a finite U ′/U .
For θ > θc, Cν ∼ T , which is a characteristic feature of TLL.

The transition points can be determined from the finite-
temperature scaling of the specific heat as well [61,62]. In
Fig. 4, we present a contour plot of the specific heat with T

and θ . For a fixed T , one can obtain two maxima Cmax
ν and one

minimum Cmin
ν . At these extrema, the corresponding Tmax(min)

and θmax(min) should follow a scaling behavior [61,62]:

Tmax(min) ∝ |θmax(min) − θc|α,

0.00 0.05 0.10 0.15 0.20 0.25
0.00

0.02

0.04

0.06

T

θ/π

0.00

0.04

0.08

0.12

0.16

0.20

Cminv
Cmaxv

FIG. 4. Contour plot of specific heat Cν(T ,θ ). Symbols are the
extreme points for the given temperature and dashed lines are
fitting curves. The color represents the value of the specific heat at
given T , θ .

with θc the transition point and α the critical exponent. The
fitting dashed lines in Fig. 4 show rather good linear behaviors,
indicating α = 1. Furthermore, the transition point is fitted as
θc = 0.072(1), which agrees well with that we obtain from the
entropy.

Fisher and Berker have established the scaling description
of classical first-order phase transitions [63]. Subsequent
works show its validity in the quantum ones [64,65]. We notice
the scaling relation α = 1 has also been found at the first-order
transition point separating the FM phase and the TLL phase in
a 1D spin-1/2 XXZ chain [66]. Since the symmetry of these
two models is quite different, this resemblance deserves further
theoretical analysis.

IV. U′/U < 1

As shown in the ground-state phase diagram in previous
works [25,27,28], there are two phases in this case, a
paramagnetic phase and a FM one. The former is gapless
while the latter is gapful. The transition between these two
phases is of BKT type [43]. In the BKT transition, it is a
big challenge to figure out the critical point accurately. To
determine the phase boundary, the entanglement entropy of
the ground state of the Hamiltonian (1) was calculated [25,28]
by DMRG. Based on that analysis, the transition seems to
occur at a finite θ for a finite U ′. Another DMRG calculation
based on the effective model (2) gives a relatively large error
bar for the critical points [27]. In this section, we will study
the thermodynamic properties of Hamiltonian (2), from which
we can provide solid numerical evidence that the transitions
from the paramagnetic phase to the FM phase occur at θ = 0.

A. Entropy

In this subsection, we will discuss the entropy. For sim-
plicity, we limit our discussion to U ′/U = 0.5. In Fig. 5, we
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FIG. 5. Isentropic map of S(T ,θ ) at U ′/U = 0.5. The color
represents the value of the entropy at given T , θ .

plot the isentropic map. In contrast to the case U ′/U > 1,
we do not find any singular point on the isentropic curves at
finite θ . Moreover, we observe that the entropy on the left is
larger than that on the right at low temperature. This can be
understood from the known results that the FM phase is gapful
while the paramagnetic phase is gapless. As the temperature
increases, the isentropic curve becomes flatter. This is because
at high temperature the thermal fluctuation dominates over the
quantum fluctuation.

To extract the critical point between such gapped and
gapless phases, we first determine the position θm where
the entropy is maximal for a fixed temperature, and then
extrapolate them to zero temperature. In Fig. 6, we plot θm

as a function of the temperature T . The curve can be well
fitted by a linear function θm/π = a · T , with the parameter
a = 0.364(2). Thus, we conclude that within our error bar the
critical point locates at θc = 0. In Appendix B, we perform a
DMRG calculation, which confirms our conclusion further.

B. Specific heat

In Fig. 7(a), we plot the specific heat as a function of
temperature for a variety of θ at U ′/U = 0.5, which is much
different from the results of U ′/U > 1. At low temperature,

0.00 0.02 0.04 0.06 0.08 0.1

T

0.00

0.02

0.04

θm/π

TMRG
θ

m
/π = 0.364T

FIG. 6. Extrapolation of θm where the entropy is maximal at a
given temperature to determine the critical value.

0.0

0.2

0.4

Cv

θ/π = 0.00
θ/π = 0.09
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θ/π = 0.25

0.0 0.2 0.4 0.6 0.8 1.0
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~
Cv

(a)

(b)

T
∗

FIG. 7. (a) Specific heat as a function of temperature for a variety
of θ at U ′/U = 0.5. An isosbestic point is indicated by the dashed
line, and the corresponding temperature is marked as T∗. (b) Scaled
specific heat C̃ν(T ) collapses into one line at high temperature.

Cν decreases exponentially (linearly) in the gapped (gapless)
phases. From the exponential behavior, one can see that the
energy gap increases as θ grows. Furthermore, it is interesting
to find that all the specific-heat curves Cν(T ,θ ) intersect
approximately at one point T ∗ ≈ 0.527(3). Such a crossing
point is called the isosbestic point, which has been theoretically
analyzed with Cν(T ,U ) curves of Hubbard models [67].
This unique feature has been widely observed in many
experiments, such as specific heat of normal-fluid 3He [68] and
heavy-fermion systems [69,70], dielectric constant and optical
conductivity in high-Tc superconductor Rb11xFe2ySe2 [71],
and photoemission spectra of thin VO2 films [72]. Following
the argument given by Greger et al. [73], we can expand
Cν(T ,θ ) as

Cν(T ,θ ) = Cν(T ,0) + cos2(2θ )F (T ) + O[cos3(2θ )],

where

F (T ) ≈ Cν(T ,θ1) − Cν(T ,θ2)

cos2(2θ1) − cos2(2θ2)

is a function of T only. The validity of this expansion can be
verified by

C̃ν(T ) = Cν(T ,θ ) − cos2(2θ )F (T ) ≈ Cν(T ,0).

As shown in Fig. 7(b), all specific-heat curves for different
θ collapse well into a single curve at high temperature. We
have confirmed that such isosbestic point can be observed for
U ′/U � 0.45 in our model.
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FIG. 8. Ground-state phase diagram of Hamiltonian (2) in the
U ′/U vs θ plane. The reflection symmetry of the phase diagram
with respect to θ = π/4 is the direct consequence of the transforma-
tion [25] for interchanging t and λ. The two exact transition points
at θ = π/8 and 3π/8 in the U ′/U → ∞ limit are indicated by blue
dashed lines. For U ′/U > 1, the red circles are the transition points
between zFM (zAF) phase and TLL phase, and the solid red lines are
guides to eyes. At U ′/U = 1, it is a spiral phase. For U ′/U < 1, the
transition between the paramagnetic phase and the yFM phase occurs
at θ = 0 and 0.5π , as marked by maroon squares. The lowercase
letters y and z represent the polarization directions.

V. CONCLUSIONS

In conclusion, we study the thermodynamic properties of
a spin-1/2 XYZ Heisenberg chain with a DM interaction
by using the TMRG method. This model approximates a
two-component bosonic system with a synthetic SOC in the
deep insulating region. At low temperature, the asymptotic
behaviors of the specific heat and the entropy are in close
association with the properties of the ground states. We
can thus figure out the phase boundary of the ground-state
phase diagram through the isentropic map. For U ′/U > 1, the
transition from the gapless TLL phase to the gapped FM(AF)
phase occurs at a finite θ . A MCE-like process is proposed
and the scaling behavior near the transition point is discussed.
On the other hand, for U ′/U < 1, we find no singularity in
the isentropic map at finite θ . After a careful extrapolation, we
determine that the transition between the paramagnetic phase
and the FM phase occurs at θ = 0 (or equivalently θ = π/2).
We confirm this conclusion by DMRG calculations. Based on
our results, a refined ground-state phase diagram is given in
Fig. 8.
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APPENDIX A: EXACT SOLUTION
IN THE U ′/U → ∞ LIMIT

The effective Hamiltonian (2) in the limit U ′/U → ∞ can
be reduced to

Ĥ = −J
∑

i

Ŝz
i Ŝ

z
i+1 − D

∑
i

(
Ŝz

i Ŝ
x
i+1 − Ŝx

i Ŝz
i+1

)
, (A1)

with J = 2 cos θ � 0 and D = sin 2θ � 0. The exact solu-
tion [57] of Eq. (A1) is obtained by the Jordan-Wigner
transformation.

The Hamiltonian is invariant under the rotation⎧⎨
⎩

Ŝx → Ŝy

Ŝy → Ŝz

Ŝz → Ŝx

⎫⎬
⎭ (A2)

and accordingly Eq. (A1) turns into

Ĥ = −J
∑

i

Ŝx
i Ŝx

i+1 − D
∑

i

(
Ŝx

i Ŝ
y

i+1 − Ŝ
y

i Ŝx
i+1

)
. (A3)

Using the definition

f̂
†
i = e−iπ

∑
n<i Ŝ+

n Ŝ−
n Ŝ+

i
(A4)

f̂i = eiπ
∑

n<i Ŝ+
n Ŝ−

n Ŝ−
i

the Hamiltonian (A3) finally becomes

Ĥ = −
∑

i

(J 0f̂
†
i f̂

†
i+1 − J 0f̂i f̂i+1 + J+f̂

†
i f̂i+1 − J−f̂i f̂

†
i+1),

(A5)

with J 0 = J/4, J± = ( J
2 ± iD)/2. After Fourier transforma-

tion

f̂k = 1√
N

∑
i

eiki f̂i

(A6)

f̂
†
k = 1√

N

∑
i

e−iki f̂
†
i ,

we obtain the Hamiltonian in the momentum space

Ĥ = −
∑

k

[A(k)f̂ †
k f̂k − B(k)(f̂ †

k f̂
†
−k + f̂kf̂−k)], (A7)

with A(k) = J cos k/2 + D sin k, B(k) = iJ sin k/4. The di-
agonalization is finished up by the Bogoliubov transformation:

�̂k = iukf̂k + vkf̂
†
−k

(A8)
�̂

†
k = −iukf̂

†
k + vkf̂−k,

where uk and vk are real coefficients, which fulfill the following
relations:

u−k = −uk, v−k = vk, u2
k + v2

k = 1. (A9)
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The transformed Hamiltonian would only contain terms
proportional to �̂

†
k�̂k when

J cos k

2
− J sin k

4

(
uk

vk

+ v−k

u−k

)
= 0. (A10)

In combination with Eq. (A9), we then have

uk = sin k√
2(1 − cos k)

, vk =
√

(1 − cos k)/2. (A11)

Finally we end up with

Ĥ =
∑

k

Ek(�̂†
k�̂k − 1/2), (A12)

with Ek = cos 2θ − sin 2θ sin k.

APPENDIX B: DETERMINING THE CRITICAL
POINTS BY DMRG

To confirm our conclusion that the critical point locates
at θc = 0 for U ′/U < 1, we repeat the same calculations by
Zhao et al. [25] but for Hamiltonian (2). The freedom at each
site now is 2, much smaller than that in the Hamiltonian (1),
thus allowing us to obtain more accurate numerical data as
well as larger sizes. In our DMRG calculations, we impose
open boundary conditions. We keep 500–1200 states to
ensure the truncation errors are smaller than 10−7. Moreover,
we perform sweeps to improve the accuracy and to ensure
the convergence of the ground-state energy per site to seven
digits.
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/π
DMRG
θ

m
/π = 0.783(1/L)
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+0.003
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2048

FIG. 9. Entanglement entropies Sρ as a function of θ for various
system sizes are shown. θm, where Sρ shows its maximum, are
then extracted. Inset: Finite-size extrapolation of θm to determine
the critical point θc.

The critical point θc then is determined [74–76] through the
entanglement entropy Sρ , with Sρ = −Trρ ln ρ via the reduced
density matrix ρ of a half chain. In Fig. 9, we first plot the
entanglement entropy versus θ/π obtained with various chain
lengths, L = 32, 64, 128, 256, 512, 1024, and 2048. Then, we
determine θm, where Sρ is maximal, for the given length. These
θm are extrapolated to the thermodynamic limit with respect to
1/L and deduce the critical point θc. In the inset, we show such
an extrapolation for θm with a variety of chain lengths, which
can be fitted by a power-law function θm/π = a(1/L)b + c,
with the best fitting parameters a = 0.783(4), b = 0.586(5),
and c = 0.003(2). Therefore, we conclude that within our error
bar θc = 0. One can see that θc obtained by our two different
methods are well consistent.
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