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Chaotic dynamics of a magnetic particle at finite temperature
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In this work, we study nonlinear aspects of the deterministic spin dynamics of an anisotropic single-domain
magnetic particle at finite temperature modeled by the Landau-Lifshitz-Bloch equation. The magnetic field has
two components: a constant term and a term involving a harmonic time modulation. The dynamical behavior
of the system is characterized with the Lyapunov exponents and by means of bifurcation diagrams and Fourier
spectra. In particular, we explore the effects of the magnitude and frequency of the applied magnetic field,
finding that the system presents multiple transitions between regular and chaotic states when varying the control
parameters. We also address the temperature dependence and evidence that it plays an important role in these
transitions, almost suppressing the chaotic behavior close to the Curie temperature. Finally, we find that the
system has hyperchaotic states for specific values of field and temperature.
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I. INTRODUCTION

Following the advances in pump-probe techniques, in
recent decades, fast magnetization dynamics has become
experimentally observable on the time scale below 10 ns
[1,2]. This has allowed the generation of dynamic studies of
the precession of magnetization and switching of magnetic
dots [1–4]. With more powerful femtosecond lasers, the
manipulation and switching of the magnetization at even the
femto- and picosecond scales have become a reality [5–9].
These experimental advances have triggered new studies
on the spin dynamics of ferromagnets, allowing one to
explore novel dynamical scenarios. From both applied and
theoretical points of view, it is important to understand the
peculiarities of the dynamics of magnetic nanoparticles. Even
in the simplest single-domain limit, this dynamics is expected
to be highly nontrivial due to the nonlinear character of
the Landau-Lifshitz-Gilbert (LLG) equation of motion [10].
For example, the dynamical precessional switching under
microwave excitation can take place under fields below the
Stoner-Wolfarth limit due to nonlinear effects [11] and may
result in very complex trajectories of the magnetization [12].
Another example is highly nonlinear trajectories and states,
which have been reported in the dynamics of nanosized spin
valves [13,14]. In this context, a number of numerical studies
of nonlinear dynamics and of the effect of time-dependent
magnetic fields have been developed [12,15–31], reporting
different dynamical behaviors such as quasiperiodicity, bista-
bility, and chaos [15]. Such effects have been analyzed using
different approaches such as the Lyapunov exponents [25–28],
bifurcation diagrams [15,24], Fourier spectra [25–28], and
Hausdorff dimension [31]. From the experimental point of
view, several chaotic states have been measured [32–35]. The
usual magnetic elements are yttrium iron garnet spheres [32].
Different routes to chaos have been found using ferromagnetic
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resonance methods. In particular, period-doubling cascades,
quasiperiodic routes to chaos, or intermittent routes can be
appear. This implies that there is no universal mechanism
leading to chaos in a magnetic system, and therefore theoretical
and numerical studies are necessary and in order. The study
of the chaotic states is also important from an applied
point of view since they can potentially lead to a broad
emission spectrum of radio-frequency oscillators based on the
spin-torque effect, and the transition between deterministic
and chaotic states can also be important for radio-frequency
detectors; see, e.g., [36]. Finally, the standard application of
chaos is in cryptography devices; see, e.g., [37].

The ultrafast magnetization experiments have opened the
possibility to study not only transverse but also longitudinal
magnetization dynamics [5–9]. Recently, a deterministic dif-
ferential equation that describes the magnetization dynamics
at finite temperatures and accounts for longitudinal dynamics
was derived by Garanin from both the quantum and the
classical nonequilibrium statistical mechanics points of view
[38–40]. This equation is usually called the Landau-Lifshitz-
Bloch (LLB) equation. In this model, the temperature induces
changes in the module of the magnetization and, therefore,
the magnetization magnitude is not conserved [39]. It was
demonstrated that the LLB equation is effective to properly
estimate the longitudinal and transversal relaxation times
predicted by atomistic simulations at high temperatures [41].
Furthermore, the LLB equation is in agreement with several
experimental measurements of ultrafast dynamics [42–45].
Other interesting works in the wide range of magnetic-thermal
phenomena where the LLB model is involved have been
published [46–53]. For example, and just to mention a few,
LLB has been used for modeling heat-assisted magnetic
recording [50,51], or the thermal induction of domain-wall
motion under the spin Seebeck effect [48].

From the dynamical system point of view, the main
difference between the LLG and the LLB equations is that
in the first one, the magnetization length is conserved, and
therefore undamped LLG has a constant of motion [10]. The
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LLB model has an extra degree of freedom and, consequently,
one can expect more complex dynamical behaviors. Partic-
ularly, the appearance of one more degree of freedom may
drug the system from a regular to a chaotic regime. Fur-
thermore, the ultrafast magnetization switching phenomena
in ferrimagnets have been analyzed within the LLB model as
arising from highly nonlinear trajectories involving the angular
momentum transfer from pure longitudinal to transverse
motion [52].

In this paper, we focus on an anisotropic single-domain
magnetic particle in the presence of a magnetic field with
constant and time-dependent terms at finite temperature. In
our study, we use the LLB equation that allows us to clarify
the effects of the temperature and the external magnetic
field on the system. The paper is organized as follows: In
Sec. II, the LLB equation and the mean-field approximation to
account for temperature-dependent properties are presented. In
Sec. III, numerical results of the Lyapunov spectra, bifurcation
diagrams, phase portraits, and Fourier power spectra are shown
and analyzed. Finally, conclusions are presented in Sec. IV.

II. THEORETICAL MODEL

Let us consider an anisotropic magnetic particle at finite
temperature T . We assume that the particle is in a magnetic
monodomain state M (i.e., the macrospin approximation),
which means that we do not consider long-wave spatial
magnetization inhomogeneities such as domain walls. In this
case, the temporal evolution of the magnetization is governed
by the LLB equation, which in a dimensionless form is given
by [38,39]

dm
dτ

= −m × � − α⊥
m2

m × (m × �) + α‖
m2

(m · �)m, (1)

where m = M/M0, with M0 the saturation magnetization
at zero temperature, and τ = t |γ |/μ0χ̃

0
⊥ is the normalized

time. In this expression, χ̃0
⊥ is the transversal magnetic

susceptibility at zero temperature (∂m/∂H )H−→0 (defined
by the anisotropy constant), |γ | represents the gyromagnetic
factor, μ0 is the vacuum magnetic permeability, with |γ | =
|γe|μ0 ≈ 2.21 × 105 m A−1s−1. In Eq. (1), � = μ0χ̃

0
⊥Heff

denotes the dimensionless effective field, and α⊥(T ) and
α‖(T ) are the transverse and longitudinal damping coefficients,
respectively. These coefficients are temperature dependent
and their form depends on the quantum spin number S [40].
When T → 0, α‖ → 0 and the transverse damping coefficient
tends to the standard Gilbert damping coefficient (α⊥ → α0).
Consequently, the last term on the right-hand side of Eq. (1)
represents a torque that appears only from temperature effects.
Therefore, when T → 0, the LLB equation is reduced to the
Landau-Lifshitz (LL) equation [10],

dm
dτ

= −m × � − α0m × m × �. (2)

Note that in the LLG equation, the module of the magnetic
moment is conserved. Nevertheless, in the LLB, this condition
is removed and a longitudinal degree of freedom appears,
allowing changes on the module of the magnetic moment
generating a more complex dynamic. In addition, let us remark
that the thermal effects are included here on average. In

the classical approach, the magnetization M represents the
statistical average of the fluctuating atomistic spins [39], while
in the quantum approach, it represents the spin expectation
value [38]. The thermal fluctuations may be additionally
included as stochastic fields in the LLB equation [54], similar
to the standard macroscopic approach in the LLG [55–57]. This
represent a way to thermally excite the system; however, this
does not change the system’s linear (spin waves) or nonlinear
excitations. The macrospin LLB deterministic approach has
been compared to atomistic Langevin simulations in different
situations given very good agreements [41], and also has been
used to complement the computation of magnetic properties
of complex materials [51].

Here we assume that the temperature is less than the Curie
temperature TC . In this scenario, the effective magnetic field
� can be written as [39]

� = hE − 1

χ̃⊥

(
mx x̂ + my ŷ

) + χ̃0
⊥

2χ̃‖

(
1 − m2

m2
e

)
m, (3)

where hE is an external magnetic field, χ̃⊥(T ) and χ̃‖(T ) are the
perpendicular and parallel susceptibilities, respectively, and
me(T ) is the equilibrium magnetization. The external field
contains a constant and a harmonic time-dependent term,

hE = hzẑ + hx sin(�τ )x̂ , (4)

such that (hz,hx,�) are constants, where � = ωχ̃0
⊥/|γ | is the

dimensionless driven frequency. We remark that due to the fact
that the last term of the effective field (3) is proportional to m,
it is only incorporated in the term proportional to α‖ of Eq. (1).

The temperature-dependent parameters
in the mean-field approximation

In order to use the LLB model, one needs to specify the tem-
perature dependence of the susceptibility, the dissipative pa-
rameters α⊥(T ) and α‖(T ), and the equilibrium magnetization
me. Their values can be obtained from experimental measure-
ments. They can also be estimated from a multiscale approach
(ab initio and atomistic) [47,58]. In this paper, for simplicity,
we obtained their values under the mean-field approximation
(MFA) previously used in the literature [41,42,53,59]. In this
approximation, the static magnetization in equilibrium is taken
from the Curie-Weiss law M = B[β(MJ0 + μH0)] at zero
field, where B(y) = coth(y) − 1/y is the Langiven function,
μ is the atomistic magnetic moment, J0 is the strength of
the exchange field, β = 1/kBT , and kB is the Boltzmann
constant. Hence, the equilibrium magnetization me in Eq. (3)
is given by me = M(H0 → 0). Consequently, the longitudinal
susceptibility is given by χ‖ = ∂M/∂H0, which at zero field
can be cast in the form [39]

χ̃‖ = χ‖(T ,H0)|H0=0 = μ

J0

βJ0B
′|H0=0

1 − βJ0B ′|H0=0
, (5)

where B ′(y) ≡ dB(y)/dy and f |ζ represents the function
f evaluated at ζ . On the other hand, the perpendicular
susceptibility χ̃⊥(T ) is assumed to be related to the anisotropy
K(T ) through the relation [39]

χ̃⊥(T ) = M0
s me(T )

2K(T )
, (6)
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TABLE I. Simulational parameters. Values are taken close to that
for Ni-based alloys from Ref. [59]. Here, μB = 9.27401 × 10−24

A m2.

TC (K) K0 (J/m3) μ (μB ) M0
S (A/m) χ̃ 0

⊥ (A m2/J)

630 5.30 × 103 0.61 4.80 × 105 45.28

such that the anisotropic parameter is modeled by K(T ) =
K0m

η
e (T ), where K0 = K(T = 0) is the anisotropy constant at

zero temperature and η is a material-specific scaling exponent.
For uniaxial-anisotropy materials, we assume η = 3, which
corresponds to the Callen-Callen theory [60]. For J0, one
can use a phenomenological relationship with the Curie
temperature. For example, for a simple cubic lattice in the
MFA, J0 = 3kBTC [39].

This effectively rewrites the MFA in terms of the TC

parameter and makes temperatures closer to the experimentally
ones.

Finally, we consider the damping coefficients α⊥ and α‖ in
the classical approximation given by [39]

α⊥(T ) = α0

(
1 − T

3TC

)
, (7)

and

α‖(T ) = α0
2T

3TC

,

where α0 is the transverse damping coefficient at null tempera-
ture [38]. The typical values of this damping coefficient range
from 10−3 to 10−1 (Ref. [10]). In addition, we remark that the
longitudinal time scale of the LLB equation depends on the
specific magnetic material, but is typically of the order of, or
below, 1 ps. The typical orders of magnitude of the magnetic
field components, Hj , range from 103 to 104 A/m, while the
order the magnitude of the driven frequency is ω ∼ 100 GHz.
The order of magnitude of the temperature ranges from 100

to 103 K. The set of parameters used in the simulations is
summarized in Table I.

III. SIMULATIONS

This section is divided into two parts. In the first section,
we briefly present the characterization techniques we used for
analyzing the dynamical behavior of our system, and in the
second one, we present and discuss our results.

A. Techniques of dynamics characterization

To characterize the dynamics described by the LLB equa-
tion, we will mainly use Lyapunov exponents (LEs). This
method consists of quantifying the divergence between two
initially close trajectories of a vector field [61]. In general,
for an effective N-dimensional dynamical system described
by a set of equations, dXi/dτ = F i(X,τ ), the ith Lyapunov
exponent is given by

λi = lim
τ→∞

[
1

τ
ln

(∥∥δXi
τ

∥∥∥∥δXi
0

∥∥
)]

, (8)

where ‖δXi
ξ‖ is the distance between the trajectories of the

ith component of the vector field at time ξ . These exponents
can be ordered from the largest to the smallest as λ1 � λ2 �
· · · � λN . The first exponent is the largest Lyapunov exponent
(LLE). Due to the fact that the applied magnetic field is
time dependent, the effective dimension of the phase space
of our system is four. Thus, from a dynamical system point
of view, the LLE and the second largest LE (SLLE) may
become positive, and therefore, by exploring the dependence
of the LLE on the different parameters of the system, one
can identify areas in the parameter space where the dynamics
is chaotic (LLE positive) and others showing nonchaotic
dynamics (LLE vanishing or negative). When both LLE and
SLLE are positive, the system exhibits a hyperchaotic state
[62–65]. This type of chaotic state appears in a dynamical
system with minimal dimension four, so that it becomes
more frequent for higher-dimensional systems. This feature
indicates the possibility to have a complex attractor since more
than one direction is expanded. In some cases, a hyperchaotic
system can have two or multiple time scales. The first model of
a hyperchaotic system was proposed by Rösler in 1979 [62].
The hyperchaotic states have been experimentally observed in
electric circuits [66], chemical reactions [67], as well as optical
devices [68], but not magnetic systems. On the other hand, let
us comment that since we are dealing with a one-frequency
forced system, at least one of its Lyapunov exponents is always
zero, and hence the simplest attractor is a periodic orbit. Let
us recall that this method has been widely used in different
branches of physics and is considered one of the most effective
approaches to quantify chaotic systems [61,69–71].

To analyze the dynamics of our system, we integrated
Eq. (1) in the Cartesian representation by using a standard
fourth-order Runge-Kutta integration scheme with a fixed
time step dτ = 10−4. The LEs are calculated for a time
span of τ = 216 after disregarding an initial transient time
τ = 104. The Gram-Schmidt orthogonalization process [72]
is performed after every δτ = 1. This method is performed
for orthonormalizing a set of vectors in an inner product
space, and ensures the convergence of the LEs [61]. The error
E in the evaluation of the LEs has been obtained by using
E = σ (λM )/ max (λM ), where σ (λM ) is the standard deviation
of the maximum positive LE. In all cases that we reported
here, E is of the order of 1%, which is sufficiently small for
the purpose of the present analysis.

B. Numerical results

Numerical simulations have been performed for particles
with parameters presented in Table I. Due to the large number
of control parameters, we have fixed the amplitude of the
constant magnetic field at hz = 0.1. The main results are
depicted in Figs. 1–8.

In all cases, one of the Lyapunov exponents is zero,
since one of the exponents belongs to the parametric forcing.
Figure 1 shows the three other LEs as a function of a magnetic
field hx for three different temperatures, represented by solid,
dotted, and dashed lines. In Fig. 1(a), T/Tc = 0.0 (LLG limit),
we observe that the chaotic state starts at hx = 0.82. For higher
fields, the system exhibits multiple nonperiodic transitions
between chaotic and regular behavior defined by λM = 0.0.
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FIG. 1. LEs as a function of the field amplitude hx for three
different temperatures: (a) T = 0, (b) T = 0.6TC , and (c) T = 0.9TC .
The fixed parameters are � = 0.4, hz = 0.1, and α0 = 0.05. The
resolution in hx is �hx = 7.0 × 10−3. The physical values of the
parameters are TC = 630 K, ω = 1.55 GHz, and Hz = 1679 A/m.

At this temperature, the amplitude of the LLE inside the
chaotic region decreases when the field increases. As shown in
Fig. 1(b), at intermediate values of the temperature, the chaotic
behavior starts at lower values of the field, hx = 0.25, as
compared to the previous case. Also the temperature modifies
the dynamic states, decreasing the number of transitions
between chaotic and regular regions. Therefore, some regions,
that at zero temperature exhibit a chaotic behavior, with
temperature present a regular dynamic, and vice versa. For
higher temperatures, the regions that exhibit chaotic states
almost disappear, as it is shown in Fig. 1(c). In addition,
the numerical value of the positive LLE that characterizes

FIG. 2. Lyapunov exponents as a function of the frequency �.
The continuous line depicts the largest Lyapunov exponent, while
the dashed lines represent the lower Lyapunov exponents. For the
results, we used T = 0.6TC , hx = 3.0, hz = 0.1, and α0 = 0.05.
The resolution in � is �� = 2.0 × 10−3. The physical values of the
parameters are TC = 630 K, Hx = 52 712 A/m, and Hz = 1679 A/m.

the chaotic regime is quite small. Finally, we remark that
for temperatures very close to the Curie temperature, the
dynamical states are purely regular, independent of the field’s
value. We believe that the reason for this is that at high
temperatures, the effect of longitudinal relaxation increases
(due to the critical slowing-down effect [41,42,44]) and
the dynamics becomes purely relaxational while the chaotic
dynamics comes mostly from the precessional effect.

Figure 2 shows the Lyapunov exponents as a function of
the frequency, �, at an intermediate temperature, T = 0.6TC .
From this figure, we observe that the system exhibits a regular
behavior for frequencies lower than � 
 0.106 and larger
than � 
 0.732. Between these two frequencies, the system
is in a mixed regime, alternating between chaotic and regular

FIG. 3. Frequency thresholds of the region that exhibit a mixed
behavior of the Lyapunov exponents, i.e., switching on and switching
off of the chaotic states as a function of the the reduced temperature
T/TC . The squares and dots denote the lower and higher threshold,
respectively. The gray area represents the mixed states from chaotic
to regular states. The other fixed parameters are the same as used in
Fig. 2.
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FIG. 4. (a) Lyapunov exponents λi as a function of the reduced
temperature T/TC . Bifurcation diagrams as a function of the reduced
temperature T/TC for the angular variables (b) θ , (c) φ, and (d) the
module |m|. The fixed parameters are hz = 0.1, hx = 3.0, � = 0.4,
and α0 = 0.05. The resolution in T/TC is �T = 1.0 × 10−3TC . The
physical values of the parameters are TC = 630 K, Hx = 52 728 A/m,
Hz = 1679 A/m, and ω = 1.55 GHz.

regimes. In the following, the frequencies separating the region
between a purely regular behavior and a mixed state will
be called thresholds. Figure 3 shows a phase diagram as a
function of � and T/TC such that the white area identifies the
nonchaotic regimes, while the gray one contains both types
of states. We can observe that the upper thresholds strongly
depend on the temperature, leading us to conclude that for

FIG. 5. Decay on time of the module |m| to the value of
equilibrium as a function of the time, for four different temperatures.
The fixed parameters are the same as Fig. 4.

higher values of the temperature, this critical value of the
frequency decreases. However, the lower limit of the mixed
state is less dependent on the temperature.

In order to investigate in more detail the different dynamical
states, we use other numerical techniques such as the compu-
tation of bifurcation diagrams, phase portraits, and Fourier
power spectra [15,19–21,69,70]. Bifurcation diagrams have
been previously used to quantify the nonperiodic behavior
of a dynamical system [21,25]. Our bifurcation diagrams are
obtained by repeatedly taking the maximum value of the
time series of the spherical variables {m,θ,φ}, related by
m = m(cos φ sin θ, sin φ sin θ, cos θ ).

Figure 4 shows the dependence of the LEs, of the bifurcation
diagrams of the angular variables {θ,φ}, and of the module of
magnetization m of the reduced temperature, extracted from
this technique. In the bifurcation diagrams when there is a
continuum of points in the variable, the behavior can be mul-
tiperiodic, quasiperiodic, or chaotic. Hence, to discriminate
complex regular states from chaotic ones, we need to compare
these results with the LEs. From the LEs, one can observe that
there are multiple transitions among chaotic and regular states
and that for higher values of the temperature (T > 0.7TC), the
chaos is almost suppressed. In addition, the angular bifurcation
diagrams show that the regular states are not simple periodic
ones, since the maxima values are spread in the whole range of
{θ,φ} even when the LLE is null. There are some special cases
where the angular variables are compacted in the diagram,
such as in the region T/TC ∈ (0.701,0.770). Moreover, we
can observe that for higher temperatures, the regular states
become multiperiodic ones.

On the other hand, from the bifurcation diagram for
m, we can observe that its stationary modulus decreases
when the temperature increases, resembling the equilibrium
magnetization curve and following the law m ∼= a(1 − T/Tc)p

with a = 1.02 and p = 0.39. Also, we can observe that all the
maxima in the time series have the same value, indicating that
this variable has a pure relaxation dynamics for any type of
the magnetization dynamical state, as shown in Fig. 5. In this
figure, one can obverse that the modulus m tends fast to its
equilibrium value me.

To have more insight into the dynamics of the system,
we will analyze four values of the temperature, denoted by a
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FIG. 6. Phase diagrams and Fourier power spectra for different
temperatures: (a) T/TC = 0.1, (b) T/TC = 0.19, (c) T/TC = 0.726,
and (d) T/TC = 0.98. These points are denoted on the diagrams of
Fig. 4 with a square, circle, triangle, and hexagon, respectively.

square, a circle, a triangle, and a hexagon on Fig. 4(d). Figure 6
illustrates the tridimensional phase portrait and the Fourier
power spectra of mz for these four particular temperature
values. In Fig. 6(a) at T = 0.1TC , and because the LLE is
positive (λmax = 0.1), the system exhibits a chaotic behavior.
We observe that the trajectory of the magnetic moment fills the
phase space, and the Fourier spectra shows a continuum set of
characteristic frequencies. In Figs. 6(b)– 6(d), and because
the LLE is vanishing, the system exhibits regular states.
Nevertheless, these four regular states are quite different from
each other. For instance, in Figs. 6(b) and 6(d), the particle
describes multiperiodic behaviors since the Fourier spectra
shows a discrete rational number of frequencies. We can also

FIG. 7. Thresholds for switch on and switch off of the chaotic
states as a function of the field amplitude, hx , and the reduced
temperature, T/TC . The squares and dots denote the lower and higher
threshold, respectively. The gray area represents the mixed states
from chaotic to regular states. The fixed parameters are hz = 0.1,
� = 0.4, and α = 0.05. The physical values of the parameters are
Hz = 1679 A/m and ω = 1.55 GHz.

FIG. 8. Top: Second-largest Lyapunov exponents (SLLEs) a
function of the temperature-reduced temperature, T/TC . Bottom:
Phase diagram of the occurrence of SLLEs as a function of hx , and
the reduced temperature, T/TC . The fixed parameters are hz = 0.1,
� = 0.4, and α = 0.005. The physical values of the parameters are
Hz = 1679 A/m and ω = 1.55 GHz.
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observe that in these two cases, the trajectories in the phase
space are closed. Figure 6(c) corresponds to a regular state too,
but in this case the behavior is a complex quasiperiodic one. In
fact, from the Fourier spectra, one can observe that there are
multiple modes and the ratio among them is irrational.

In addition, we compute the lower and higher thresholds of
regular states as a function of the temperature and amplitude
of the driving field, which are represented in Fig. 7. One can
observe that the higher threshold follows a nonperiodic pattern,
but the lower one is almost constant.

Finally, let us comment that due to the extra degree of
freedom in the LLB, the possibility of finding two positive
Lyapunov exponents exist, and therefore hyperchaotic states
can be found. These states are much less frequent than
chaotic ones, and require at least an effective four-dimensional
dynamical system [62]. Figure 8(a) shows positive second
largest Lyapunov exponents as a function of the reduced
temperature, T/TC . They are given for specific values of the
driven field as it is shown in Fig. 8(b). We can observe that
the numerical values of the SLLEs are small, but cannot be
disregarded, as it is shown from the error bars. In addition, we
can observe that the occurrence of hyperchaotic states is really
reduced in the parameter space of this system.

IV. CONCLUSIONS

In conclusion, we have analyzed numerically the dynamics
of an anisotropic magnetic particle in the presence of a time-
dependent magnetic field using the Landau-Lifshitz-Bloch
equation as a function of temperature, field amplitude, and fre-
quency. Through the use of Lyapunov spectra, we observed that
the system presents multiples transitions between chaotic and
regular states as a function of these parameters. We also found
that the upper limit between the regions of regular and mixed
behaviors presents a strong temperature dependence. In fact,
when the temperature increases, the frequency space of the
chaotic region decreases, almost disappearing at temperatures

near TC . We also found that the modulus of the magnetization
decreases when the temperature increases following a power
law, and that this longitudinal variable presents pure relaxation
dynamics irrespective of the general dynamical behavior of the
magnetization. In addition, the system exhibits different types
of regular states, being periodic with different periodicities
or quasiperiodic for different temperatures. Finally, we have
found a small set of the parameters where hyperchaotic
dynamics is possible. This infrequent issue evidences that
hyperchaos can exist in a single particle under an adequate
combination of temperature and external driven field.

Finally, we believe that the control of different states via
external parameters can be very useful for applications in
spin-torque nano-oscillators and magnetic tunneling junctions.
Indeed, the external frequency and/or ac field efficiently
change the system response to states with very different
spectral characteristics. For example, the change between
chaotic and deterministic states via external parameter control
can be potentially used as radio-frequency detectors, as
has been suggested for the vortex-based magnetic tunneling
junctions [36].
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