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One of the main obstacles that prevents practical applications of antiferromagnets is the difficulty of
manipulating the magnetic order parameter. Recently, following the theoretical prediction [J. Zelezny et al.,

Phys. Rev. Lett. 113, 157201 (2014)], the electrical switching of magnetic moments in an antiferromagnet was
demonstrated [P. Wadley et al., Science 351, 587 (2016)]. The switching is due to the so-called spin-orbit torque,
which has been extensively studied in ferromagnets. In this phenomena a nonequilibrium spin-polarization
exchange coupled to the ordered local moments is induced by current, hence exerting a torque on the order
parameter. Here we give a general systematic analysis of the symmetry of the spin-orbit torque in locally and
globally noncentrosymmetric crystals. We study when the symmetry allows for a nonzero torque, when is the
torque effective, and its dependence on the applied current direction and orientation of magnetic moments. For
comparison, we consider both antiferromagnetic and ferromagnetic orders. In two representative model crystals
we perform microscopic calculations of the spin-orbit torque to illustrate its symmetry properties and to highlight
conditions under which the spin-orbit torque can be efficient for manipulating antiferromagnetic moments.
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I. INTRODUCTION

Antiferromagnets (AFMs) have so far found little ap-
plications as active components of devices primarily due
to their lack of net magnetization. With the development
of spintronics, however, the net magnetization that couples
strongly to the magnetic field becomes less important. In
the latest generation of magnetic random access memories
(MRAMs), for example, magnetic fields are used neither
for writing nor for reading. Since AFMs possess a long-
range magnetic order just like ferromagnets (FMs), they have
been recently explored as new materials for spintronics (see
Refs. [1-3] for recent reviews of antiferromagnetic spintron-
ics). In particular, they could in principle be used for solid
state memories in which bits of information are represented
by the direction of the magnetic order parameter, similarly
to FMs. Such memory functionalities were experimentally
demonstrated in AFM tunneling [4] and ohmic devices
[5-T7].

Compared to FMs, AFMs have several potential advan-
tages. They are insensitive to large magnetic fields and do not
produce any stray fields. This makes them more challenging
from an experimental and technological point of view, but it
can also be an advantage. Stray fields can cause problems
in densely packed devices, and the sensitivity to external
magnetic fields means that a FM memory can be accidentally
rewritten by external magnetic fields. AFM memory, on the
other hand, is much less sensitive to external magnetic fields.

2469-9950/2017/95(1)/014403(18)

014403-1

For example, a memory based on FeRh could not be erased by
fields as high as 9 T [5]. Another advantage is that dynamics
of magnetic moments in AFMs is much faster than in FMs.
Switching of the AFM order parameter on a ps timescale was
demonstrated, e.g., in a laser-induced-heating experiment [8].

A remarkable feature of AFMs is also the wide range of
available AFM materials. This holds especially for semicon-
ductors. FM semiconductors have attracted a lot of interest
in the past since they enable the combination of spintronic
and microelectronic functionalities. Yet, despite intensive
research, FM semiconductors remain rare and tend to have
Curie temperatures too low for practical applications. AFM
semiconductors on the other hand are more common and tend
to have magnetic order persisting above room temperature
[3,9-11]. Materials that combine antiferromagnetism with
ferroelectricity [12] or the parent compounds of the high-T7,
superconductors [13] further highlight the broad and diverse
range of AFMs.

For microelectronic memory and logic applications of
AFMs, two basic functionalities have to be available: a method
for detecting and manipulating electrically the magnetic order
parameter. For readout, the anisotropic magnetoresistance
(AMR) effect [9,10,14] and its tunneling counterpart TAMR
have been demonstrated [4]. While AMR is usually rather
small, with typical magnetoresistance ratios around a few
percent, a ~100% TAMR has been already achieved, albeit
at low temperatures.

©2017 American Physical Society
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Manipulating the magnetic order parameter in AFMs by
practical means has been a major challenge. AFMs can be
controlled by external magnetic fields, but this is impractical
since it typically requires very large fields. The lowest uniform
static field that can reorient an AFM is the so-called spin-
flop field, which is proportional to / H; H,,, where H; is the
inter-sublattice exchange field and H,, is the anisotropy field.
Since the exchange interaction is typically much larger than
the anisotropy, the spin-flop fields are large compared to FMs.
Instead, an auxiliary exchanged-coupled FM layer is often
used [4,9,15], which makes manipulation possible by smaller
fields. This only works for thin AFM layers though, and it is
highly dependent on interface properties.

While FMs can be manipulated by external magnetic fields,
in microelectronic devices a direct electrical manipulation
offers a more scalable approach. This is usually achieved
using the so-called spin-transfer torque [16,17]. This torque
occurs due to the absorption of angular momentum from a
spin-polarized current generated by a fixed FM polarizer. On
the other hand, due to spin-orbit coupling, a torque can be
generated without the injection of a spin current from the FM
polarizer [18-28]. Such torque is usually called a spin-orbit
torque. In FMs it requires a broken inversion symmetry and can
therefore occur either in crystals with no inversion symmetry in
the unit cell or in heterostructures, where inversion symmetry
is broken structurally.

Because of the insensitivity of AFMs to external fields, the
electrical manipulation of AFMs is even more desirable. To
manipulate a collinear AFM effectively, a staggered magnetic
field (i.e., a field that is opposite on the two sublattices) is
needed. In Ref. [29] it was shown that the analog of the FM
spin-transfer torque in AFMs can generate effective fields that
are staggered. However this requires very thin layers [30].

Reference [31] proposed that in bulk AFMs with specific
symmetries, electrical current can create a torque by a similar
mechanism to the spin-orbit torque in FMs. The work also
showed that the effective field generating the torque can be
staggered and the corresponding nonstaggered torque can thus
be effective for manipulating AFMs. Switching of an AFM
based on predictions in Ref. [31] was recently experimentally
observed in AFM CuMnAs [7]. This opens up a way to
applications of AFMs. The current densities needed for
switching in Ref. [7] were comparable to current densities
in FM spin-torque MRAMs.

In this paper we theoretically study the nature and charac-
teristics of spin-orbit torques in AFMs in a systematic way. We
give a general symmetry analysis for crystals that lack inver-
sion symmetry (globally noncentrosymmetric crystals) as well
as crystals in which the symmetry group of at least one site in
the unit cell is noncentrosymmetric (in other words, there exists
a site which is not an inversion center). We then say that such
crystals are locally noncentrosymmetric. We consider both the
AFM and FM order. We determine when the torque can exist,
when it is effective for manipulating the magnetic order in
AFMs, and also what form the torque has. In Ref. [31] the spin-
orbit torque was calculated for two representative tight-binding
models, one describing a three-dimensional (3D) lattice of
Mn;Au and the other one representing a two-dimensional (2D)
crystal with Rashba spin-orbit coupling. Mn,Au served as a
model AFM system with globally centrosymmetric and locally
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noncentrosymmetric crystal structure and inversion-partner
lattice sites occupied by the two spin sublattices. In this model
system, the so-called fieldlike torque, driven by a staggered,
magnetization-independent current-induced field, is effective.
(Note that the relevant crystal symmetries of Mn,Au are the
same as those of the recently experimentally studied CuMnAs
and that the calculated magnitudes of the spin-orbit torques
in MnpAu and CuMnAs are also comparable [7].) On the
other hand, the so-called (anti)damping-like torque, driven by a
staggered, magnetization-dependent effective field, was found
to be the effective torque component in the 2D AFM crystal
with a global inversion asymmetry modeled by the Rashba
Hamiltonian.

Here we calculate all spin-orbit torque components in both
models which allows us to generalize the result of Ref. [31]: All
torque components driven by fields that are an even function
of the sublattice magnetization are effective in the AFM 3D
Mn;Au model while torques driven by fields that are odd in
magnetization are effective in the AFM 2D Rashba model.
The calculations also reveal that the angular dependencies
of the current-induced fields with respect to the applied
current direction and the direction of magnetic moments are
similar in the two model systems, due to similarities in the
relevant symmetries of the two model crystals. Numerical
and analytical calculations of the spin-orbit torque in the
two tight-binding models are complemented by ab initio
density-functional-theory (DFT) calculations and results for
the AFM order are compared to calculations assuming the FM
order in the same model crystals.

Our paper is organized as follows: In Sec. II we describe the
two tight-binding models and the linear response formalism
used for calculating the spin-orbit torque. In Sec. I1I we discuss
the symmetry of the spin-orbit torque and apply the general
symmetry arguments to our two models. A detailed derivation
of symmetry properties of the spin-orbit torque is given in
Appendix A. In Sec. IV we show the results of analytical
and numerical calculations of the spin-orbit torque in the two
models. In Sec. V we discuss the results, and in particular
summarize the symmetry considerations.

II. MODELS

In some materials electrical current can induce nonequi-
librium spin-polarization due to spin-orbit coupling [32-36].
This effect is called the inverse spin-galvanic effect or the
Edelstein effect. For the presence of nonvanishing net spin
polarization (i.e., integrated over the whole unit cell) a broken
inversion symmetry is needed. In FMs, due to exchange
interaction between carrier spins and magnetic moments, the
current-induced spin polarization (CISP) will exert a torque
on the magnetization. This effect is the spin-orbit torque.
In AFMs the effect is similar. Since the carrier—-magnetic
moment exchange interaction is short-range, spin polarization
generated by the electrical current on a sublattice will interact
primarily with the magnetic moments on that sublattice. To
evaluate the spin-orbit torque in AFMs we thus have to
calculate the CISP locally on each magnetic sublattice.

Note that in the spintronics community two different
effects are termed as the spin-orbit torque. Apart from the
effect discussed here, there exists also a torque generated in
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heavy-metal/FM heterostructures due to spin Hall effect.
Lateral electrical current generates spin current in the perpen-
dicular direction due to the spin Hall effect, which flows in the
FM and exerts a torque via the spin-transfer torque mechanism.
Since the heterostructures have broken inversion symmetry,
the torque due to inverse spin galvanic effect coexists with the
spin Hall torque, rendering the entire physics quite complex
to analyze (see for instance Ref. [37], where both mechanisms
are included). We only consider bulk systems in which the spin
Hall effect does not generate any torque.

To calculate the CISP §S, (a denotes the sublattice) we use
the Kubo linear response formalism. We can define a response
tensor x, such that S, = x,E, where E is the electrical field.
We assume that the only effect of disorder is a constant band
broadening I and we consider a weak disorder (i.e., small I').
As discussed in Ref. [28], the tensor x, can then be expressed
as a sum of three terms:

Xa = Xa + Xa® + X2 (1
eh A R
Xaij = =55 D (WISl V) (Wl 051 )
k,n
x8(exn — EF), ()

o = e > T[S Vi) (Vi 05 1) ]
k,n#m
I'? — (exn — &xm)*
X
[(Skn - 8km)2 + 1"2]2

(fkn - fkm)’ (3)

Koy = 2eh > Re[ (Wl Sa.i[Vmk) Wik |0; 1)
k,n#m
y '(ekn — €xm)
[(8kn - gkm)z + F2]2

(fin = Siam), “

where n,m are band indices, ¥,k and &,k denote Bloch
eigenfunctions and eigenvectors, respectively, Er is the Fermi
energy, fi, is the Fermi-Dirac distribution function, v is the
velocity operator, e is the (positive) elementary charge, and
S, is the spin-operator projected on sublattice a. Throughout
this text we use a dimensionless spin operator; i.e., for one
electron § = o, where o is a vector of Pauli matrices. The k
sums run over the first Brillouin zone. These equations are the
same as in Ref. [28], except we replace the spin operator by the
spin operator projected on a sublattice. We calculate the CISP
for the AFM spin sublattices. However, the same formalism
applies also for any sublattice in a FM or a nonmagnetic
material. x! is called the intraband term and @, xI® are
the interband terms. The term x! could also be obtained from
the Boltzmann formula with constant relaxation time (with the
relaxation time v = /i/2I"). It is diverging in the limit ' — O,
analogously to how, for example, the conductivity diverges
in a perfectly periodic crystal. Thus to evaluate this term we
always have to consider some disorder, i.e., a finite I'. The
term x @ is constant in the zero-T" limit, while the term
is zero in this limit. The zero-T" limit of the term x® is
called the intrinsic contribution since it is determined only
by the electronic structure of the crystal and not by disorder.
The intrinsic contribution has been studied extensively in the
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(a) (b)

FIG. 1. Crystal structure of two model AFMs. (a) Crystal struc-
ture of the AFM 2D Rashba model. (b) Crystal structure of AFM
Mn,Au. Note that the unit cell shown is the conventional unit cell,
which is as large as the primitive unit cell. All of the atoms with the
same color are connected by a translation and are thus equivalent.

context of the anomalous Hall effect [38] and the spin Hall
effect [39].

We calculated the CISP for the two tight-binding models
from Ref. [31]. For completeness we give here a description
of the models. The first one is a 2D tight-binding model with
Rashba spin-orbit coupling, which simulates the structural in-
version asymmetry at a surface or an interface. The model was
chosen as a simplest AFM model in which the spin-orbit torque
is expected. We consider a square AFM lattice [see Fig. 1(a)],
where the d-orbital local magnetic moments are treated
classically and only the conduction s electrons are treated
quantum mechanically. The Hamiltonian can be written as

HZZJddMi'Mj+th+ZJsti'Mi+HR~ (®)]
(i) i
Here the indices 7, j correspond to lattice sites; M[ ,1\7[ j are
directions of magnetic moments, J;; and Jyq are the exchange
constants for exchange interaction between the magnetic
moments, and between the magnetic moments and conduction
electron spins, respectively. H'? contains the nearest-neighbor
hoppings. Hp is the Rashba spin-orbit coupling, given by
o

Hp = —
BT 2q &
j

[(C%CH(M - Cj'ﬁjﬂm)

- i(C;¢C_j+a),¢ + C}ijm) +H.cl], (6)

where « is the Rashba parameter, g the lattice constant, ct., cj
are the creation and annihilation operators for electron on
site j, and j + 4y, j + 8, are nearest neighbors along the
x and y directions, respectively. Reference [31] shows the
band structure of this Hamiltonian. In all calculations we set
t=3eV, Jy=1eV,and 2%, = 0.1 eV, where is the hopping
parameter. Unless stated otherwise, the Fermi level is set to
E F = —2eV.
The torque is given by

Ta = Ma X Bav (7)

where M, is the magnetic moment on sublattice a and B,, is the
effective current-induced field, which for this model is given
by [23]

Ba = —Jsd 5, (8)
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where M, is the magnitude of magnetic moment on sub-
lattice a.

The second model describes a 3D AFM Mn; Au. The crystal
structure of MnyAu is shown in Fig. 1(b). It is a collinear
high Néel temperature AFM that has recently been identified
as a promising material for AFM spintronics [40-42]. We
describe Mn;Au by an empirical tight-binding Slater-Koster
model with s, p, and d electrons for each atom. We use
the tight-binding parameters for single-element metals from
Ref. [43] as a starting point and improve them so that the
model agrees with the DFT calculation [31]. (See Ref. [44]
for details of the method and the procedure for obtaining
the tight-binding parameters.) The DFT calculation was done
using the full-potential all-electron code Wien2k [45]. To
improve the description of the Mn d states, we used the
LDA+U method with U = 4.63 eV and J = 0.54 eV [46].

For the tight-binding calculations of the CISP we add a
k-independent on-site spin-orbit coupling for both Mn and
Au atoms with parameters obtained from atomistic Hartree-
Fock calculations. The tight-binding model is not expected to
be quantitatively as accurate as DFT calculation; however, it
can be used to illustrate the origin and the symmetries of the
spin-orbit torque in the AFM Mn,Au crystal. A quantitative
comparison to DFT spin-orbit torque calculations is presented
in Sec. V.

In the DFT calculation it is possible to evaluate the effective
field or directly the torque using the space-dependent exchange
field [21,37]. In the case of the tight-binding calculation, we
obtain only the CISP. To get an estimate of the effective field
we can still use Eq. (8), which corresponds to taking a spatial
average of the exchange field. In Ref. [31] the carrier—-magnetic
moment exchange constant was set to J,g = 1 eV, whichis a
typical value estimated for transition metals [47].

In Ref. [31], only the terms x /@ for the 2D Rashba model
and x/ for the MnyAu model were considered, respectively.
Here we take into account all three terms for both models.
Since we are primarily interested in the small-I" limit, we
mostly focus on terms x/, x/!®, but the term x!/® is also
discussed.

III. SYMMETRY CONSIDERATIONS

Symmetry is crucial for understanding when the spin-orbit
torque can exist and what form it has. In Appendix A we give
a derivation of the symmetry properties of the tensor y,. Here
we summarize the main results and apply them to our two
models. The following analysis applies both to the effective
field and the CISP because they have the same symmetry
properties. Since spin-orbit torque is a nonequilibrium process
that includes dissipation, the tensor x, does not have a simple
behavior under time reversal. To deal with this problem we
separate the tensor into a part even in magnetic moments and
a part odd in magnetic moments:

Xa "(IMD) = [Xa(IM]) + xo([-MD1/2, ©))
X4(M]) = [Xa(IM]) — xa((=MD]/2, (10)

where [M] = [M4,Mp, ...] denotes the directions of all
magnetic moments in the magnetic unit cell. As shown in
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the Appendix A it holds that

X;Ven — Xa] + Xa]l(b)7 (11)
Xa =g (12)

In Appendix A, the following rules are derived for the
transformation of x, under symmetry operation R:

xS = det(D)D "D !, (13)
XM = +det(D)Dx D!, (14)

where a’ is the sublattice to which the sublattice a transforms
under symmetry operation R and D is a matrix representing
the symmetry operation in real space as defined by Eq. (A13).
The plus sign in Eq. (14) corresponds to a symmetry operation
that does not contain time reversal and the minus to a symmetry
operation that contains time reversal. These rules apply for any
form of magnetic order as well as for nonmagnetic crystals.
The same rules also apply for the tensor x, which describes
the net CISP.

Basic symmetry rules can be inferred from Eqs. (13) and
(14). If the system has an inversion symmetry,

Xa = —Xa- (15)

If also inversion transforms the sublattice a into itself, then
there can be no CISP on the sublattice a. We therefore reach
an important conclusion: for the existence of the CISP (and
thus also the spin-orbit torque) on sublattice a, the inversion
symmetry has to be locally broken; i.e., the atomic site which
forms the sublattice a must not be an inversion center. This
means that current can generate spin polarization even in
a material that has global inversion symmetry if inversion
symmetry is broken locally. However, it is also important
to note that if the inversion symmetry is locally broken, the
CISP can still vanish due to other symmetries. For example, a
diamond lattice has a global inversion symmetry, but the two
different lattice sites in the diamond unit cell have inversion
symmetry locally broken. Without any strain, the CISP will
nevertheless vanish. However, when a uniaxial strain is present
in the diamond lattice a CISP with opposite sign on the two
different sites will appear [48].

In the 2D Rashba model, the inversion symmetry is broken
globally due to the structural asymmetry of the assumed
layered system. In the AFM Mn,Au crystal, the inversion
symmetry is broken by the magnetic order since the inversion
partner lattice sites are occupied by Mn atoms with opposite
moments. Even without magnetic moments, however, the
inversion symmetry is locally broken for each sublattice. This
can be seen in Fig. 1(b) and is discussed in more detail in
Sec. V (see also Fig. 9).

Of particular interest in the case of AFMs is to determine
how the CISPs on the AFM spin sublattices are related.
This is because for the spin-orbit torque to be efficient, the
current-induced effective magnetic field and thus also the
CISP have to be staggered. Since the exchange interaction
is much larger than any field typically acting on AFMs, we
assume that during any dynamics the two magnetic moments
stay approximately collinear (although any dynamics of the
AFM order parameter induces a small magnetization). Then
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in the AFM 2D Rashba model, a simultaneous translation and
time inversion will always be a symmetry of the model that
transforms one AFM spin-sublattice into the other. For such
a symmetry operation, D = I, where [ is the identity matrix,
and therefore

szen — ngen, (16)
i = —xg (a7

This implies that the efficient torque driven by a staggered field
is generated by the odd component of the response tensor.

In the Mn,Au type of crystal, the AFM spin sublattices are
not connected by translation. Instead they are connected by
inversion around the unit cell center so that a combination of
inversion and time reversal is a symmetry of the model. Since
in this case D = —I, we find

X‘ZVCH — _XZVCH, (18)
X = x5 (19)

and now it is the even component of the response tensor that
generates the staggered CISP. The two models illustrate a
general phenomenology of CISPs in collinear AFMs, in which
the two AFM spin sublattices are typically connected either
by a translation or by an inversion.

By considering the magnetic space group of a given
material, one can find using the Egs. (13) and (14) the most
general form of the tensor y, as well as relations between
tensors x, on different sublattices. Note that for the CISP
projected on a sublattice it is not enough to consider the
point group of the crystal because then the information on
the relationship between the sublattices would be lost. We
provide a free program which outputs the symmetry of the
CISP for any type of crystal and magnetic structure [49]. See
the Appendix B for a brief description of the code. Symmetry
of the tensors, which describe the global spin-orbit torque, can
be found in Ref. [50] for every magnetic point group. These
also apply for the local spin-orbit torque, if one uses the site
symmetry group (of the site which forms the sublattice), i.e.,
the group of symmetry operations of the whole crystal that
leave the sublattice invariant.

In a magnetic material, the CISP in general depends on
the direction of the magnetic moments. This is because
the CISP is determined by the electronic structure and in
the presence of spin-orbit coupling the electronic structure
depends on the direction of magnetic moments. Understanding
this dependence is important because it determines what kind
of magnetic dynamics the spin-orbit torque will induce. Note
that a CISP strongly dependent on the direction of magnetic
moments has been observed experimentally [24]. To describe
the dependence of the CISP on the direction of magnetic
moments, it is useful to expand the linear response tensor
in powers of magnetic moments. In general y, depends
on the directions of all magnetic moments in the system.
We consider only FMs and collinear two-sublattice AFMs.
We again assume that the magnetic moments will always
stay approximately collinear. Since the intra-spin-sublattice
exchange is typically very large, we also assume that the
magnitude of the spin-sublattice magnetic moments will not
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change during dynamics. Then x, will be a function of
only the spin-axis direction fi. In the case of two-sublattice
collinear AFMs, i = L. = t/ |L|, where L is the Néel vector:
L =M, — Mj. In FMs i = M/|M|. We can then write the
tensor y, in the following way [51]:

A 0 1 A 2 A A
Xa.ij() = xé,,-’j + x;,gj,knk + xﬁ,i)j,klnknz +--. 0 (20)

Here the Einstein summation notation is used. Note that since
fi is a unit vector, the expansion could be done using two
variables only. We find it more practical, however, to use
all three components of f. The odd terms in the expansion
correspond to the odd part of the CISP, while the even terms
correspond to the even part.

To find the symmetry properties of the expansion (20) we
have to consider the nonmagnetic site symmetry group. This is
a group of symmetry operations of the nonmagnetic crystal that
leave the sublattice a invariant. [See Appendix A for details
on how to find the symmetry properties of the expansion
(20).] Since there are only 21 nonmagnetic point groups
with broken inversion symmetry, it is feasible to calculate
all allowed leading terms of the expansion (20). This was
done for the zeroth-order terms in Ref. [48] that focused on
the CISP in FMs. The zeroth-order terms generate the fieldlike
torque. In Table I we give all allowed first-order terms and
for completeness we also show the zeroth-order terms. The
zeroth-order term vanishes for several point groups. For those
we also give the second-order terms in Table II. Together the
tables give the lowest-order terms for the even and odd part of
the CISP in all 21 noncentrosymmetric point groups.

The tensors in Tables I and II are given in Cartesian
coordinate systems. The Cartesian systems are defined in terms
of the conventional basis vectors a,b,c (see the International
Tables for Crystallography [52]). The choice of the Cartesian
system is straightforward for the orthorhombic, tetragonal,
and cubic groups. The tensors for the triclinic group 1 have
a completely general form and the choice of the coordinate
system is thus irrelevant for this group. For hexagonal and
trigonal groups, we choose the right-handed coordinate system
that satisfies x = a/|a|, z = ¢/|c|. For the monoclinic groups
we use the unique axis b setting [52] and choose the right-
handed coordinate system that satisfies x = a/|a|, y = b/|b|.

The tensors in Tables I and II apply for two-sublattice
collinear AFMs and FMs. In the case of AFMs the expansion
only applies for the CISP on a sublattice and correspondingly
the site symmetry group has to be used. In FMs, the tensors
apply for the local as well as for the net CISP. In the
latter case the point group of the whole crystal has to be
used. Since the zeroth-order term is independent of magnetic
moments it can be equally considered for any material,
including noncollinear AFMs. In nonmagnetic materials, there
is naturally no dependence on magnetic moments so the
zeroth-order term describes the CISP completely in this case.

The zeroth-order terms that generate the fieldlike torque
are particularly important since they are often dominant.
As discussed in Ref. [48], the tensors corresponding to the
fieldlike torque are in general composed of three distinct
terms: generalized Rashba and Dresselhaus terms and a term
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TABLE 1. Zeroth- and first-order terms in the expansion (20) for the point groups with broken inversion symmetry. The tensors x " have
the spin-axis direction included: X[(j]) = Xi(jly)kﬁk. The x parameters can be chosen arbitrarily for each tensor. Note that the groups —42m and
—4m?2,312 and 321, 3m1 and 31m, and —6m2 and —62m are equivalent and differ only by a coordinate transformation. For completeness we

also give the tensors for the equivalent groups.

Crystal system  Point group x© x®
X1 Xipo X3 AxXin +AyXip + Ax113 AcXion + X0 + A X123 AxXizy + Ay X132 + X133
triclinic 1 X1 X2 X23 AyXonn + AyXorp + X013 AyXoor +AyXon + X003 AyXoz + AyXozy + X033
X3 X3 X33 X3 + Ayx310 + X313 ApXzor +AyX300 + X303 AyX331 + AyX330 + X333
X11 0 xi3 flyx1 X3 + N X1 Nyx3
monoclinic 2 0 X2 0 fieXs + i X fyxi Xy + AX7
x3 0 xs3 fiyxig flyxg + Aizxg flyxo
0 xp 0 NyX1p + X9 NyXi4 X134 i xg
m x1 0 xp3 Ayx3 Ax1r + Az X0 AlyXy
0 x3 0 X7 + X6 iy Xxs Xy +Ax
X11 0 0 ﬁz)C5 NyXy
orthorhombic 222 0 X2 0 i X1 0 ﬁxx6)
0 0 X33 fly.)C3 ﬁxe 0
0 X12 0 ﬁzx4 0 e Xe
mm?2 X2 0 0 0 Nxs  fyxg
0 0 0 Xz fyxy  igx
X —X21 0 i X6 —fx; Axs —flyx;
tetragonal 4 X1 X11 0 [ i X AyXx7 + Ayxs
0 0 X33 ﬁxX4 — ﬁyX3 flx)@ + ﬁy)C4 I’Alle
X11 X21 0 ﬁZ)C5 ﬁle ﬁxX4 + fly)%
—4 X21 —X11 0 ﬁle —ﬁ1X5 ﬁxx6 — ﬁy.X4
0 0 Xz +AyXy  NyeXy —figX3 0
X1 0 0 0 —Ax3  —Ayx
422 0 X1 0 X3 0 Xy
0 x33 —Ayx; X 0
0 —X21 0 ﬁ7X4 0 ﬁxxl
4dmm X21 0 0 ( 0 Xy fAyx
0 0 0 ﬁXX3 ﬁVX3 ﬁz-XZ
X11 0 0 0 le.X3 fly)CZ
—42m 0 —X11 0 (ﬁ2x3 0 leXQ
0 0 0 Ayxi  AgX 0
() X721 O ﬁZX3 0 ﬁxxl
—4m?2 X2 0 0 0 —x3  —Ayx
0 0 0 Xy —RyXp 0
X11 —X21 0 ﬁXX7 + ﬂy-XZ + ﬁzxfi ﬁx-XZ — ﬁy.X7 — }’AZZ.X3 le.X(, — ﬁy.XQ
trigonal 3 X21 X11 0 I’Alx)CZ - ﬁyX7 + ﬁZX3 —f\lx)C7 - ﬁyxz + ﬁng ﬁx.XQ + ﬁyXG
0 0 X33 ﬁXX5 — i’Aly)C4 ﬁXX4 + i’Aly.X5 flle
X11 0 0 ﬁy.X3 ﬁx.X3 — ﬁZX4 —ﬁ)-.XQ
312 0 X11 0 ﬁxx3 + le.X4 —flyX3 I”iX.XZ
0 0 X33 —ﬁy)ﬂ ﬁxxl 0
X11 0 0 ﬁxx_g —ﬁyX3 - ﬂZX4 —I’AlyXQ
321 0 xn 0 —AyX3 4+ Nx4 —A X3 X
0 0 xs3 —iyx A 0
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TABLE 1. (Continued.)

PHYSICAL REVIEW B 95, 014403 (2017)

Crystal system Point group x© x®
0 —x3; O fyxs + A xs Xy Xy
3ml X21 0 0 Xy —Ayx4 + X5 Ayxy
0 0 0 X3 nyx3 Xy
0 —xy 0 Ay X3 + AzXs —7yX3 X1
31m Xo1 0 0 —7lyX3 —A X3+ x5 Ayxg
0 0 0 Xy NyX4 i X,
X1 —Xo 0 i Xe ) AyXs — AyXy
hexagonal 6 X1 X11 0 i xo i X6 AyX7 + AyXs
0 0 X33 AypXg —Ayx3  Ayxz +Ayxy ,x,
0 0 O Ayx) +hyxy AyXy —AyX) 0
—6 0 0 AyXo —Ayxy  —Ayx) —Ayxy 0
0 0 O 0 0 0
X1 0 0 0 — X3  —Nyx
622 0 X1 X3 0 Al Xy
0 0 x33 —7y X AeX 0
0 —xy O [ 0 AeX
6mm X21 0 0 0 Axqy  RAyX)
0 0 0 Ayxs  Ayxy A
0 0 O Ayx1 iy X 0
—6m?2 0 o O) (ﬁxxl —y X1 O)
0 0 O 0 0 0
0 0 O iy X —Ayx; 0
—62m 0 O O) —Ayx;  —iyx; 0
0 0 O 0 0 0
X1 0 0 0 xy  Ayx
cubic 23 0 xp 0 i Xy 0 Al Xy
0 0 X1 Ayxy  Agx 0
X1 0 0 0 — X Ayx)
432 0 xq 0 Aix 0 —AyX
0 0 X1 —7y X X1 0
0 0 O 0 Axy fiyx
—43m (O 0 0 i X1 0 AyrX)
0 0 Ayxy  AeX 0

describing a response proportional to the electric field. They
are described by the following tensors respectively:

xi1 —x1 O

xR =|xa xu 0], 21
0 0 0
xi1 xa1 0

x&®=xu —-xu 0], (22)
0 0 0
X11 0 0

xE=10 xu 0 (23)
0 0 X11

The generalized Rashba and Dresselhaus CISPs lie in a
plane and are only present for the current applied in the same
plane. In Eqgs. (21) and (22), it is the xy plane, but in general,
it can be any plane. The generalized Rashba and Dresselhaus
terms differ in how the CISP depends on the current direction,
as illustrated in Figs. 2(a) and 2(b). In the case of the Rashba
CISP, when the current direction is rotated the CISP rotates
in the same way, while in the case of the Dresselhaus CISP
the field rotates in the opposite direction. They differ from the
conventional Rashba and Dresselhaus terms,

0 —X21 0
xR = x 0 0], (24)
0 0 o0
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TABLE II. Second-order terms in the expansion (20) for the point groups which have no zeroth-
order term allowed by symmetry. The x parameters can be chosen arbitrarily for each tensor.

@

Point group X
A, (Acxs + yx4) A (Ayxy — fiyXs) A2xy + 20, A, X0 — ﬁixz
—6 A (Ayxg — Ayxs) —A (x5 +Ayx4) A2xg — 20, A, Xy — ﬁixo
ﬁﬁxl + Zﬁxﬁij; — ﬁi)(] ﬁix; — ZﬁxﬁyX] — ﬁ%Xg 0
PRIPN PREPN INEPY)
A il Xy —hyi x| Xo (nx — ny)
—6m?2 —y ;X —A X —271, 7y Xy
x3(A2 —A2) =2, 0
yi X A A X 20,y Xy
PREPN s oa ISPy
—62m nyn,x; Ny, x; xz(nx n‘,)
2 iyxy x3(A2 — A2) 0
Xz(—ﬁ% =+ ﬁ?) ﬁxﬁ\xl —ﬁxﬁle
—43m —Afyx x2 (A2 — A%) i, x
Ao x —Ay X xo(—h% +A2)
plane perpendicular to the electric dipole moment. The Rashba
b X11 0 0 term can be written as §S ~ D x E, where D is the direction
=0 -—-xu 0}, (25) of the electric dipole moment. In all polar groups except
0 0 0 for m and 1,D is oriented along the polar direction (a

by a constant offset angle between the applied current and the
CISP [see Figs. 2(c) and 2(d)].

The Rashba term or generalized Rashba term with
NnoNZzero x,; components occurs in polar point groups (groups
1,2, m,mm2,4,4mm, 3,3ml, 6, and 6mm), i.e., in groups
which allow the existence of a permanent electric dipole
moment. In a polar group, there is a Rashba term in the

N
B

4
N

FIG. 2. Illustration of the Rashba and Dresselhaus CISPs. The
figures show the dependence of CISP on the electric field direction.
Adapted from [48]. (a) Generalized Rashba CISP. (b) Generalized
Dresselhaus CISP. (c) Rashba CISP. (d) Dresselhaus CISP.

C
/\¥1A

NV

direction invariant under all symmetry operations), which in
the coordinate systems used in Table I is always oriented
along the z axis. In group 1, D can have any direction, and
in the group m, it is oriented in the mirror plane. Polar
point groups 1, 2,4, 3, and 6 contain the generalized Rashba
term (rather than just the Rashba term), which in addition
also occurs in nonpolar point groups 222,422,312, and 622
with x;; = 0. The CISP described by Xf in Eq. (23) occurs
in enantiomorphic (also called chiral) crystals (point groups
1,2,222,4,422,3,312,6,622,23, and 432), i.e., crystals in
which no symmetry operation contains inversion. The CISP
is an axial vector (even under inversion), while the electric
field is a polar vector (odd under inversion). These two vectors
can only be proportional in the enantiomorphic crystals since
in these crystals there is no difference between an axial and
polar vector. The generalized Dresselhaus term [Eq. (22)]
occurs in point groups 1, 2, m, 222, mm?2, —4, and —42m, of
which the groups 222 and —42m have just the Dresselhaus
term.

The nonmagnetic symmetry group of the magnetic sites
in both the 3D Mn,Au and the 2D Rashba model is 4mm,
which has a Rashba zeroth-order CISP of the form z x E.
Another example of an AFM with a Rashba zeroth-order
CISP is CuMnAs [7]. Dresselhaus zeroth-order CISPs have
been previously observed in FMs GaMnAs [24,25] and
NiMnSb [48] (global point group —42m). AFM CuMnSb,
in which the Mn atomic sites have symmetry group —42m
[53], is another example for which we expect the Dres-
selhaus zeroth-order CISP, according to our symmetry
analysis.

The first-order term for the 4mm point group can be written
in the following way:

V=X 4+ X + X3, (26)
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where
-L. 0 0
Xy=c| o -L. of, 27
L, L, o0
0 0 0
X=C| 0 0 O}, (28)
L, L, 0
0 0 G,
Xs=|0 0 GiL, (29)
0 0 C4L

Note that in the 2D Rashba model the current cannot flow in
the z direction, so the third column has no physical meaning in
this case. The contribution to the CISP generated by the tensor
X can be constructed from the polar direction of the group
4mm: L x (z x E). The contribution to the CISP coming from
the tensor X, can be written as (L - E)z, where E; is the
in-plane (the plane here refers to the xy plane) component of
the electric field.

Finally we note the connection of our general symmetry
analysis of the CISP to the discussion in Ref. [54], where
Rashba and Dresselhaus-like spin-orbit coupling effects in
locally noncentrosymmetric crystals were studied on the
level of equilibrium electronic structure. The local inversion
symmetry breaking induces local band splittings, i.e., splittings
that become apparent when the band structure is projected
on sublattices. The local spin-orbit torque discussed here can
be thought of as a consequence of the local band splittings,
similarly to how global Rashba or Dresselhaus spin-orbit
torques are caused by Rashba or Dresselhaus spin splittings in
the full (unprojected) band structure.

IV. LINEAR RESPONSE THEORY

A. Analytical calculations

The CISP in the AFM 2D Rashba model can be calculated
analytically when magnetic moments are oriented close to the
out-of-plane (z) direction and when the Fermi level is close
to the bottom or the top of the bands so that only k points
close to the I point matter for the torque calculation. Here we
describe the main aspects of the derivation; for more details
see Appendix C. To the second order in k£ the Hamiltonian (5)
can be expressed as

H =yt —aké - pty + Jgl - 61, (30)

where y; = ta; 2[k? — (2/a;)?]; p is a unit vector perpendicular
to the k vector, expressed as g = (sin ¢, — cos ¢;,0), where
@i 1s defined by k = k(cos ¢y, sin¢;,0). 6 and T are Pauli
matrices with ¢ /2 representing the carrier spin degree of
freedom and T the AFM spin-sublattice degree of freedom
of carriers.

The unperturbed retarded Green’s function, defined as
Gl = (e — H +i0")7", reads

AR 1 1

GR = — -
0 _ -+
45 Rt € — €5, +i0

(Sk + s[yr(6 - p) — Juaty (6 - L x )]

PHYSICAL REVIEW B 95, 014403 (2017)

1
- {(sy? +sI5 + akS) (6 - pt,
5.1

+ [yt + Jaa(6 - L)E1(S) + sak)

=+

—sJaa(L - ) Ja(6 - L2, — yit, + k(G - u)fz]}>,
31)

where ¢, , denotes the band structure given by

6:11 - U\/Vk
Sk = \/Vk

Indices s,n refer to the spin chirality (s = £1) and to the
electron/hole bands (n = =£1). In the limit of vanishing «,
both spin chiralities become degenerate. The angles 6, ¢ are
spherical coordinates of the vector L. In order to get an
analytically tractable expression for the CISP, we express in
the following the Green’s function in term of the projection
operator A, , = |s,n)(s,n| such that Go = ZM As n/ (€ —
€.y +107).

We evaluate the intraband term using the expression (2),
which applies for small I". For the interband term we take the
I' — 0 limit in which the term x® is zero and the term @
is constant. The CISP can then be written as

d + o?k? 4 2sak Sy, (32)

2[1 — sin2 0 sin(g — @)]. (33)

glntra _ TS ZRe{Tr[(v E)A,0 A, 1}8(ex, — €p), (34)
Inter __ M
ginter _ U;u:klm Tr((d - E)A,0 - A, ]}( — )
(35)

where v =s,n for conciseness. We also set o, = o (1 +
¢7.)/2, which defines the spin density operator on the spin
sublattices A (¢ = +1) and B (¢ = —1). Since Eqgs. (34) and
(35) involve angular averaging over ¢y, it is convenient to
evaluate the spin density in the limit 6 < 1 (i.e., L ~ 7).
In this case, the energy dispersion becomes isotropic € , =
Nyl + J2 + sak).

As shown in Appendix C, by taking the small-« limit and
replacing the discrete summation in Egs. (34) and (35) with
continuous integration (3", — V [ d*k/47?), one obtains in
the linear order in «

. Jg
Intra — mo; 1 + Z_Sd 2 — E—O (Z X EE),
8w h2T el \/ﬂ
(36)
ma Jyq €0

SImer _

e [ x (z x E)], (37)

) 2

€F — Jsd
where we defined ¢y = taq; k2 These formulas hold for
€p, Jsa > akp > T (kp is the Fermi wave vector). Note that to
derive these formulas we have neglected the vertex corrections
in order to obtain a tractable analytical result. Such corrections
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FIG. 3. T dependence of terms x /'@, x'® in the two models for

magnetic moments oriented along the [110] direction. Components
that are not shown are zero or related to those shown by symmetry.
The results are scaled to make the comparison between the two tight-
binding models easier. (a) Mn, Au. (b) The 2D model.

will be considered in a future work. As predicted from
symmetry considerations in the previous section, the intraband
contribution produces an effective field along the vector z x E,
i.e., independently of the magnetic moments direction, while
the (intrinsic) interband contribution results in a staggered
effective field along the vector cL x (z x E) that depends on
the direction of magnetic moments and has opposite sign on the
two spin sublattices. These results are the AFM counterparts
to the formulas obtained in the case of a FM 2D Rashba
model [28] and demonstrate that the torque enabling efficient
electrical manipulation of the AFM order arises in this model
from the odd interband contribution to the CISP which has a
finite value in the I' — O limit; i.e., it is intrinsic in nature.

B. Numerical calculations

In this section we show results of numerical calculations of
the CISP in the two models described in Sec. II. The intraband
term ! for MnpAu and the interband term x !/ for the 2D
model were already presented in Ref. [31]. Here we calculate
also the interband term for Mn,;Au and the intraband term
for the 2D model. We are primarily interested in the small-I"
limit. For zero I' the interband term x!/® vanishes. This is
illustrated in Fig. 3. Figure 3(a) shows the terms x!/@ and
x!'® as a function of I' for Mn,Au for magnetic moments
oriented along the [110] direction. Figure 3(b) shows the same
calculation for the 2D model. In both cases as I" goes to zero,
the term x!/® goes to zero, while the term x!/ becomes
constant. In the following we choose I so that the term y!/®
is small and the term /@ is close to its zero-I" limit. We use
I' £ 0.0013 eV in Mn,Au and I" = 0.01 eV in the 2D model.

As discussed in the symmetry analysis in Sec. III, the part
of CISP that is even under time reversal is in the 2D model
the same on the two AFM spin sublattices, while the odd part
of the CISP is opposite. Conversely in Mn,Au, the even CISP
is opposite and the odd CISP is the same. This is a key result
since it shows that in both models the effective current-induced
field has a staggered component and can therefore switch the
AFM moments efficiently. In the following, we focus on the
dependence of the CISP on the direction of magnetic moments.
Since in our model systems the CISP is always either exactly

PHYSICAL REVIEW B 95, 014403 (2017)
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FIG. 4. Calculations of the intraband term x/. Only results for
one sublattice are shown. Plots show the intraband CISP normalized
by the equilibrium spin polarization per 10’ A cm™ current den-
sity. (a) Mn,Au and in-plane rotation of magnetic moments [31].
(b) 2D model, in-plane rotation. (c) Mn;Au, out-of-plane rotation
[31]. (d) 2D model, out-of-plane rotation.

the same or opposite on the two sublattices, we show results
for one sublattice only.

We normalize all CISPs by current density calculated using
the linear response theory formula analogous to (2). Since
both the intraband term and the conductivity scale as 1/ T, the
normalized intraband term is independent of I". For small I,
the normalized term x//® scales as I'. We also normalize the
CISP by the ground-state spin polarization (on each sublattice).
When this quantity is multiplied by Jyq/ g we get directly the
effective field.

The results for the intraband term for one sublattice are
shown in Fig. 4. For comparison we present the results for
Mn,Au and the 2D model side by side. Figures 4(a) and
4(c) show results for Mn; Au, while Figs. 4(b) and 4(d) show
the 2D model. In Figs. 4(a) and 4(b) the magnetic moments
were rotated from the [100] direction to the [—100] direction
through the [010] direction (the moments lie in-plane). In
Figs. 4(c) and 4(d) the magnetic moments were rotated from
the [00-1] direction to the [001] direction through the [100]
direction (the moments lie out-of-plane). Only results for
current along the x and y directions are shown. For Mn;Au,
there can also be current along the z direction, but we found that
the CISPs for such a current are at least 2 orders of magnitude
smaller than for the in-plane current. Note that the CISP for
current in the z direction is in general allowed by symmetry and
only vanishes at certain high-symmetry directions of magnetic
moments. On one sublattice, the two models give qualitatively
similar results. In both cases the CISP is not strongly dependent
on the direction of magnetic moments and the dominant
component is always in-plane and perpendicular to the current.
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FIG. 5. Magnitude of perpendicular and longitudinal parts of
the intraband CISP in Mn,Au. Gray lines show perpendicular and
longitudinal parts of the expression z x E. (a) In-plane rotation of
magnetic moments. (b) Nonsymmetrical rotation: magnetic moments
rotate along a path given by L= (cos(w),«/(ﬁsin(w),«/(ﬁsin((p)).

The CISP and thus also the effective current-induced field are
approximately aligned along the vector z x E.

Since the torque is a cross product of the effective field and
the magnetic moment, only the component of the effective field
which is perpendicular to the magnetic moment is relevant.
In our models the effective field is proportional to the CISP
so the same holds for the CISP. When the perpendicular
component of the intraband CISP for Mn,Au is plotted, a
peculiar feature is discovered. While the total CISP differs
from the expression z x E significantly, the perpendicular part
is very close to the perpendicular part of z x E. This is already
manifested in Fig. 4(c), where the longitudinal component of
the CISP is zero due to symmetry for current along the x
direction. To illustrate this feature we plot the magnitude of
the perpendicular part of the intraband CISP for the in-plane
rotation of the moments in Fig. 5(a). In gray, the perpendicular
component of the expression z x E is plotted. All directions
of magnetic moments discussed so far lay in high-symmetry
planes. To confirm that this feature is not due to some particular
symmetry but rather a general feature of the model, we also
rotated the moments along a nonsymmetrical path. As shown
in Fig. 5(b) this rotation shows the same behavior.

Interestingly, the same holds for the longitudinal part of the
CISP; i.e., the longitudinal part of the CISP is very close to the
longitudinal part of z x E, which is also shown in Figs. 5(a)
and 5(b). The proportionality constants are, however, different
in the two cases, which is why the total intraband CISP vector
deviates from z x E. Since only the perpendicular part is
relevant for the torque, the torque will be closely approximated
by Mu X (z x E). This behavior only occurs in Mn,Au. In
the 2D model, the perpendicular component of CISP is not
significantly closer to z x E than the total CISP.

In Fig. 6, we show results for the interband term x//® for
one sublattice, organized similarly to the intraband results in
Fig. 4. The Mn; Au results are in Figs. 6(a) and 6(c) and the 2D
model results in Figs. 6(b) and 6(d). In Figs. 6(a) and 6(b) the
CISP is plotted as a function of magnetic moments rotating in-
plane, while in Figs. 6(c) and 6(d), the magnetic moments are
rotated out-of-plane. Again, the two models are qualitatively
similar. In this case, however, the CISP depends strongly
on the direction of magnetic moments. We only plot the
non-negligible components of the CISP. In particular, the CISP
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FIG. 6. Calculations of the interband term x '’ (a). Only results for
one sublattice are shown. Plots show the interband CISP normalized
by equilibrium spin polarization per 107 A cm~2 current density. Gray
lines show a fit to the expression L x (z x E). (a) Mn,Au and in-
plane rotation of magnetic moments. (b) 2D model, in-plane rotation
[31]. (c) Mn,Au, out-of-plane rotation. (d) 2D model, out-of-plane
rotation [31].

for the current along the z direction in Mn;Au is again very
small. In both models the CISP can be closely approximated
by the lowest order term given by Eq. (26). As shown by gray
lines, the main contribution is of the form L x (z x E), which
corresponds to the tensor X;. A deviation from this form is
mainly due to the presence of the tensor X,. In Mn,Au also
higher order terms are present, but are less important than the
lowest order terms. In Mn, Au, the contribution from the tensor
X3 is also present, but we do not plot it since it is oriented
approximately along the direction of magnetic moments and
thus does not contribute to the torque.

In Fig. 7 we show how the CISP in the 2D model depends
on the Fermi level. The dependence of the magnitude of the
interband term on the Fermi level was already studied in
Ref. [31]. Here we focus instead on how the dependence of
the CISP on the direction of magnetic moments changes when
the Fermi level is varied. When the Fermi level approaches the
bottom of the bands, the intraband term becomes independent
of the direction of magnetic moments and can be described by
the vector z x E very accurately. This is illustrated in Fig. 7(a).
This behavior is expected because when the Fermi level is close
to the bottom of the bands, only small k points matter for the
calculations and as seen from Eq. (32) the energy dispersion
becomes isotropic when Kk is small. Results for the interband
term /! are shown in Fig. 7(b). For all Fermi level values,
it can be described by Eq. (26), but the ratio C;/C, depends
strongly on the Fermi level. For the Fermi level close to the
band gap (see Ref. [31] for the band structure), C; is much
larger than C,. When the Fermi level approaches the bottom
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FIG. 7. The dependence of the CISP in the AFM 2D Rashba
model on the direction of magnetic moments for different Fermi
levels. We scale results to highlight the change in shape. Only results
for current along the x direction are shown. I' = 0.0001 eV was
used in this calculation. (a) Intraband term, in-plane rotation, solid
lines show the y component, dashed lines show the x component.
(b) Interband term, out-of-plane rotation, solid lines show the z
component, dashed lines show the x component.

of bands, C, becomes much larger than C;. The dependence
of the CISP on the direction of magnetic moments is then no
longer of the form L. x (z x E). Instead, for Cy <« C,,itcanbe
described by (L. - E | )z. This is in agreement with the analytical
calculations. Equation (37) describes the contribution from the
tensor X ;. When the Fermi level is at the bottom of bands the
term given by Eq. (37) is zero. Equation (37) does not capture
tAhe contribution from tensor X, since tensor X, is zero for
L=z

Finally, we compare results for our two models with
AFM and FM order. Spin-orbit torques have been previously
calculated in a FM 2D Rashba model analogous to our
AFM 2D Rashba model [20,28,55]. Those calculations used
models with a parabolic band dispersion, which in our model
corresponds to the Fermi level close to the bottom (top) of
bands. As shown in Fig. 7(a), for our model the intraband
CISP then becomes proportional to z x E. This is a form that
the FM has when Jy > « [28]. We find that the AFM has
this form regardless of Jyg/a (when the Fermi level is close
to bottom of the bands). In all calculations discussed so far
o K Jg. For such a case, the FM has the intraband term of
the form M x [(z x E) x M]. This results in the same torque
as the z x E term since M x [(z x E) x M] is precisely the
component of z x E perpendicular to M. The FM interband
term x /@ differs from the AFM case as well. For o < Jyq in
the FM it has the form M x (z x E), while for the AFM the
dependence is (i - E )z, as shown in Fig. 7(b). This is a form
the FM has when Jg4 > «.

The AFM model thus has many similarities with the FM
model; however, the dependence on the parameters of the
model is different. In particular, in the FM the results depend
significantly on the ratio Jy/«, while in the AFM this ratio
does not play a large role. This is because, in the FM, the
spin-up and spin-down bands are split by both the Rashba
spin-orbit coupling and by the exchange interaction. In the
AFM on the other hand, only the Rashba spin-orbit coupling
splits the spin-up and spin-down bands.

For comparison we also calculated the CISP in hypothetical
FM Mn,Au. The model differs from AFM Mn,Au only in
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FIG. 8. Calculations of the CISP in FM Mn, Au for one inversion-
partner sublattice. (a) Intraband term, in-plane rotation of moments.
(b) Interband term x//@, in-plane rotation of moments. (c) Intraband
term, out-of-plane rotation of moments. (d) Interband term x!/@),
out-of-plane rotation of moments.

the direction of the moments; all other parameters are the
same. Both intraband and interband CISPs in FM Mn,Au
have opposite sign on the two inversion-partner lattice sites
occupied by Mn, as expected from symmetry considerations
and confirmed in our microscopic calculations. The intraband
CISP in the FM is very close to the AFM case both in terms of
the magnitude and the dependence on the direction of magnetic
moments, as shown in Figs. 8(a) and 8(c). The interband term
is shown in Figs. 8(b) and 8(d). It has a similar dependence on
the direction of magnetic moments; however, it is an order of
magnitude larger than in the AFM Mn,Au.

V. DISCUSSION

The AFM 2D Rashba and 3D Mn,Au models differ in one
key aspect. In the 2D model, the odd CISP is staggered and
the even CISP is uniform, while in Mn,Au the even CISP is
staggered and the odd CISP is uniform. This is so because
in the 2D model the AFM spin sublattices are connected by
translation, while in Mn, Au they are connected by inversion.
However, as shown in Figs. 4 and 6, when we look at one
sublattice only, the CISP in the two models has a similar
dependence on the direction of magnetic moments and the
direction of the current. This may seem surprising since the
electronic structures of the two models are very different,
including the way spin-orbit coupling enters the band-structure
calculations.

The reason for the similarity is the same symmetry of the
magnetic sites in the two models. As discussed in Sec. I11, it is
the site symmetry that determines the symmetry of the CISP
on a sublattice. The symmetry group of the magnetic sites is
the same in both models and in both models the results can be
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FIG. 9. Local inversion symmetry breaking in Mn,Au. The
middle picture shows the crystal structure of Mn, Au with highlighted
atomic layers. Left and right pictures show inversion around Mn A
and Mn B atoms [as defined in Fig. 1(b)], respectively.

quite accurately described by lowest orders in expansion (20).
Since the site symmetry is the same, the expansions are also
the same in the two models.

The local inversion symmetry breaking in MnyAu is
illustrated in Fig. 9. Mn, Au is alayered crystal; under inversion
around one of the Mn atoms, the layers remain the same, but
the order of the layers changes. Because of this, each sublattice
has the inversion symmetry locally broken and the inversion
symmetry breaking is along the z axis. The inversion symmetry
breaking thus resembles that of the 2D Rashba system.

Despite the above similarity in the local CISP symmetries
of the two models, the dynamics of magnetic moments will
be different. This is because only the staggered component
of the CISP can generate an efficient torque on an AFM. In
Mn;Au, the staggered component of the CISP corresponds
to the intraband term, which results in a fieldlike torque. The
effect of such a torque is comparable to the effect of an external
magnetic field in a FM. In particular, the magnitude of the
staggered effective field necessary to switch the AFM moments
will be determined by the magnetic anisotropy energy barrier
just like in the case of a FM and a uniform external magnetic
field. In the 2D model, since the sublattices are connected
by translation, the staggered component of the CISP is odd
in magnetic moments. Therefore it always depends strongly
on the magnetic moments’ direction and cannot be fieldlike.
When the Fermi level is such that the CISP has the L. x (z x E)
form, the corresponding torque acting on the AFM can be
called, in analogy with FMs, (anti)damping-like. The critical
value of the switching effective field will then depend both on
the anisotropy barrier and on the damping factor [29].

These results demonstrate the importance of symmetry for
understanding the spin-orbit torque. Symmetry determines
which component of the effective field is staggered and thus
also which component is efficient for manipulating the AFM
order. Symmetry also governs the dependence of the effective
field on the direction of the current and the magnetic moments.
This is especially so because we find in our two models that the
effective field can be very well described by the lowest order
terms in the expansion (20). Although this conclusion does
not have to be generally valid, it is consistent with previous
studies on different systems [7,24,25,48].

We used the tight-binding models of the 3D Mn,Au and
2D Rashba AFMs to illustrate the symmetries of CISPs and
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the corresponding AFM spin-orbit torques. In the remaining
paragraphs we discuss the strength of the spin-orbit torque in
the Mn,Au crystal. In Ref. [31], the magnitude of the effective
field driving the spin-orbit torque in MnyAu was estimated
from the tight-binding value of the CISP by estimating the
exchange coupling strength between carrier and local moment
spins to Jgg = 1 eV. The intraband field was found to be
0.22 mT per 107 A cm™2 for magnetic moments lying along
the [100] direction. For comparison, we performed ab initio
calculations based on the electronic structure obtained from
the DFT. The method is described in detail in Ref. [37]. Here
the spin-orbit torque is calculated directly using the exchange
potential from the DFT. From the torque the effective magnetic
field is then obtained using Eq. (7): B, = (T, x Ma)/Ma.
This way we only obtain the component of the effective
field perpendicular to the magnetic moments. For magnetic
moments along the [100] direction the longitudinal component
of the effective field is zero. We found that the effective current-
induced field in the ab initio spin-orbit torque calculation has
a magnitude 1.98 mT per 107 A cm~2 [7].

The DFT value is by a factor of 8 larger than the tight-
binding value. To find out where the discrepancy originates
from, we also calculated the CISP directly using the DFT
method. Then using Eq. (8) and the above DFT torque
calculation we obtain a value of the effective exchange
constant Jq = 1.2 eV. This is similar to the estimated value
of Jy used in the tight-binding calculation of the effective
current-induced field. The difference between tight-binding
and DFT calculations is therefore primarily in the CISPs,
which differ by a factor of ~6. The remaining discrepancy
between the tight-binding and DFT effective fields is due to
different magnetic moments in the two approaches. These
differ because the tight-binding Hamiltonian was fitted to a
LDA+U DFT calculation, while for the torque calculation a
DFT calculation without U was used. Including the Hubbard
U increases the moments by about 20%.

The DFT magnitude of the effective staggered field in
Mn,Au is comparable to that of the CuMnAs AFM where
current-induced switching has been recently observed in
experiment [7]. Highly conductive Mn,Au is therefore a
potentially favorable material for exploring and exploiting
current-induced spin-orbit torques in AFMs.

VI. CONCLUSION

We have presented a symmetry analysis of spin-orbit
torques in AFMs and FMs and discussed in detail results
obtained in two complementary model systems with locally
and globally broken inversion symmetry, respectively. We
have pointed out that the existence and form of the spin-orbit
torque on the given spin sublattice is determined by the
sublattice symmetry. We have also shown that in AFMs,
symmetry operations that connect the two spin sublattices
determine the relation between the spin-orbit torques on the
two sublattices. Our two models illustrate two main cases
with the sublattices connected either by a translation or by
an inversion. Consequently, in the AFM 2D Rashba model
representing the former case, the efficient component of the
torque has an antidamping character, while in AFM Mn,;Au
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representing the latter case, the efficient spin-orbit torque has
a fieldlike character.
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APPENDIX A: SYMMETRY OF SPIN-ORBIT TORQUE

We give here an overview of the symmetry of spin-
orbit torque. Symmetry of transport coefficients in magnetic
systems has been studied before, primarily in the context
of electrical and heat conductivity [56-59], but also for the
spin-orbit torque [50]. Here we expand the analysis to account
for sublattice projections. We use the microscopic Egs. (2), (3),
(4) as a starting point. Our approach is similar to that of [57]
where a more general version of the Kubo formula was used.
The results do not depend on the exact form of the formulas:
it is only important that the formulas describe linear response.
Additionally, the results apply only assuming a single-electron
(i.e., noninteracting) Hamiltonian.

As discussed in [59], there has been a considerable
controversy surrounding the symmetry of tensors describing
transport phenomena. The difficulty lies in understanding the
effect of the time-reversal symmetry operation [59,60]. This
is because transport phenomena are nonequilibrium processes
that include dissipation. We define a time-reversal operator
as 7 =ioyK, where K is the complex conjugation. This
is how the time-reversal operator is conventionally defined
in quantum mechanics. Note that such defined time-reversal
operator reverses direction of magnetic moments, but does
not in general reverse direction of electrical currents (see the
discussion in [60]).

Let R be a symmetry of the Hamiltonian, i.e.,

H=RHR™". (A1)

Symmetry operations that do not contain time reversal are
represented by a unitary R. Symmetry operations that contain
time reversal are represented by antiunitary R since K is
an antiunitary operator. If ¥,k is an eigenfunction of the
Hamiltonian, then R, is also an eigenfunction with the same
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eigenvalue. Since the result cannot depend on the choice of
eigenfunctions, we can use the transformed eigenfunctions to
evaluate the CISP. The transformed eigenfunction correspond
to a different k point, but the sums will always run over all
k points. The only part of the microscopic equations that
depends on the eigenfunctions are the matrix elements; the
rest depend only on the eigenvalues. Transformation of the
matrix elements depends on whether R is a unitary operator
or an antiunitary operator. For unitary R and an observ-
able A

(ROl AIR(Wmk)) = (Vo R AR Wic), (A2)
while for antiunitary R
(RO AIR(Wnk)) = (Yo RV AR W)™ (A3)

We represent the transformation of operators S and ¥ by 3 x 3
matrices D*, DV:

R7'S, iR = D}, Su, (A4)
R™'9;R = DYy, (A5)

where a’ is the sublattice in which a transforms under R. Note
that the matrix D® does not depend on a. For unitary R we
find for the transformation of yx,

Xa'ij = D;'YkD}'JIXa,kb (A6)

For antiunitary R, the various terms of (1) will transform
differently depending on whether they contain a real or
imaginary part of the matrix elements. To group together the
terms that transform in the same way, we separate the spin
polarization into parts even and odd under time reversal. Since
time reversal switches the direction of all moments, this is
equivalent to

x&N(M) = [ (IMD) + xo([-MD]I/2, (A7)
x2(MD) = [x(IMD) — x([-MD]1/2,  (A8)

where [M] = [M4,Mp, ...] denotes the directions of all
magnetic moments in the unit cell. Since both S and ¥
anticommute with time reversal and since x/, x//®’ contain
the real part of the matrix elements, while Xa” @ contains the
imaginary part of the matrix elements,

X" = Xa s (A9)
X(?dd — X;I(a)- (Al())

We find for the transformation of each part under anti-
unitary R

(Al1)
(A12)

even __ s v _ even
Xaij = DiijlXa,kl )

odd __ s v ,odd

Xaij = ~DiuDjiXa ua-

We now show how to express the matrices D*,D". Let D

be a 3 x 3 matrix that represents how a point transforms
under R:

xg = Dx +s. (A13)

The shift s is due to translations. It is irrelevant for matrices
D*,D", but the translations cannot be ignored altogether
because they influence which sublattice a transforms to. Note
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that the time-reversal symmetry operation does not influence
the matrix D either since it only affects the magnetic moments.
Thus D represents the nonmagnetic point group.

For unitary R

D’ =det(D)D, D' =D, (A14)
and for antiunitary R
D’ = —det(D)D, D= -D. (A15)

This is because V is a polar vector, while S is an axial vector
and both change sign under time reversal. Then Eq. (A6) can
be rewritten as

xo = det(D)Dx,D” (A16)

and analogously for antiunitary R,
xS = det(D)D xS " DT, (A17)
x2M = —det(D)Dx % DT. (A18)

Equations (A16), (A17), (A18) together determine the
transformation properties of the tensor y,. They hold, however,
only in a Cartesian coordinate system. This is because the
formulas (2), (3), (4) hold only in a Cartesian system. In any
coordinate system, for example, the CISP corresponding to the
term x! can be written as

(Yak|Sal ¥ouk) (Wak |V - E[W1) 8(exn — EF).

(A19)

The terms corresponding to x//@, x1®) can be expressed
analogously. In a non-Cartesian coordinate system, tensor
X« would not satisfy §S, = x,E since in a non-Cartesian
coordinate system V - E # ¥; E;. While it is natural to express
the tensors x in Cartesian coordinate systems, the symmetry
operations are usually expressed in the conventional coordinate
systems, which for the case of monoclinic, hexagonal, and
trigonal groups are not Cartesian. For completeness we provide
here a generalization to non-Cartesian systems. This can be
derived by using a microscopic expression for y, valid in
non-Cartesian systems, but a simpler way is to transform
the linear response tensor from a non-Cartesian system to
Cartesian.

Let T be a coordinate transformation matrix, i.e., a matrix
such that x’ = Tx, where x are coordinates in a Cartesian
system and x" are coordinates in a different, in general non-
Cartesian, coordinate system. Then x, = T~ 'x.T. We first
consider a unitary symmetry operation R. Using Eq. (A16),
which holds in the Cartesian system,

(A20)
(A21)

T~'x,, T =det(D)DT 'y, T D7,
x, =de(D)TDT ' x.TD"T".

In a Cartesian system, D has to be orthogonal, so DT = D~
Since D’ = TDT~! and det(D’) = det(D), we find

x, = det(D)D'x. D'~ (A22)
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Analogously, we find for antiunitary R

(A23)
(A24)

X;e,ven — det(D/)D/X;evenD/_l ,
x0% = —det(D")D' 24D’

a
These formulas determine how x transforms in any coordinate
system. This result is quite general and holds for any linear
response formula. One just has to replace the matrices D*, D"
by matrices that describe transformation of the corresponding
operators.

The results for Cartesian coordinate systems are the same
as in Ref. [57], except that we separate the tensor into the
even and odd parts. Such separation is also commonly done
for other tensors describing transport phenomena [56,59]. It is
quite natural since the even and the odd parts have different
properties. For example, they have a different dependence on
disorder and cause very different magnetic dynamics.

To find out symmetry properties of the expansion terms
in (20) we have to consider the symmetry operations of the
nonmagnetic crystal, since these are symmetry operations that
connect different magnetic configurations of a given crystal. If
R is such symmetry operation then H([M]z) = RH (IMDR',
where [M]g denotes directions of all magnetic moments
transformed by R. By using a procedure very similar to that
for deriving Eq. (A22), we can show that

Xa(IM]g) = det(D)Dxo(IM)D™". (A25)
Since the nonmagnetic symmetry operations do not contain
time reversal we do not have to separate x, into the even and
odd parts. Considering that Eq. (A25) has to hold for each
expansion term in (20) we find

X) . = det(DY ' Dy DL DLTDLT O
(A26)

where D~T denotes the inverse of a transpose of matrix D.
We consider here only the symmetry operations that keep the
sublattice invariant. The symmetry operations that connect the
two sublattices do not give any more information about the
form of x). The form of the expansion (20) is thus given by
the nonmagnetic local point group.

In FMs Eq. (A26) applies also for the expansion of the net
CISP, if the global point group is used instead. In AFMs, the
net tensor x transforms in general differently. This is because
a symmetry operation that transforms one sublattice into the
other can reverse the sign of the Néel vector and this is not taken
into account in Eq. (A26). For example in Mn, Au, inversion is
a symmetry of the nonmagnetic crystal. As a consequence, the
net CISP in the FM Mn;Au vanishes as correctly predicted by
Eq. (A26) applied for the net CISP. In AFM Mn,Au, there is,
however, a net CISP, yet Eq. (A26) is the same as for the FM.
It is straightforward to derive the analog of Eq. (A26) for the
net CISP in AFMs; however, in AFMs the net CISP is not a
very useful quantity. In AFMs with more than two sublattices,
spin-axis direction is not enough to describe the magnetic state
of the AFM. Then the expansion (20) should be performed in
more parameters than just h. However, if we assume that all
the other parameters are fixed during dynamics then expansion
(20) can still be used and Eq. (A26) applies.
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APPENDIX B: THE CODE FOR ANALYZING THE
SYMMETRY

We provide a code that can analyze the symmetry of spin-
orbit torque in a given crystal structure automatically [49]. It
can find the symmetry-restricted form of a tensor x, and also of
the expansion (20). Here, we give a brief overview of the code.
The code is written in Python and uses the symbolic library
Sympy [61]. It uses as an input a list of symmetry operations for
the given crystal structure, generated by the program Findsym
[62]. From these symmetry operations we first choose the
ones which form the local point group, i.e., the symmetry
operations that leave the selected sublattice invariant. For each
such symmetry operation we then construct a system of linear
equations (13), (14) [resp. (A26) for the expansions] that have
to hold for components of the tensor. We solve this system of
equations by transforming it to the reduced row echelon form.
The code can also find relations between tensors y, projected
on different sublattices and between tensors y, for different
equivalent magnetic configurations.

APPENDIX C: ANALYTICAL DERIVATION
OF SPIN-ORBIT TORQUES

In this section, we present the details of the derivation of the
computation of Egs. (36) and (37). As mentioned in Sec. IV A,
we need to calculate the expressions

h
S — _C S Re(Tr{(b - E)A,0 oA, (e — €p).
2I'V _
(€1
Inter __ ﬂi S (fk,v - fk,v’)
s == U;;klm{Tr[(v E)A,0 A, ]}—(kav —
(€2)

Since evaluating the transport properties involves an angular
averaging over ¢, it is convenient to rewrite the projection
operator in the form A; , = A, + A7, where the first term
is even in Kk, while the second term is odd in k. Furthermore,
from now on we will only focus on the limit case of 6§ < 1
(i.e., I & z) in order to get rid of the angular dependence of the
Fermi surface contained in ¢, Eq. (33). This way, the energy

dispersion reduces to €, , = n(vy? + J% + sak) and we find
explicitly

A, = (/91 + 1 cos b2, + nsin b6 - L)z, (C3)

AS’U = (s/4)6 - [cos Ot — sin@kfy(I: X )+ nutc], (C4)

where we defined cos6, = yi/v ykz + Jszd and sin6; =
Jsa/V sz + Jszd. Using the definitions of Egs. (C1) and (C2)
we notice that the heart of the physics is contained in the trace

Tr((® - E)A,G e Ayl = (V) (0 [(5 - B)v).  (C5)
The velocity operator ¥ - E = 8 H - E/F reads

ho -E = [2ta’k - E + a(z x E) - 6]%.. (C6)
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The trace Eq. (C5) has then two contributions that do not
vanish upon ¢y integration,

. 2ta?
Tl = %(k-E)Tr[fx(A(j&gAif‘f‘Ai&g W] ©n
T = %Tr[(z X E) - 62, (A0 A + A6 A ]
(C8)

After some algebra, we obtain the following expression for
the real and imaginary parts of the trace defined in Eq. (C5),

ReTr'" = - [2staf cos ; + /K] cos 6,k - E)u. (C9)

/R ﬁ i . 1 , ,
ImTr’ S¢ N sinOx(k - E)Y(L X )8y 15,841,

(C10)

where Eq. (C9) involves only intraband transitions (s,n =
s’,n"), while Eq. (C10) involves only interband transitions
(—s,—n = s’,n"). We can now proceed with the ¢y, integration.
Since the energy ey, is isotropic (independent of ¢y),
Egs. (C9) and (C10) can be further simplified by performing
the angular integration

T

/d(kaeTr"" = Zh [2statk cos 6 + o] cos b (z x E),

(C11)

‘ ta’k .
/dgokImTr""’ = —sngaT[ sin Ok [L % (2 X E)18y 45,8y 44.
(C12)

Using Egs. (C1) and (C2) and noticing that 8(eys,, — €p) =
|2tNa12k cos O, + sa|"8k,k; (where ki is the solution of
€k,s,y = €F), We obtain

z x eE

g = = / dkk cos O (8 — 8iyz),  (C13)
Jutd® . ki k*dk
ghter — _ ¢ S; ai [L x (z x eE)]/ PRI
T kg (Vk + Jsd)
(C14)

We consider the Fermi energy close to the top of the upper
bands, so that the lower bands remain fully occupied fx s =
1. Furthermore, we recognize that to the linear order in «

5 Ak A+ ok + O(a?) (C15)
1 2 N o €F
= ——\/4 G- Jyts——F—— (C16)
Jta? 214, e — J
Then, the integral in Eq. (C14) can be rewritten
/kF* k2dk k2
— N akf————. (C17)
_ 32 F 3/2
e (yk2 + ‘]szd) )

(v + /&
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Finally, we find that the current-driven spin densities read

2
Inta MO Ja €
nra_thzr 1+2€—82 Z—ﬁ ZX@E,
F \/GF_Jsd
(C18)
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mo Jsd €0

SInter =—¢ 1—
Ve~ I

I.x@zxE s
47t h2el ( )
where we defined €y = ra?k?.

(C19)
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