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Critical behavior in the presence of an order-parameter pinning field
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We apply a recently advocated simulation scheme that employs a local order-parameter pinning field to study
quantum critical phenomena in the two-dimensional square-lattice bilayer quantum Heisenberg model. Using a
world-line quantum Monte Carlo approach, we show that for this model, the pinning-field approach allows to
locate the quantum critical point over a wide range of pinning-field strengths. However, the identification of the
quantum critical scaling behavior is found to be hard since the pinning field introduces strong corrections to
scaling. In order to further elucidate the scaling behavior in this situation, we also study an improved classical
lattice model in the three-dimensional Ising universality class by means of Monte Carlo simulations on large
lattice sizes, which allow us to employ refined finite-size scaling considerations. A renormalization group analysis
exhibits the presence of an important crossover effect from the zero pinning-field to a critical adsorption fixed
point. In line with field-theoretical results, we find that at the critical adsorption fixed point the short-distance
expansion of the order-parameter profile exhibits a new universal critical exponent. This result also implies the
presence of slowly decaying scaling corrections, which we analyze in detail.
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I. INTRODUCTION

The study of quantum phase transitions takes a central
role in contemporary condensed matter physics. Of particular
interest in many situations are quantum phase transitions
towards phases with unconventional order parameters or into
phases of strongly interacting matter that exhibit no conven-
tional ordering at all, such as in quantum spin liquid phases.
For an unbiased numerical study of such systems, it is thus
important to be able to resolve even weakly developed order
parameters and their scaling behavior in the vicinity of the
quantum phase transition. Recently, a new approach has been
put forward for detecting spontaneous symmetry breaking in
numerical simulations, where traditional approaches, based
on order-parameter correlation functions, may be limited due
to exceedingly small values of the order parameter in the
thermodynamic limit [1]. In particular, it was proposed to
enhance the power of finite-size based studies by turning on a
local ordering field, conjugate to the order parameter, applied,
e.g., in a lattice model at a single site in a finite system, and to
monitor the effect of this order-parameter pinning field over
large distances from the coupling site. In addition to assessing
the size of the order parameter in the thermodynamic limit,
this approach was also suggested for the study of quantum
critical phenomena, in particular to determine quantum critical
points and the associated critical exponents. The introduction
of symmetry-breaking terms in the Hamiltonian as a tool
to investigate its phases is common also to Density Matrix
Renormalization Group studies [2] and to lattice QCD [3]. A
related means of investigating (quantum critical) spin systems
is provided by the response to impurity spins or vacancies. This
approach has been intensively examined by both analytical and
numerical approaches, see, e.g., Refs. [4–7].
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While the pinning-field approach has been used already
for a study of fermionic systems [1], here we apply this
method to the spin-1/2 bilayer Heisenberg model, in order
to assess the ability of the pinning-field method to (i) locate
the quantum phase transition point and (ii) to estimate the
values of underlying critical exponents. In particular, since the
bilayer system’s critical properties are well characterized and
conventional simulation schemes, based on order-parameter
correlation functions, were found to provide accurate results
at criticality, we consider this system an ideal test-case for the
pinning-field approach, for which we can access finite lattices
of comparable size and also extend beyond the size-limitations
of, e.g., determinantal quantum Monte Carlo schemes.

As will be discussed in detail below, the presence of a
finite pinning field constitutes a relevant perturbation (in the
renormalization group sense) to the zero-field fixed point,
even though it is applied to (only) a single site on the lattice.
This requires a refined finite-size scaling analysis beyond the
conventional leading finite-size scaling ansatz for a reliable
extraction of the critical exponents of the underlying quantum
critical point. In order to quantify these scaling corrections on
larger linear system sizes than those accessible by quantum
Monte Carlo approaches, we also consider here an improved
classical lattice model in the presence of a pinning-field line,
motivated by the general quantum-to-classical mapping. This
improved classical model (in the sense that scaling corrections
in the absence of the pinning field are suppressed) in fact
turns out to be an interesting model in its own, representing
a magnetic defect line in a critical three-dimensional Ising
system. Such a situation has indeed been analyzed previously,
and we contribute here to the analysis of such defect-line
systems, in particular by exhibiting the presence of a new
universal critical exponent, which characterizes the order-
parameter profile in the vicinity of the defect-line.

Our Monte Carlo-based numerical studies are comple-
mented by an extended analysis of scaling relations in the
presence of an order-parameter pinning field (a defect-line
in the classical case) as well as a theoretical treatment

2469-9950/2017/95(1)/014401(20) 014401-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevB.95.014401


PARISEN TOLDIN, ASSAAD, AND WESSEL PHYSICAL REVIEW B 95, 014401 (2017)

based on renormalization group and short-distance-expansion
considerations. These exhibit an important crossover from the
zero pinning-field fixed point to a critical adsorption fixed
point that corresponds to an infinite pinning-field strength.
In line with previous field-theoretical results, we find that
the short-distance expansion of the order-parameter profile
exhibits a new universal critical exponent at the critical
adsorption fixed point. This result also implies the presence
of slowly decaying scaling corrections in the order-parameter
scaling function, which we analyze in detail and compare to
our numerical findings in both the improved classical model
and the bilayer quantum Heisenberg spin model.

In this context, we remark that critical adsorption is a well-
known phenomenon in fluids which has attracted numerous
experimental studies (see, e.g., Ref. [8] for a review, and
Refs. [9–15] for more recent results), as well as theoretical
investigations (see, e.g., Refs. [16–26]). In fact, as discussed
in the conclusions, for the case of the classical model in the
Ising universality class the present setup can be experimentally
realized in the physics of fluids.

The remainder of the paper is organized as follows. In
Sec. II, we define in detail the model systems that we
will analyze in our Monte Carlo studies. Then, in Sec. III,
we provide a throughout analysis of the finite-size scaling
behavior in the presence of a pinning field. This also includes
an extended discussion of the order-parameter profile and the
local susceptibility in the vicinity of the pinning-field center
as well as the dominant corrections to scaling induced by
the pinning field. Based on this theoretical considerations, we
then analyze in Sec. IV the numerical Monte Carlo results for
both the classical lattice model as well as the bilayer quantum
Heisenberg model. Finally, in Sec. V, we summarize our
results and discuss future directions. Appendix A contains an
alternative calculation of the renormalization-group dimension
of the pinning field at the zero-field fixed point, which
complements the determination presented in Sec. III B. In
Appendix B, we discuss the implications of the present
study for the critical behavior of the Hubbard model on the
honeycomb lattice; this model was extensively studied with
the pinning-field approach in Ref. [1]. In Appendix C, we
provide a rigorous argument concerning the magnetization
scaling exponent for a classical lattice model in the presence
of a pinning field coupled to a single site; such a setup is
discussed in Sec. V as a possible generalization of the models
studied here.

II. MODELS

In this section, we introduce the two lattice models that
we use to analyze specifically the effects of pinning-field
defects in (i) a two-dimensional quantum critical magnet and
(ii) the magnetic defect-line in a three-dimensional critical
Ising system, respectively.

A. Bilayer quantum Heisenberg model

For the analysis of the effect of a local pinning field on a
quantum critical magnetic system, we consider the spin-1/2
Heisenberg model on a square lattice bilayer. This model is

described by the Hamiltonian

H = J
∑

α=1,2

∑
〈i j〉

�Si,α
�Sj,α + J ′ ∑

i

�Si,1 �Si,2. (1)

Here, we consider two layers of parallel stacked square lattices,
with �Si,α a spin-1/2 degree of freedom on the ith lattice site
on the upper (α = 1) and lower (α = 2) layer. The first term in
H accounts for a nearest-neighbors antiferromagnetic (J > 0)
spin exchange interaction within each layer, while the second
term accounts for a local antiferromagnetic (J ′ > 0) coupling
between adjacent sites from each layer. In the following, we
denote by g = J ′/J the coupling ratio between the inter- and
intralayer coupling strengths.

This bilayer Heisenberg model exhibits a quantum phase
transition between a collinear antiferromagnetic phase at
small values of g and a large-g quantum disordered dimer
paramagnet, with a quantum critical point located at the critical
ratio [27] gc = 2.5220(1). The model has been analyzed
intensively in the past [27–32], and in particular large-scale
quantum Monte Carlo (QMC) simulations have both identified
the above quoted location of the quantum critical point
and verified the three-dimensional O(3) universality class
(UC) of the quantum phase transition. Due to the absence
of geometric frustration, this system can be studied using
QMC without any sign problem, even in close vicinity of the
quantum critical point, using by-now standard cluster update
algorithms [33–35].

Conventionally, in order to detect antiferromagnetic order
on a bipartite lattice model with an SU(2) invariant Hamilto-
nian H , an estimator for the antiferromagnetic order parameter
m based on the spin-spin correlation functions is employed,

m(L) =
√√√√ 1

N2

N∑
i,j=1

εiεj 〈Si · Sj 〉, (2)

where L denotes the linear system size, N the number of lattice
sites (N = 2L2 for the bilayer model under consideration
here), and εi = ±1, depending on the sublattice to which
lattice site i belongs. The finite-size data m(L) then need
to be extrapolated to the thermodynamic limit (TDL) in
order to obtain the TDL value of the order parameter m. In
cases, where m becomes exceedingly small, which will be
the case, e.g., when locating the system close to the critical
point, the authors of Ref. [1] propose instead to modify the
system’s Hamiltonian by adding a symmetry-breaking field
term that couples to the order-parameter field. In contrast to
the conventional symmetry-breaking field procedure, however,
they propose to add a local term [given explicitly here for the
case of a (antiferro-) magnetic transition]

Hloc = h0S
z
i0

(3)

in the Hamiltonian, where h0 sets the magnitude of this local
pinning field coupled to the spin on lattice site i0, and which
induces (antiferro-) magnetic correlations in the system by
pinning the ordering direction. A QMC estimator for the order
parameter m is then based on evaluating the spatially averaged
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pinned order-parameter field,

m(L) = 1

N

N∑
i=1

εi

〈
Sz

i

〉
h0

, (4)

again with a final extrapolation to the TDL. Here, 〈. . . 〉h0

indicates that the expectation value is to be taken for a system
with Hamiltonian H + Hloc. This estimator will be dominated
for large system sizes by the scaling of the pinned expectation
value 〈Sz

i 〉h0 at large distances from the pinning site (which
defines here the lattice site i0). For a translational invariant
Hamiltonian H , the pinning center site i0 can of course be
chosen arbitrary. We refer to Ref. [1] for a more detailed
exposition of the pinning-field approach. For this paper, we
have applied this method to the bilayer Heisenberg model
and examined its performance in locating the quantum phase
transition and determine the critical properties, in particular
the scaling behavior near criticality.

B. Classical lattice model

In order to elucidate further the scaling behavior in the pres-
ence of a pinning field, we also considered a three-dimensional
classical lattice model, in the presence of a local magnetic field,
acting on a single defect line. In fact, as discussed in Sec. III,
under the quantum-to-classical mapping the model defined in
Eq. (1) becomes equivalent to a three-dimensional classical
model in the presence of a magnetic field restricted to a line,
parallel to the imaginary time axis. We study the Blume-Capel
model [36,37], which is a lattice spin model where the spin
variables take values S = −1,0,1. It is defined by the classical
reduced Hamiltonian

H = −K
∑

〈
x,y,z

x′ ,y′ ,z′
〉 S(x,y,z)S(x ′,y ′,z′) + �

∑
x,y,z

S2
(x,y,z)

−h0

∑
z

S(0,0,z) − h
∑
x,y,z

S(x,y,z), S(x,y,z) = −1,0,1,

(5)

such that the Gibbs weight is exp(−H). The model is defined
on a three-dimensional simple cubic lattice of size L × L ×
Lz, with periodic boundary conditions, where each site has
Cartesian coordinates (x,y,z). In Eq. (5), the first sum extends
over the nearest-neighbors pairs, the second and the last one
over all the lattice sites. The third sum in Eq. (5) represents
the pinning field and extends over a line parallel to the z

axis. In order to exploit the translational invariance of the
model in the pinning-field direction, it is convenient to fix the
origin of the coordinate system on a lattice site on the pinning
field, such that a lattice site vector �x decomposes into two
components, parallel �x‖ = zẑ and perpendicular �x⊥ = (x,y)
to the pinning-field line, which is located at �x⊥ = 0. Besides
the pinning field h0, we also consider the effect of a bulk
field h.

In line with the convention used in previous works [38–45],
in the following, we fix the parameter �, treating it as a
part of the integration measure over the spin configuration,
and vary the remaining parameters K , which controls the
distance to the critical point, h, and h0. The Blume-Capel
model reduces to the usual Ising model in the limit � → −∞.

In the (K,�) plane, it exhibits a second-order transition line in
the Ising UC, which extends from � = −∞ to the tricritical
point �tri. In dimension three �tri has been determined as
�tri = 2.006(8) [46,47], as �tri 
 2.05 [48], and as �tri =
2.0313(4) [49]. At � = 0.656(20) [38] the leading scaling
corrections ∝ L−ω, with ω = 0.832(6) [38] are suppressed
and the model is “improved” [50]. As in recent numerical
studies, which employ this model [39–45], here we fixed
� = 0.655. At this value of �, the model is critical for
K = Kc = 0.387721735(25) [38]. An accurate estimate of
the critical exponents of the three-dimensional Ising UC,
ν = 0.63002(10) and η = 0.03627(10), has been obtained by
using the improved Blume-Capel model [38].

III. FINITE-SIZE SCALING

A. General properties

Under the quantum-to-classical mapping, the model of
Eq. (1) becomes equivalent to a model in cylindrical geometry
with D = d + 1 = 3 dimensions, where the inverse temper-
ature 1/T corresponds to the size in imaginary time. This is
accomplished by expressing the partition function as a path
integral in a (d + 1)-dimensional space, using the base of spin
coherent states [51]. The presence of a pinning field gives rise
to a line defect, parallel to the imaginary time axis, where
the pinning field h0 is coupled to. In contrast to the case of
a vacancy [4,5], there is no Berry phase term entering the
field-theoretical description of the perturbation introduced to
the bulk system by the pinning field. While in general the
scaling behavior of the inverse temperature is characterized
by a nontrivial exponent z and an anisotropic scaling [51],
O(N )-symmetric models exhibits a full Lorentzian symmetry
at the critical point, with z = 1 [52].

Here and in the following, we shall discuss the finite-size
scaling (FSS) behavior, which we use to analyze the critical
properties of the models considered here. General reviews of
FSS can be found in Refs. [53–55]; a summary of FSS theory
which focuses on symmetry-breaking boundary conditions is
found in Ref. [40], while FSS at a quantum phase transition
is discussed in Ref. [56]. According to renormalization
group (RG) theory [50,57], the free energy per volume Ld ,
F(g,h,h0,T ,L) splits into a sum of a nonsingular and a
singular contribution,

F(g,h,h0,T ,L) = f (ns)(g,h,h0,T ,L) + f (s)(g,h,h0,T ,L).

(6)

Since the presence of the pinning field gives rise to a line
defect, one expects that the regular part of the free energy is a
sum of a “bulk” free energy density (independent of h0) and
of a “line” free energy density:

f (ns)(g,h,h0,T ,L) = f
(ns)
bulk (g,h) + 1

LD−1
f

(ns)
line (g,h,h0), (7)

where, in line with the quantum-to-classical mapping, both
regular terms are expected to be temperature-independent [56].
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In the FSS limit, the singular part of the free energy density
obeys the scaling ansatz [53–56]

f (s)(g,h,h0,T ,L) = 1

(L + c)D

· f (u(L + c)1/ν,h(L + c)yh ,h0(L + c)y
′
,{ui(L + c)−ωi },ρ),

(8)

where

u = g − gc

gc

,

ρ = L

c0(1/T )
,

yh = D + 2 − η

2
.

(9)

In Eqs. (8) and (9), we have introduced the generalized aspect
ratio ρ; up to a nonuniversal constant c0 associated with the
scaling field of the temperature T , ρ is the ratio of the spatial
size L of the model and the size ∼1/T in the imaginary-
time direction, which emerges after the quantum-to-classical
mapping. In Eq. (8), we have assumed h0 to be a perturbation
around h0 = 0, and anticipated the discussion of Sec. III B,
where we show that it is a scaling field with RG dimension
y ′. The irrelevant scaling fields {ui} give rise to corrections to
scaling which decay as ∝ L−ωi , the dominant one being the
one with the smallest ω. In Eq. (8) we have also included the
correction to scaling arising from the lack of full translational
invariance. Under this condition, L is not an exact scaling
field, but it has to be replaced with an expansion L + c +
O(1/L), which results in corrections to scaling ∝ L−1; c is a
nonuniversal constant. The property that such corrections to
scaling can be adsorbed by the substitution L → L + c was
first proposed in the context of surface susceptibilities [58]
and more recently verified for improved classical models in
a film geometry, where it gives rise to the leading scaling
correction [39–45,59,60]. The expansion L + c + O(1/L) for
the scaling field associated with the system size has also been
argued to hold for a quantum phase transition at T = 0 [56].
Scaling corrections arising from nonlinearities in the scaling
fields [61] have been neglected in Eqs. (8) and (9) because
they do not play a relevant role here.

The FSS behavior of the classical Blume-Capel model
defined in Sec. II B is essentially identical to the one for
the bilayer Heisenberg model, requiring only a minor change
in the definitions of coupling constants and scaling fields.
Similar to Eq. (7), the nonsingular part of the free energy
density f (ns)(K,h,h0,Lz,L), i.e., the free energy per volume
LD , decomposes into a bulk and a line term, which are now
functions of the coupling constant K of the Hamiltonian (5)1:

f (ns)(K,h,h0,Lz,L) = f
(ns)
bulk (K,h) + 1

LD−1
f

(ns)
line (K,h,h0).

(10)

1For sake of simplicity, we omit here the dependency on the Blume-
Capel parameter �, since it has been fixed to � = 0.655 throughout
the investigations, see Sec. II B.

The singular part of the free-energy density f (s)(K,h,h0,Lz,L)
satisfies a scaling behavior analogous to Eq. (8),

f (s)(K,h,h0,Lz,L) = 1

(L + c)D

· f (u(L + c)1/ν,h(L + c)yh ,h0(L + c)y
′
,{ui(L + c)−ωi },ρ),

(11)

where yh is given as in Eq. (9) and the scaling field u and the
aspect ratio ρ are

u = Kc − K

K
, ρ = L

Lz

. (12)

Since in a finite size L there are no singularities in the free
energy, the FSS scaling functions of Eqs. (8) and (11) are
expected to be smooth functions in their variables, and in
particular analytical in the aspect ratio ρ 2. Therefore, as long
as the FSS limit is taken at fixed ρ, the presence of this scaling
variable does not affect the determination of the exponents
from a FSS analysis. Nevertheless, we mention that the actual
dependence of the free energy on ρ in the presence of isolated
line defects is of particular interest in the film geometry, since
an observed linear behavior in ρ for ρ → 0 can be used to
extract a contribution to FSS functions which is solely due
to the line defects [40,42,43]. The simulation results for the
bilayer Heisenberg model presented in Sec. IV B have been
obtained by finite-temperature QMC simulations [33–35] that
target the ground-state from employing an aspect ratio of ρ =
0.5/c0 [see Eq. (9)], whereas the Monte Carlo (MC) results
of the Blume-Capel model reported in Sec. II B correspond to
a cubic lattice of equal linear size in all directions, i.e., with
ρ = 1 [see Eq. (12)].

From Eqs. (6)–(12), the FSS behavior of the various
observables can be obtained by taking the appropriate
derivatives. The presence of a nonzero pinning field breaks
explicitly the SU(2) symmetry, giving rise to a nonzero magne-
tization per volume m. Its FSS behavior is readily obtained by
differentiating the free energy per volume with respect to h and
setting h = 0. Notice that, because of the O(3) symmetry of the
bilayer Heisenberg model f

(ns)
bulk (g,h,T ) = f

(ns)
bulk (g,−h,T ) and

f
(ns)
line (g,h,h0,T ) = f

(ns)
line (g,−h,−h0,T ). Therefore, since, by

definition, f (ns) is not singular, we have ∂f
(ns)
bulk (g,h,T )/∂h = 0

for h = 0, whereas in general ∂f
(ns)
line (g,h,h0,T )/∂h = 0 for

h = 0 but h0 = 0. Analogous results follow for the
Blume-Capel model, which is Z2-symmetric in the absence
of the pinning field. Using Eq. (7), for the bilayer Heisenberg
model, and Eq. (10), for the Blume-Capel mode, we obtain
the FSS of the magnetization per volume m in zero external

2For some limiting values of ρ, FSS functions can exhibit additional
nonanalyticities associated with a phase transition in reduced dimen-
sionality, such as in a three-dimensional film geometry of infinite
lateral extent at the onset of the two-dimensional phase transition
[42,44,59].

014401-4



CRITICAL BEHAVIOR IN THE PRESENCE OF AN . . . PHYSICAL REVIEW B 95, 014401 (2017)

field h and nonzero pinning field h0:

m(g,h0,T ,L) = (L + c)−β/ν

· fm(u(L + c)1/ν,h0(L + c)y
′
,{ui(L + c)−ωi },ρ)

+ 1

LD−1
gline(g,h0), Heisenberg (13)

m(K,h0,Lz,L) = (L + c)−β/ν

· fm(u(L + c)1/ν,h0(L + c)y
′
,{ui(L + c)−ωi },ρ)

+ 1

LD−1
gline(K,h0), Blume-Capel, (14)

where we have introduced the scaling functions fm for
the singular part of the magnetization, their nonsingular
counterpart gline, and have used D − yh = β/ν. A comparison
of Eq. (13) with Eq. (14) shows that the scaling behavior
is essentially identical for both models considered here. By
setting g = gc for the bilayer Heisenberg model (respectively,
K = Kc for the Blume-Capel model), and retaining the
leading correction to scaling only, we obtain the FSS behavior
of the magnetization at criticality:

m = L−β/ν[fmc(h0L
y ′
,ρ) + L−ωgmc(h0L

y ′
,ρ)

+ L−(D−1−β/ν)gline,c(h0)],

ω = min{1,{ωi}}, criticality,

(15)

where, in order to employ a uniform notation for both models
considered here, we have introduced two scaling functions
fmc(h0L

y ′
,ρ) and gmc(h0L

y ′
,ρ) describing the leading, and the

dominant correction-to-scaling terms. The last term in Eq. (15)
is defined as gline,c(h0) ≡ gline(gc,h0) for the bilayer Heisen-
berg model and gline,c(h0) ≡ gline(Kc,h0) for the Blume-
Capel model. It represents the scaling corrections due to the
analytical background, which are characterized by an effective
correction-to-scaling exponent D − 1 − β/ν. In D = 3, for
both models considered here we have D − 1 − β/ν ≈ 1.5,
therefore such corrections are negligible with respect to those
arising from gmc(h0L

y ′
,ρ). In the following, we shall neglect

the corrections due to the nonsingular part of the free energy.

B. RG-flow of h0

In the preceding section, we have implicitly assumed that
h0 represents a line scaling field at the fixed point h0 = 0.
Indeed, for h0 = 0, the system is translationally invariant, and
the RG flow does not generate line couplings which would
break this symmetry, thus h0 = 0 is a fixed point of the RG
flow. The scaling dimension of h0 at the h0 = 0 fixed point can
be determined as follows. In the continuum limit, a field-theory
description of the pinning field corresponds to an interaction
term in the action as

h0

∫
dD �xδ(D−1)(�x⊥)φ(�x), (16)

where φ(�x) is the order parameter and δ(D−1)(�x⊥) = δ(x)δ(y)
indicates that the interaction is restricted to the fields
with coordinates x = y = 0. Under an RG transforma-
tion with scale factor b, �x → �x ′ = �x/b, φ(�x) → φ′(�x ′) =
bxφ φ(�x), h0 → h′

0 = h0b
y ′

, where xφ = D − yh = β/ν is the
scaling dimension of the operator φ and y ′ the RG dimension

of the pinning field, to be determined. Correspondingly, the
interaction of Eq. (16) transforms to

h′
0

∫
dD �x ′δ(D−1)(�x ′

⊥)φ′(�x ′)

= by ′−D+(D−1)+xφ h0

∫
dD �xδ(D−1)(�x⊥)φ(�x).

Scale invariance requires then

y ′ = 1 − xφ = yh − (D − 1) = 1 − η

2
. (17)

An equivalent argument leading to Eq. (17) follows from the
scaling behavior of the two-point function and it is reported in
Appendix A.

The calculation outlined above crucially depends on the fact
that the order-parameter operator φ on the line scales with the
usual RG dimension xφ = β/ν. Indeed, for h0 = 0 the model
is translationally invariant, therefore the local operator φ on the
line is no different than the bulk one. Thus, as a perturbation
around the h0 = 0 fixed point, the transformation under the
RG of the interaction of Eq. (16) can be deduced from the
usual RG transformation of the order-parameter operator φ, as
illustrated above. Analogous calculations allow to deduce the
scaling dimension of any other line perturbations, at the h0 = 0
fixed point. In contrast, an equivalent argument in the presence
of a real surface or edge does not lead to the correct scaling
dimension of edge or surface fields, because the boundary
operators have different scaling dimensions than the bulk ones.
In terms of the corresponding field theory, surface and edge
terms require an additional renormalization [62,63].

Using Eq. (17), we find that for the Heisenberg UC
y ′ = 0.4813(3) [64], for the Ising UC y ′ = 0.48187(5) [38].
Since y ′ > 0, the h0 = 0 fixed point is unstable against the
inclusion of a pinning field. The corresponding RG flow
shares important analogies with surface critical phenomena
[62,63,65]. There one considers “bulk” couplings, whose RG
flow is independent on boundary conditions, and “surface”
couplings, whose transformation under the RG depends also
on the bulk ones. Here, in analogy with surface critical
behavior, one considers the RG flow of bulk couplings, which
is independent of the presence of a pinning field, and the
RG flow of “line” couplings, which instead depends also on
the bulk properties. This picture can be intuitively understood
by considering a real-space RG transformation of the lattice
model [66]. Since the RG is a local transformation with a local
Hamiltonian, coarse graining and rescaling of the degrees of
freedom is independent of the presence of a line defect, when
the distance of such degrees of freedom from the line defect
exceeds the scale of the RG transformation. Conversely, the
RG flow close to the line defect is influenced by the presence
of a pinning field. Figure 1 illustrates this argument. This
picture provides also an intuitive explanation of the necessity
of replacing the scaling field L with an expansion of the form
L + c + O(1/L) when the translational symmetry is broken
(see the discussion in Sec. III A).

For a nonzero pinning field h0, the line defect is always
ordered, therefore, analogous to the case of a real surface with a
surface field, under the RG h0 flows to h0 = ∞, corresponding
to the so-called “normal” UC, or “critical adsorption” fixed
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Pinning field

FIG. 1. Real-space RG transformation with scale b, in the
presence of a defect line. Black points represent the spin degrees
of freedom, S ′

i′ is the coarse-grained spin at the block i ′. With a
local Hamiltonian, coarse graining and rescaling for the spins in the
green blocks is independent of the presence of the defect line, which
influences the RG transformation near the defect. After an RG step,
the effective size of the “bulk” part is no longer precisely defined,
this implies that the length L is no longer an exact scaling field, but
has to be replaced by L + c + O(1/L).

point [62,63,65]. This picture has been confirmed for the Ising
UC by means of Migdal-Kadanoff calculations in Ref. [25],
where it has been shown that critical adsorption on a line defect
represents a new line UC. Thus the FSS behavior of the models
considered here can be explained in terms of a crossover from
the “ordinary” fixed point h0 = 0 to the critical adsorption
fixed point h0 = ∞.

At this fixed point, the singular part of the free energy
depends only on the bulk couplings, whose RG flow, as dis-
cussed above, is independent of the line couplings. Neglecting
for simplicity scaling corrections, under a RG transformation
with scale b the singular part of the free energy density for the
model of Eq. (1) transforms as

f (s)(g,h,T ,L) = b−Df̃ (ub1/ν,hbyh,T bz,L/b). (18)

Fixing the scale of the previous equation with L/b = const,
one finds that f (s) satisfies the FSS form

f (s)(g,h,T ,L) = 1

LD
f (uL1/ν,hLyh,ρ), (19)

with ρ defined in Eq. (9). An analogous result holds for the
Blume-Capel model. By differentiating Eq. (19) with respect

to h, we obtain for both models the following prediction for
the asymptotic behavior of the magnetization m:

m = L−β/νfm,norm(uL1/ν,ρ), h0 → ∞ (20)

where scaling corrections have been neglected. A comparison
with Eqs. (13) and (14) reveals that

fm,norm(̃u,ρ) = lim
h̃0→∞

fm (̃u,h̃0,{0},ρ), (21)

where ũ = uL1/ν, h̃0 = h0L
y ′

are the scaling variables of fm

and fm,norm. At criticality u = 0 and Eq. (21) implies that the
scaling function fmc introduced in Eq. (15) is asymptotically
flat,

lim
h̃0→∞

fmc(h̃0,ρ) = const(ρ), (22)

i.e., independent of the first variable (but, in principle, still
dependent on the aspect ratio ρ).

C. Order-parameter profiles and local susceptibilities

The analysis of spatially resolved observables, such as the
magnetization profiles, provides valuable additional informa-
tion on the critical behavior of a system. Here we do not
address the crossover behavior induced by a finite pinning field
h0 but limit our analysis to the scaling behavior at the critical
adsorption fixed point, i.e., for h0 = ∞. In the following, we
refer for simplicity to the FSS behavior of the Blume-Capel
model defined in Eq. (5), for which we can also make contact
with the field-theory results of Ref. [25]; analogous results
hold for the scaling behavior of the bilayer Heisenberg model.

The local magnetization at lattice site �x is given by
the expectation value of the order parameter φ(�x). Due
to the translational invariance along the pinning-field line,
and to the rotational invariance restored at criticality, the
magnetization profile m(x⊥) depends only on the distance from
the pinning field x⊥ = |�x⊥| (see the discussion after Eq. (5)
for the definition of the coordinate system). At zero bulk field,
under an RG transformation with scale b,m(x⊥) transforms as

m(x⊥) = b−xφ m̃(ub1/ν,{uib
−ωi },x⊥/b,L/b,Lz/b), (23)

where we have neglected the analytical scaling corrections
∝ L−1 arising from non-translational invariance [see the
discussion after Eq. (9)]. Fixing the scale L/b = const
in the previous equation, and expanding for large L, retaining
the leading irrelevant operator, we find

m(x⊥) = L−β/νfp(uL1/ν,x⊥/L,ρ)

· [1 + L−ωgp(uL1/ν,x⊥/L,ρ)], (24)

where for later convenience we have factorized the subleading
term gp. At criticality, u = 0 and Eq. (24) reduces to

m(x⊥) = L−β/νfpc(x⊥/L,ρ)[1 + L−ωgpc(x⊥/L,ρ)], (25)

where fpc (̃x⊥,ρ) ≡ fp (̃u = 0,̃x⊥,ρ), gpc (̃x⊥,ρ) ≡ gp (̃u =
0,̃x⊥,ρ). Equations (24) and (25) hold in the FSS limit, i.e.,
in the limit L → ∞, with fixed uL1/ν, ρ, and, additionally,
fixed x⊥/L. A scaling argument can be formulated to show
that, in fact, the tail of the profiles satisfy Eq. (25) even for a
finite value of h0, independent of that [16]. It is useful to also
consider the infinite-volume limit, i.e., L,Lz → ∞. In this
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limit, neglecting analytical corrections to scaling with ω = 1,
under a RG transformation with scale b,m(x⊥) transform as
[compare with Eq. (23)]

m(x⊥) = b−xφ m̃(ub1/ν,{uib
−ωi },x⊥/b). (26)

Fixing now the scale with x⊥/b = const and expanding for the
tail of the profile, we find the infinite-volume counterpart of
Eqs. (24) and (25):

m(x⊥) = x
−β/ν

⊥ fp,∞(ux
1/ν

⊥ )(1 + x−ω
⊥ gp,∞(ux

1/ν

⊥ )), (27)

m(x⊥) = x
−β/ν

⊥ fpc,∞(1 + x−ω
⊥ gpc,∞), criticality, (28)

where fpc,∞ = fp,∞ (̃u = 0), gpc,∞ = gp,∞ (̃u = 0), so that at
a critical adsorption fixed point the magnetization profile
decays with the β/ν exponent [62,63]. We recall that Eqs. (23)–
(28) holds only for distances x⊥ � σ0, with σ0 the short-
distance scale which controls the nonuniversal behavior. A
comparison of Eq. (27) with Eq. (24), and of Eq. (28) with
Eq. (25) gives the following boundary conditions for the FSS
functions fp (̃u,̃x⊥,ρ), fpc (̃x⊥,ρ), gp (̃u,̃x,⊥ρ), gpc (̃x⊥,ρ):

fp (̃u → ∞,̃x⊥ → 0,ρ) 
 x̃
−β/ν

⊥ fp,∞(ux1/ν), (29)

gp (̃u → ∞,̃x⊥ → 0,ρ) 
 x̃
−β/ν

⊥ gp,∞(ux1/ν), (30)

fpc (̃x⊥ → 0,ρ) 
 x̃
−β/ν

⊥ fpc,∞, (31)

gpc (̃x⊥ → 0,ρ) 
 x̃
−β/ν

⊥ gpc,∞, (32)

where in Eqs. (29) and (30) the limit ũ → ∞, x̃⊥ → 0 is taken
at fixed ũx̃1/ν = ux1/ν = 0. By inserting Eq. (31) into Eq. (25)
we find the important result that the leading short-distance
behavior of the order-parameter profile does not depend on
the finiteness of the system, which, however, gives rise to the
analog of the so-called distant-wall corrections [67].

The behavior of the order-parameter profile close to the
defect line can be analyzed within the framework of the short-
distance expansion (SDE), which is an analog of the operator
product expansion (OPE) [68]. According to SDE, close to
the line defect (or, more generically, to a surface) the order-
parameter field φ(�x) can be expanded as

φ(�x) =
x⊥→0

∑
i

Cψi
x

−xφ+xψi

⊥ ψi(�x‖). (33)

In Eq. (33), the right-hand side represents a sum over “line”
operators ψi , whose scaling dimension is xψi

; in general,
such operators have scaling dimensions different than the bulk
ones, and they depend on the fixed point, or UC, of the line.
The leading contribution in Eq. (33) is given by the identity
operator, and by the operator ψi ≡ O, which has the smallest
scaling dimension xO ≡ xψi

, so that

φ(�x) =
x⊥→0

Ax
−β/ν

⊥ (1 + COx
xO

⊥ O(�x‖) + · · · ), (34)

where we have used xφ = β/ν and for convenience we have
factorized a constant in front of the expansion. By taking
the expectation value of Eq. (34) at criticality in a finite size
L, we find the short-distance behavior of the order-parameter

profile

m(x⊥ → 0) = Ax
−β/ν

⊥
(

1 + COfO(ρ)
(x⊥

L

)xO + · · ·
)
, (35)

where in principle 〈O(�x‖)〉 could depend on the aspect ratio
ρ, which we have encoded in the coefficient fO(ρ) on the
right-hand side of Eq. (35). A comparison of Eq. (35) with
Eq. (25) allows to compute the leading correction to Eq. (31),

fpc (̃x⊥ → 0,ρ) 
 x̃
−β/ν

⊥ fpc,∞[1 + COfO(ρ )̃xxO

⊥ ], (36)

and to infer A = fpc,∞.
We observe that the prediction for the short-distance

behavior of the order-parameter profile given in Eq. (35)
neglects corrections to scaling, which are represented by
the subleading scaling function gpc on the right-hand side
of Eq. (25). The control of scaling corrections is essential
in order to extract the critical behavior from finite-size MC
data. Crucially, the full set of order-parameter profiles as a
function of �x⊥ and L cannot be correctly described by the
right-hand side of Eq. (35), because even for L → ∞ the
subleading correction term L−ωgpc on the right-hand side of
Eq. (25) approaches a function, which is L-independent, but
still depends on �x⊥ [see Eq. (32)]. Thus, in order to determine
the parameters on the right-hand side of Eq. (35), such as the
scaling dimension xO , one can first extrapolate the FSS limit
by a fit of the order-parameter profile data to the right-hand side
of Eq. (25) at fixed x⊥/L,ρ. This allows to extract the leading
scaling function fpc (̃x,ρ), whose short-distance behavior can
be fitted against the right-hand side of Eq. (36); an example
of such calculation is provided in Ref. [40]. Alternatively, one
can consider the L dependence of the magnetization profile at
a fixed short distance x⊥ � L from the defect line. According
to Eq. (36) and including the leading correction to scaling
present in Eq. (25), in this regime the order-parameter profile
is given by

m(x⊥ � L) 
 fpc,∞x
−β/ν

⊥
[
1 + COfO(ρ)

(x⊥
L

)xO
]

· [1 + L−ωgpc(x⊥/L,ρ)]. (37)

According to Eq. (32), in the large-L limit, at fixed x⊥ � L,
the correction-to-scaling term L−ωgpc on the right-hand side
of Eq. (37) converges to a x⊥-dependent, but L-independent
term. Therefore, as a function of L, the magnetization profile
attains the following form:

m(x⊥ � L) 
 const[1 + const · L−xO ],

L → ∞, �x⊥fixed, (38)

where the constants are L-independent.
The SDE of Eq. (33) and Eq. (34) concerns also the decay

of the two-point function at criticality, along the line defect

〈φ(�x⊥,�x‖)φ(�x⊥,�x ′
‖)〉c ∼ |�x‖ − �x ′

‖|−(D−2+η‖),

|�x‖ − �x ′
‖| → ∞, (39)

where the subscript c indicates the connected part and we have
introduced the exponent η‖ which is related to xO by

xO = D − 2 + η‖
2

. (40)
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In a finite size L, the exponent η‖ characterizes the size
dependence of the local “line” susceptibility χloc. In the
absence of bulk field, χloc(�x⊥,K,h0,Lz,L) is defined as

χloc(�x⊥,K,h0,Lz,L) ≡ 1

Lz

∑
z,z′ 〈S(x,y,z)S(x,y,z′)〉

− 〈S(x,y,z)〉〈S(x,y,z′)〉. (41)

At bulk criticality, and at the critical adsorption line fixed
point, the scaling part χ scal.

loc of χloc for x⊥ → 0, as inferred
from the correlations of Eq. (41) or directly from the the SDE
of Eq. (34), is given by

χ scal.
loc (x⊥ → 0,Kc,h0 = ∞,Lz,L) ∝ L1−2xO ∝ L−η‖ , (42)

where, like the magnetization profile, χloc depends only
on x⊥ = |�x⊥| in the critical region and the proportionality
constant contains the dependence on x⊥ and the aspect ratio ρ,
inessential for the present discussion. Since the exponent of L

in Eq. (42) is negative, the scaling part is non-divergent, and
thus the FSS behavior of χloc is dominated by the short-distance
part of the correlations χ short

loc , i.e., by the terms in Eq. (41)
where |z − z′| � Lz:

χ short
loc (x⊥ → 0,Kc,h0 = ∞,Lz,L)

= 1

Lz

∑
z,z′

|z−z′ |�Lz

〈S(x,y,z)S(x,y,z′)〉 − 〈S(x,y,z)〉〈S(x,y,z′)〉.

(43)

Due to the translational invariance along the line, there are
O(Lz) terms in the sum on the right-hand side of Eq. (43).
Exploiting the translational invariance, and using the SDE of
Eq. (34), χ short

loc is given by

χ short
loc (x⊥ → 0,Kc,h0 = ∞,Lz,L)

∝
∑

z

|z0−z|�Lz

〈O(z0)O(z)〉 − 〈O(z0)〉〈O(z)〉, (44)

where z0 is an arbitrary origin for the correlations, and we have
used �x‖ = zẑ [see the definition of the coordinate system given
after Eq. (5)]. In Eq. (44), there are O(1) terms in the sum.
At criticality, the second term in the sum of Eq. (44) gives a
contribution proportional to L−2xO , subleading with respect to
the scaling behavior of Eq. (42). The first term in the sum of
Eq. (44) can be analyzed using the OPE

O(z0)O(z) =
z→z0

∑
i

cOOi

|z − z0|2xO−xψi

ψi

(
z + z0

2

)
, (45)

where the sum on the right-hand side of Eq. (45) is over a set of
local line operators ψi with scaling dimension xψi

, calculated
at the midpoint, and the OPE coefficients cOOi are universal,
once the normalization of the operators involved in the OPE
is fixed. In the expansion one finds in particular the identity
operator, with xId = 0. Upon taking the expectation value at
criticality, this gives a constant: it is in fact the background
contribution to the local susceptibility which originates from
the regular part of the free energy. Such a term ∝ L0, being
not divergent, dominates over the scaling part of Eq. (42).
Moreover, there is also another relevant contribution in the
OPE, given by the operator O itself. Due to the fact that at

the critical adsorption fixed point the symmetry is broken,
on the right-hand side of Eq. (45) there are both even and
odd operators, thus in particular the operator O itself appears
in the OPE of Eq. (45). By taking the expectation value at
criticality, this gives rise to a contribution ∝ L−xO to χ short

loc .
In many cases, including the present one, xO > 1, so that also
such second contribution ∝ L−xO to χ short

loc dominates over the
scaling behavior ∝ L−η‖ given in Eq. (42). We conclude that
at criticality, the leading FSS behavior of χloc is as follows:

χloc(x⊥ → 0,Kc,h0 = ∞,Lz,L) = A + B(ρ)L−xO . (46)

The SDE expansion of Eq. (33), and the corresponding
short-distance order-parameter profile given in Eq. (35) apply
not only to the case of a pinning-field line, but more generically
in the presence of defects, or confining surfaces. Moreover,
besides the order-parameter operator φ, SDE applies also to
other operators, such as the energy operator [69,70]. For a
three-dimensional system confined by surfaces in the normal
UC, i.e., by ordered surfaces, the leading operator in the SDE
of the order parameter is the limit x⊥ → 0 of the perpendicular
component of the stress-energy tensor T⊥⊥(x⊥ → 0) [17,70].
Since the scaling dimension of T⊥⊥ is equal to its canonical
dimension, the exponent xO in Eq. (34) is xO = D = 3, in line
with an early study of the decay of the correlations parallel to
an ordered surface [71] (see Eq. (39)). Moreover, 〈T⊥⊥〉 is
equal to the so-called critical Casimir force [67,72], so that, in
agreement with an early conjecture pointed out in the context
of critical adsorption [67], the correction to the short-distance
behavior in Eq. (35) is −C+(D − 1)�+a(x⊥/L)3, with �+a

the amplitude of the critical Casimir force at Tc, which depends
on the UC of both confining surfaces, and C+ = 1.71(4) [40]
a universal coefficient which depends only on the UC of the
close surface; such a correction is known as “distant-wall
correction.”

For the present case of a line defect at the normal UC, a field-
theoretical calculation reported a new, nontrivial exponent
η‖ = 1.77(5) [25], which governs the leading term in the SDE
of the magnetization [Eqs. (34) and (35)] and the decay of the
correlations along the defect [Eq. (39)]. The presence of such
corrections is attributed to an unknown line operator O, whose
scaling dimension is [Eq. (40)] xO = (1 + η‖)/2 = 1.385(25).
We are not aware of numerical calculation of this exponent,
nor of another confirmation of this result. Being this operator
O a line operator, the RG dimension of the corresponding
scaling field is given by yO = 1 − xO , with yO = −0.385(25),
according to the results of Ref. [25]. Therefore the scaling
behavior of the model presents an irrelevant scaling field,
which gives rise to scaling corrections with ω = −yO ∼ 0.4.
We notice that this is an unusual small value for ω. As a
comparison, the leading irrelevant bulk scaling field in 3D
O(N ) models gives ω 
 0.8 [50], while analytical scaling
corrections arising from the broken translational invariance
have ω = 1 [see the discussion after Eq. (9)]. Thus the results
of Ref. [25] hints at the presence of slowly decaying scaling
corrections. The results presented in Sec. IV A support this
picture.

Due to its importance in the physics of fluids, critical ad-
sorption has attracted numerous experimental investigations;
Ref. [8] provides a review of experimental results, more recent
studies are found in Refs. [9–15]. While most theoretical
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investigations concern with adsorption on a plane [16–22], the
case of a nonplanar geometry was studied in Refs. [23–26]. In
Ref. [23], critical adsorption on a sphere and on a cylinder in
an infinite volume was investigated by means of field theory:
for the case of a cylinder, in the limit of small radius the order
parameter at criticality and in the infinite-volume limit is found
to decay ∝ x

−β/ν

⊥ , in agreement with our analysis and Eq. (28).

IV. RESULTS

A. Classical lattice model

We first consider the scaling behavior of the Blume-Capel
model of Eq. (5) at small value of the pinning field h0.
According to the discussion in Secs. III A and III B, for small
values of h0, the pinning field is expected to introduce a
new scaling field with dimension given in Eq. (17). We have
sampled the magnetization m at the critical point by means of
MC simulations, setting K = Kc = 0.387721735,D = 0.655
[38], and considering h0 = 0.05, 0.1, 0.15, 0.2, for a wide
range of lattice sizes L = 15, . . . ,1000. According to Eq. (15),
up to scaling corrections mLβ/ν is a function of the scaling
variable h0L

y ′
. Using the value of the exponents of the 3D

Ising UC η = 0.03627(10) [38], we obtain y ′ = 0.48186(5)
and β/ν = 0.51813(5). In Fig. 2, we plot mLβ/ν as a function
of h0L

y ′
, obtaining a very good collapse of the MC data, which

supports Eq. (15) with y ′ given in Eq. (17). We notice also that,
within the precision of the data, scaling corrections appear to
be negligible. In agreement with Eq. (22), mLβ/ν approaches
a constant for large values of the scaling variable h̃0 = h0L

y ′
.

In line with the discussion of Sec. III B, Fig. 2 illustrates a
crossover between the h0 = 0 and the h0 = ∞ fixed points.

In order to study the FSS behavior at the normal fixed point,
we have simulated the Blume-Capel model of Eq. (5) at the
critical point for h0 = ∞, and for lattice sizes L = 8, . . . ,600.
Since, as shown below, the finite-size corrections play an
important role, we have sampled the smallest lattices L � 48
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FIG. 2. Scaling collapse of the magnetization for the improved
Blume-Capel model at the critical point Kc = 0.387721735, D =
0.655 [38], and for finite values of the pinning field h0. The critical
exponents are those of the 3D Ising UC, with y ′ = (1 − η)/2 =
0.48186(5) [see Eq. (17)] and β/ν = 0.51813(5) [38]. Up to scaling
corrections, mLβ/ν = fmc(h0L

y′
,ρ = 1).

TABLE I. Fits of the magnetization m at the critical adsorption
fixed point h0 = ∞ to Eq. (47), for L = 8, . . . ,600. Lmin indicates the
minimum lattice size L taken into account. For the three-dimensional
Ising UC β/ν = 0.5181(5) [38].

Lmin β/ν χ 2/DOF

8 0.49687(9) 109.1
12 0.4994(1) 42.3
16 0.5015(2) 22.7
24 0.5037(2) 9.6
32 0.5050(3) 6.8
48 0.5102(7) 1.3
100 0.5136(15) 0.6
150 0.513(4) 0.6
200 0.510(5) 0.6
250 0.509(6) 0.7
300 0.509(8) 0.8
350 0.51(1) 1.0
400 0.519(15) 1.0

with a high precision, reaching a relative uncertainty of
the magnetization data of ≈10−4. In our simulations, for a
lattice size L each MC step consists in a Metropolis sweep
on the entire lattice and 2L Wolff single-cluster moves,
implemented as described in Appendix B of Ref. [40]. For
this set of simulations, the total number of MC steps is 20 ×
106 for L = 8, 12, 16, 24, 80 × 106 for L = 32, 131 × 106

for L = 48, 750 × 103 for L = 100, and 50 × 103 for L =
150, 200, 250, 300, 350, 400, 450, 500, 550, 600. To ensure
thermalization we have generically discarded 20% of the MC
measures.

Upon setting K = Kc, Eq. (20) reduces to

m = AL−β/ν. (47)

We have fitted the magnetization m against the right-hand side
of Eq. (47), leaving A and β/ν as free parameters. In Table I,
we report the fit results as a function of the minimum lattice size
Lmin taken into account. The fitted value of β/ν shows a small
but significant deviation from the expected β/ν = 0.5181(5)
[38] value, with a large χ2/DOF (DOF denotes the degrees
of freedom). Moreover, the results exhibit a systematic drift
towards the expected value. Only for L � 150, the fitted β/ν

agree, within 1 ∼ 1.5 error bars to the value for the Ising
UC. Notice also that the fits for Lmin � 48 give results much
more precise than those for Lmin > 48, and, correspondingly,
a significantly larger value of χ2/DOF. This is also due to the
relative higher precision of the MC data for L � 48.

The results of Table I clearly hint to the presence of slowly
decaying scaling corrections at the h0 = ∞ fixed point. In the
presence of corrections to scaling with a leading exponent ω,
Eq. (47) is modified as follows:

m = AL−β/ν(1 + BL−ω). (48)

We have fitted the magnetization m against the right-hand side
of Eq. (47), leaving A,B, β/ν, and ω as free parameters. In
Table II, we report the results of the fits. For every minimum
lattice size Lmin considered χ2/DOF is small and the results
give a stable value of β/ν, in nice agreement with the value
of the Ising UC β/ν = 0.5181(5) [38]. The fits provide a
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TABLE II. Fit of the magnetization m at the critical adsorption
fixed point h0 = ∞ to Eq. (48) for L = 8, . . . ,600. Lmin indicates
the minimum lattice size L taken into account. In the first set of fits
(above), β/ν is a free parameter. In the second set (below), β/ν is
fixed to the Ising UC value β/ν = 0.5181(5) [38]. The variation of
the fitted ω due to the uncertainty of β/ν is one order of magnitude
smaller than the statistical error bar of the fits.

Lmin β/ν ω χ 2/DOF

8 0.518(2) 0.59(8) 0.9
12 0.519(4) 0.53(11) 1.0
16 0.517(3) 0.7(2) 1.0
24 0.515(3) 0.9(4) 1.0
8 0.59(2) 0.9
12 0.58(3) 0.9
16 0.61(4) 0.9
24 0.62(8) 1.0
32 0.57(10) 1.0

significantly small value of ω ≈ 0.5–0.6, in line with the obser-
vation of the presence of slowly decaying scaling corrections.
In order to obtain a more precise estimate of ω, we have
repeated the fits of m to Eq. (47) fixing β/ν to the value of the
Ising UC β/ν = 0.5181(5) [38]. The corresponding results are
reported in Table II. The fitted value of ω is rather stable, and
the χ2/DOF is small. A conservative estimate of ω, compatible
with the results for Lmin � 16 including one error bar, is

ω = 0.60(5). (49)

In order to investigate the SDE of the magnetization at the
normal fixed point, we have also sampled the order-parameter
profile for h0 = ∞,K = Kc, and lattices sizes L as above. We
have analyzed the magnetization at a fixed distance x⊥ � L,
as a function of L. According to Eq. (38), in this regime
the dependence on L of m(x⊥) allows to extract the scaling
dimension xO of the leading operator in the SDE of Eq. (34).
We have fitted m(x⊥) to

m(x⊥) = AL−xO + B, (50)

leaving A, xO , and B as free parameters, and fixing x⊥ = 2, 3,
close to the pinning-field line. In Table III, we report the fit
results as a function of the minimum lattice size Lmin used.

In order to critically assess the reliability of the fit results,
it is important to recall that the scaling behavior discussed in
Sec. III C is valid for x⊥ � σ0, with σ0 = O(1) a nonuniversal
length that governs the short-distance nonuniversal behavior.
Therefore a determination of xO via fits of Eq. (50) must
be repeated for increasing values of x⊥, in order to monitor
possible residual, short-distance, nonuniversal effects. With
these regards, we mention that fit results for x⊥ = 1 (not
shown here), display a significantly large χ2/DOF ≈ 1.4–1.7
for Lmin = 8, . . . ,32, and a fitted value of xO ≈ 1.4 − 1.5,
which exhibits a small but statistically significant discrepancy
with the results of Table III. Moreover, the argument that leads
to Eq. (38) is valid only for x⊥/L � 1. Therefore, for a given
value of x⊥, in order to assess the reliability of fitted values
of xO , it is necessary to monitor the stability of the results
for increasing values of Lmin. The condition x⊥/L � 1 can
also be seen as a limitation in a numerical determination of

TABLE III. Fits of the local magnetization m(x⊥) [respectively,
the local susceptibility χloc(x⊥)] at the critical adsorption fixed point
h0 = ∞ to Eq. (50) [respectively, Eq. (52)], for a fixed distance x⊥
from the pinning-field line, and L = 8, . . . ,600. Lmin indicates the
minimum lattice size L taken into account.

Lmin xO χ 2/DOF

8 1.59(1) 1.2
12 1.55(2) 0.7

m(x⊥ = 2) 16 1.52(3) 0.6
24 1.52(6) 0.7
32 1.58(8) 0.7
8 1.735(8) 5.7

12 1.63(2) 1.0
m(x⊥ = 3) 16 1.58(2) 0.5

24 1.54(4) 0.4
32 1.57(6) 0.4
8 1.51(3) 1.4

χloc(x⊥ = 2) 12 1.37(6) 1.1
16 1.36(11) 1.1
24 1.3(3) 1.2
8 1.71(2) 2.8

χloc(x⊥ = 2) 12 1.52(4) 1.3
16 1.37(7) 1.0
24 1.0(2) 0.7

xO , because for increasing values of x⊥ larger lattice sizes are
required, in order to satisfy x⊥/L � 1; on the same time, an
increasing precision in the MC data is needed to fit Eq. (50),
because m(x⊥) decreases in magnitude for increasing values of
x⊥ [eventually, for L → ∞,m(x⊥) ∝ x

−β/ν

⊥ (1 + x−ω
⊥ gpc,∞),

see Eq. (28)]. With limited available lattice sizes, this allows
to consider only a few values of x⊥.

Along with these considerations, we have critically in-
spected the fit results of Table III. For x⊥ = 2, a good
χ2/DOF is found for Lmin � 12. However, the fitted value
of xO for Lmin = 12 is only in marginal agreement with the
corresponding result for Lmin = 16, suggesting that data at
L = 12 may be still affected by subleading corrections to
Eq. (50). For Lmin � 16, the fitted values of xO are stable and
in mutual agreement, suggesting that the condition x⊥/L � 1
is effectively satisfied for x⊥/L � 2/16 = 1/8. A similar
pattern in the fit results is observed for x⊥ = 3, where a good
χ2/DOF is found for Lmin � 12, but the fitted value of xO for
Lmin = 12 shows a small, significant deviation with respect to
to the results for Lmin � 16. For x⊥ = 3, the aforementioned
condition x⊥/L � 1/8 is satisfied for Lmin � 24, whose results
are also in perfect agreement with the values found for x⊥ = 2.
By judging conservatively the results of Table III we infer

xO = 1.52(6), η‖ = 2.04(12), (51)

where η‖ is related to xO by Eq. (40). As shown in Eq. (39), the
scaling dimension xO enters also in the asymptotic behavior
of the two-point function along the pinning-field line, which
decays with an exponent 2xO = 3.0(1). Therefore the critical
exponents xO and η‖ characterize the critical adsorption UC
on a line.

The existence of a line operator with a scaling dimension
given in Eq. (51) implies the presence of a scaling field with
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RG dimension yO = 1 − xO = −0.52(6). Such an irrelevant
scaling field enters in the FSS ansatz of the singular part of the
free energy density, Eq. (11), as well as in any critical quantity,
such as the magnetization m, giving rise to scaling corrections
∝ L−0.52(6). This value of ω matches very well the value of
ω given in Eq. (49), which is obtained by fitting the scaling
corrections of m. It indicates that the unexpectedly slowly
decaying scaling corrections found in this model originate
from the line operator O. Indeed, for the improved Blume-
Capel model of Eq. (5), the leading irrelevant bulk scaling field
is suppressed, while analytical scaling corrections originating
from the broken translational invariance have ω = 1. Therefore
the slowly decaying scaling corrections found here must be
attributed to the presence of a line irrelevant scaling field.

To further strengthen this picture, we have also analyzed
the FSS behavior of the local susceptibility χloc(x⊥) at h0 = ∞
and K = Kc. As for m(x⊥), we fix x⊥ close to the pinning-field
line, and study the L dependence. According to Eq. (46), in
this regime the leading FSS behavior is equivalent to the one
for the local magnetization. Thus we have fitted χloc(x⊥) to

χloc(x⊥) = AL−xO + B, (52)

leaving A, xO , and B as free parameters. Fit results are reported
in Table III. Concerning the reliability of the fitted results,
the same considerations outlined for m(x⊥) hold in this case.
We observe that the fit results displays a lower quality as
compared to the ones for the local magnetization. A good
χ2/DOF is obtained only in a few cases, and the fitted values
of xO exhibits a dependence on Lmin, which is larger than the
one found for m(x⊥), suggesting that the ansatz of Eq. (52)
does not fully describes the data. Such a difficulty can be
traced back to the existence of a correction to the leading
FSS behavior. In fact, as discussed in Sec. III C, on the top
of the leading FSS behavior of χloc(x⊥) given by Eq. (46),
there is also a contribution ∝ L−η‖ . Such a term constitutes a
subleading L dependence, which is suppressed with respect to
to the leading L dependence ∝ L−xO by a factor ∝ L−η‖+xO =
L−(xO−1). Therefore the neglected contribution ∝ L−η‖ acts as
a correction to scaling, with an effective exponent ω = xO −
1 = 0.52(6), where we have used the estimate of Eq. (51).
As for the case of the full magnetization m, this constitutes
a slowly decaying correction to scaling, which is responsible
for the lower quality of fits found. Our data are not precise
enough to fit a FSS ansatz of the form AL−xO + B + CL−η‖ ,
which includes the correction. Despite these limitations, we
observe that the fitted values of xO extracted from χloc display
only a small deviation with respect to the estimate of Eq. (51)
and substantially confirm the result obtained from m(x⊥).
Moreover, the fitted values of xO obtained from χloc confirm
the analysis of Sec. III C and Eq. (46), according to which
the leading FSS behavior of χloc(x⊥) is characterized by the
exponent xO and not by η‖, as usual.

Reference [73] studied the three-dimensional Ising model
in the presence of an external field coupled to a defect line. In
Ref. [73], the magnetization profile is first extrapolated to the
TDL, and then fitted to c1/x

�
⊥ + c2/x

�2
⊥ , with � = 0.526(5)

and �2 = 0.93(3). According to Eq. (28) and the discussion
of Sec. III C, the leading decay exponent � corresponds to the
magnetization exponent β/ν, whereas �2 − � is identified

with the leading correction-to-scaling exponent ω. Within the
precision quoted by Ref. [73], the fitted value of � is in
marginal agreement with β/ν = 0.51813(5) [38], while the
difference �2 − � = 0.40(4) shows a discrepancy of about
two combined error bars with our determined value of ω

[Eq. (49)].

B. Bilayer Heisenberg model

In the following, we present our results from QMC simula-
tions both for h0 = 0, using the conventional order-parameter
estimate in Eq. (2), as well as for finite values of h0, based on
the estimator in Eq. (4). We employ stochastic series expansion
QMC simulations [33–35] for square lattice bilayers of a linear
extent L ranging between 12 and 96 and periodic boundary
conditions, containing 2L2 spins. The temperature was scaled
with the linear system size as 1/T = 2L in order to target the
quantum critical regime. From previous simulations [27], the
critical coupling ratio has been estimated as gc = 2.5220(1).
A first issue that we consider is, how the presence of a
pinning field h0 affects the behavior of the order-parameter
estimate near the quantum critical point, and how the position
of the quantum critical point (gc) may be estimated based on
pinning-field data.

In Fig. 3, the order-parameter estimate m is shown as a
function of the inverse linear system size 1/L for different
values of the coupling ratio g = J ′/J and magnitudes h0 of
the pinning field, using the estimator in Eq. (4) for finite values
of h0 and the conventional estimator in Eq. (2) in the absence of
the pinning field, h0 = 0. We observe that for g = 2.48, which
resides close to criticality but still inside the ordered phase,
the data for m from the larger systems allows for a linear
extrapolation in 1/L to an essentially h0-independent value of
the order-parameter estimate in the TDL. Moreover, the data at
g = 2.48 for small values of h0 exhibit a characteristic increase
of m with increasing system size. For g = 2.53 and 2.56, all
data for different values of h0 exhibit a reduction of m upon
increasing the system size; however, an extrapolation to the
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FIG. 3. Linear system size (L) dependence of the order-parameter
estimate m for pinning fields of different magnitude h0/J =
0.1,0.25,0.5,1,2,5,10 (bottom to top) as well as obtained at h0 = 0
from the structure factor (top curve) for four different values of the
coupling ratio g near the quantum critical point, as indicated. Dashed-
dotted lines in the left-most panel indicate linear extrapolations to the
TDL.
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TDL would need to account for the non-linear-behavior in the
1/L-dependence of m in these cases. The data for g = 2.522,
which essentially resides at the quantum critical point, show
similar difficulties for an extrapolation to the value in the TDL,
with the data for h0/J = 0.1 being L-independent within the
accessed range of system sizes.

An estimate of the quantum critical point can nevertheless
be obtained from the pinning-field data via the identification of
a leading algebraic scaling of the data at the critical coupling
ratio: the finite-size data taken away from the critical point
eventually exhibits a bending for large system sizes; if the
coupling g is fixed to its quantum critical value gc though,
we instead observe an algebraic decay for the larger system
sizes. This qualitative behavior is insensitive to the value of
h0, as shown in Fig. 4 for different values of h0 in a double-
logarithmic plot. Here, we also observe that the asymptotic
slope in the double-logarithmic plot at the quantum critical
coupling depends on the value of h0. We relate this to the
crossover behavior discussed in Sec. III, from the h0 = 0 fixed
point to the infinite h0 fixed point that we analyze in more
detail below.

Before we turn to a more quantitative analysis of the
finite-size scaling behavior in the presence of a pinning field,
we want to demonstrate explicitly that the data for m obtained
for finite values of the pinning field h0 does not allow to extract
the critical exponents of the quantum critical point based on the
conventional leading finite-size analysis that is feasible in the
absence of the pinning field, h0 = 0, using, e.g., the structure
factor-based estimate for m. In particular, the data obtained in
the conventional (h0 = 0) approach exhibit a robust crossing
point at u = 0 when plotted as mLβ/ν versus u = (g − gc)/gc,
c.f. the inset of Fig. 5. Furthermore, we obtain a good data
collapse upon plotting mLβ/ν versus uL1/ν , as anticipated
from the leading finite size scaling behavior, shown in the
main panel of Fig. 5. Here, we employed the values of the
critical exponents β/ν = 0.5188(3) and ν = 0.7112(5) for
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0.0256 0.064
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0
/J=1 h

0
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FIG. 4. Linear system size (L) dependence of the order-
parameter estimate m for pinning fields of different magnitude
h0/J = 0.1,1,10 (left to right) in a double logarithmic plot for
various values of the coupling ratio g = 2.46,2.47,2.48,2.49,

2.5,2.51,2.522,2.53,2.54,2.55,2.56 (top to bottom) near the quantum
critical point, with the data for g = 2.522 indicated by arrows. Data
within the ordered (disordered) region are connected by solid (dashed)
lines.
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FIG. 5. Data collapse and crossing (inset) plot of the order-
parameter estimate for the bilayer spin-1/2 model in the absence
of pinning field, h0 = 0.

the three-dimensional Heisenberg UC [64], while it is also
feasible to obtain appropriate estimates for these exponents,
e.g., based on our data for m for L � 36, we obtain the
estimates β/ν = 0.515(3) and ν = 0.70(1) from an unbiased
fit. For a more extended analysis of the QMC data in the
absence of the pinning field, we refer to Ref. [27] and now
focus on the case of a finite pinning field.

The data obtained for finite values of h0 clearly contrast to
the behavior observed in Fig. 5. This is illustrated in Fig. 6
for h0 = J , employing the reference values of the critical
exponents [64]. In this case, the crossing points in the insets
exhibit pronounced drifts and the data for different system
sizes fails to collapse in the main panel. We note that we also
attempted to perform unbiased fits of the data at a given value
of h0 = 0 to the above scaling ansatz with β and ν as free
parameters. We observed that (i) one may still collapse the
data based on visual inspection, but (ii) the resulting values of
χ2/DOF are actually rather large (ranging, depending on the
value of h0, between 10 and several hundreds) thus indicating
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FIG. 6. Attempted data collapse (main panel) and crossing (inset)
plot of the order-parameter estimate for the bilayer spin-1/2 model
with a pinning field of strength h0 = J .
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that these collapses are in fact not good, and (iii) the thereby
obtained estimates for the critical exponents vary strongly with
the value of h0 as well as the considered range of system sizes.
The estimates for the critical exponents are furthermore found
to approach closer to the true values for larger values of h0, but
even for a very large value of h0/J = 1000, which effectively
corresponds to the infinite h0 limit, we observe systematic
deviations. These observations are in accord with our general
scaling analysis in Sec. III: the presence of the pinning field
leads to a crossover behavior from the h0 = 0 fixed point
to the infinite-h0 fixed point, as well as to important scaling
corrections that in effect require an extended scaling analysis
even to only approximately obtain reliable estimates for the
critical exponents.

To further analyze the impact of these scaling corrections
in light of our general discussion in Sec. III, we next analyze
the FSS of the data for m for different values of h0 as obtained
from simulations performed at the estimate g = gc = 2.522
for the quantum critical point. From the general FSS analysis
in Sec. III, we expect that up to scaling corrections, mLβ/ν

is a function of the scaling variable h0L
y ′

, cf. Eq. (15).
Based on the value of the critical exponent η = 0.0375(5)
of the three-dimensional Heisenberg UC [64], we obtain
y ′ = 0.4813(3) and β/ν = 0.5188(3). In Fig. 7, we plot mLβ/ν

as a function of h0L
y ′

, obtaining a good collapse of the QMC
data, which supports Eq. (15) with y ′ given in Eq. (17). Scaling
corrections however are visible for the smaller system sizes.
The data is also in accord with Eq. (22), as mLβ/ν tends
to approach a constant value for large values of the scaling
variable h̃0 = h0L

y ′
. In line with the discussion of Sec. III B

and our findings for the classical model, Fig. 7 again illustrates
a crossover between the h0 = 0 and the h0 = ∞ fixed points.
For small values of h̃0 = h0L

y ′
, the magnetization scaling
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FIG. 7. Scaling collapse of the order-parameter estimate m for
the Heisenberg bilayer model at the quantum critical coupling gc =
2.522 [27], and for finite values of the pinning field h0. The critical
exponents are those of the 3D Heisenberg UC, with y ′ = (1 − η)/2 =
0.4813(3) [see Eq. (17)] and β/ν = 0.5188(3) [64]. Up to scaling
corrections, which are clearly visible for the smaller system sizes,
mLβ/ν scales as a function of x = h0/JLy′

. The inset shows the
low-x data on a linear scale, with the dash-dotted line indicating the
linear scaling at low values of x.

TABLE IV. Fits of the magnetization m at h0 = 1000 to Eq. (47),
for L = 12, . . . ,64. Lmin indicates the minimum lattice size L taken
into account. For the three-dimensional Heisenberg UC, β/ν =
0.5188(3) [64].

Lmin β/ν χ 2/DOF

12 0.4406(1) 506
16 0.4461(2) 161
18 0.4484(2) 125
24 0.4538(3) 36
32 0.4596(5) 3.2

function at fixed aspect ratio ρ fmc(h̃0) ≡ fmc(h̃0,ρ = 0.5/c0)
on the right-hand side of Eq. (15) can be approximated
by its first-order Taylor expansion, such that, neglecting
scaling corrections, m 
 L−β/νf ′

mc(0)h0L
y ′ = f ′

mc(0)h0L
−η.

This means that for a small pinning field h0 there is a range
in lattice sizes where the magnetization approximately scales
as ∝ L−η; such a range is defined by the interval in h0L

y ′

where the scaling function shown in Figs. 2 and 7 can be
approximated by a straight line. Since η = 0.0375(5) [64],
this accounts for the observed weak L dependence of the
magnetization at g = gc and h0 = 0.1, as shown in the second
panel of Fig. 3 and in the first panel of Fig. 4. We emphasize
that this is only a transient behavior, since m ∝ L−β/ν for
L → ∞, as illustrated by the flat tail of the scaling functions
shown in Figs. 2 and 7 [see Eq. (22)].

We next analyze the scaling behavior of m at the h0 = ∞
fixed point and estimate the relevance of the leading scaling
corrections. For this purpose, we employ the data taken at g =
gc = 2.522 for h0/J = 1000, which effectively corresponds
to the h0 = ∞ limit.

First, we consider fits of the data for m to the leading
FSS form, Eq. (47), leaving A and β/ν as free parameters. In
Table IV, we report the fit results as a function of the minimum
lattice size Lmin taken into account. The fitted value of β/ν

show a significant deviation from the expected value β/ν =
0.5188(3) [64], with large values of χ2/DOF. Furthermore,
the results exhibit a systematic drift which is compatible with
a slow approach towards the expected value.

The results of Table IV hint to the presence of important
scaling corrections at the h0 = ∞ fixed point, similar to
what was observed in the classical model. In the presence
of corrections to scaling with a leading exponent ω, Eq. (47)
is modified to Eq. (48), as discussed there. We thus fitted
the data of m against the right-hand side of Eq. (47), leaving
A,B, β/ν, and ω as free parameters. In Table V, we report
the results of these fits. For every minimum lattice size
Lmin considered, χ2/DOF is small and the results give a
value of β/ν in reasonable agreement with the value of the
three-dimensional Heisenberg UC β/ν = 0.5188(3) [64]. The
fits provide a significantly small value of ω ≈ 0.4–0.6, in
line with the observation of the presence of slowly decaying
scaling corrections also in the present case. In order to obtain
a more precise estimate of ω, we have repeated the fits of
m to Eq. (48), fixing β/ν to the value of the Heisenberg
UC β/ν = 0.5188(3) [38]. The corresponding results are also
reported in Table V. The fitted value of ω is now more stable,
and the χ2/DOF similarly small. A conservative estimate in
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TABLE V. Fit of the magnetization m at the critical adsorption
fixed point h0 = 1000 to Eq. (48) for L = 12, . . . ,64. Lmin indicates
the minimum lattice size L taken into account. In the first set of fits
(above), β/ν is a free parameter. In the second set (below), β/ν is
fixed to the Heisenberg UC value β/ν = 0.5188 [64].

Lmin β/ν ω χ 2/DOF

12 0.49(1) 0.5(1) 0.31
16 0.51(3) 0.4(3) 0.35
18 0.50(3) 0.6(4) 0.38
12 0.345(8) 0.67
16 0.32(1) 0.28
18 0.32(2) 0.36
24 0.32(4) 0.47

this case is ω = 0.32(4). This correction exponent is smaller
than the value we estimated for the three-dimensional Ising
UC. In addition to the different UC, we would like to remark
also, that for the classical model, we were able to access system
sizes that are an order of magnitude larger than in the present
case. The important conclusion to be drawn from the present
analysis however is that the presence of the pinning field leads
to only weakly decaying scaling corrections, which need to
be accounted for in the estimation of critical exponents from
pinning-field data of the order-parameter estimate. Like in the
Blume-Capel model, such additional scaling corrections must
be attributed to an irrelevant line scaling field, because the
leading corrections to scaling in the absence of a pinning fields
decays with a significantly larger exponent ω = 1.0(3) [27].

V. DISCUSSION AND FUTURE DIRECTIONS

In this paper we have analyzed the critical behavior in
the presence of a pinning field. We have studied the two-
dimensional bilayer Heisenberg model in the presence of a
pinning field coupled to a single site, and the three-dimensional
improved Blume-Capel model with a pinning field coupled to a
line. Although these models realize different O(N ) UCs, their
critical behavior is qualitatively similar because, under the
quantum-to-classical mapping, the bilayer Heisenberg model
becomes equivalent to a three-dimensional model, in the
presence of an external field coupled to a line.

Compared to QMC simulations of the bilayer Heisenberg
model, classical MC simulations of Blume-Capel model
allow to obtain significantly larger lattice sizes and improved
statistical precision, thus permitting a deeper analysis of the
finite-size scaling properties of the model. Another crucial
difference between the models lies in the scaling corrections:
the Blume-Capel model considered here is an improved
model, where the amplitude of the leading irrelevant scaling
field is suppressed. Improved models have turned out to
be instrumental in high-precision investigations of critical
phenomena [38–45,50,59,60,64], since controlling scaling
corrections is essential for a reliable computation of universal
critical properties, such as critical exponents.

The RG flow of the models exhibits important analogies
with the critical behavior at surfaces [62,63,65]. In particular,
one distinguishes between “bulk” and “line” couplings. While
the RG flow of the bulk couplings is independent of the

line ones, the RG flow of the latter depends also on the
bulk couplings. As a consequence, like in surface critical
phenomena, a given bulk UC splits into different line UCs.
According to the RG analysis of Sec. III, at the bulk fixed
point the RG flow of the line couplings has a fixed point for
zero pinning field h0, which is the analog of the ordinary UC
in surface critical phenomena. At this fixed point, the pinning
field is a relevant perturbation, whose scaling dimension can be
exactly determined as a function of the bulk critical exponents.
In line with field-theory calculations [25] and analogous to
surface critical phenomena, for h0 = 0 the models exhibit
a crossover to a critical adsorption, or normal, fixed point
h0 = ∞. By means of MC simulations, we have checked
this scenario for both the bilayer Heisenberg model and the
improved Blume-Capel model, and verified the exact result
for the scaling dimension of the pinning field at the h0 = 0
fixed point. This picture is also expected to hold for the
Hubbard model on the honeycomb lattice, which undergoes a
quantum phase transition in the Gross-Neveu Heisenberg UC
[74–76]. For this model the scaling dimension of the pinning
field is found to be significantly smaller than for the O(N )
models, such that very large lattice sizes would be needed in
order to reach the asymptotic behavior; see the discussion in
Appendix B.

At the critical adsorption fixed point h0 = ∞, we observe
unexpected slowly decaying scaling corrections, which origi-
nate from an irrelevant line scaling field. Indeed, as we discuss
in Sec. III C, the decay of the order parameter close to the
pinning-field line is characterized by a finite-size correction,
which is the analog of the so-called distant-wall corrections
in surface critical phenomena [67]. However, unlike the latter
case, and in line with field-theory results [25], such a finite-size
correction is characterized by a new exponent, originating from
a presently unknown line operator. This exponent enters also in
the leading decay of the two-point function along the pinning-
field line, thereby characterizing the critical adsorption UC.
The MC results of the improved Blume-Capel model support
the identification of the corresponding line scaling field with
the leading irrelevant perturbation, which accounts for the
observed slowly decaying scaling corrections. We expect such
a picture to hold also for the bilayer Heisenberg model. Indeed,
the observed emergence of unusual slowly decaying scaling
corrections must originate from a line irrelevant scaling field,
whose corresponding line operator is expected to enter in
the short-distance expansion of the order parameter close
to the pinning-field line. A candidate for this unknown line
operator is the φ3 operator which, unlike its bulk counterpart,
is not redundant [18,19]; its RG flow has been studied by
means of field theory in Refs. [18,19] for a semi-infinite
three-dimensional geometry bounded by a two-dimensional
surface, and in the presence of a surface field. Incidentally,
the scaling dimension of the operator φ3 at the Gaussian fixed
point is 3/2, close to the result of Eq. (51).

In view of these results, a correct FSS analysis of models
in the presence of a finite pinning field must include a
corresponding scaling field, which is responsible for the
crossover behavior between the h0 = 0 and the h0 = ∞ fixed
points. Even at the critical adsorption fixed point h0 = ∞,
particular care has to be taken in the analysis of the critical
exponents, since the model is affected by slowly decaying
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scaling corrections. On the other hand, away from the critical
point, as we show in Sec. IV B, the pinning-field approach
allows to identify the phases of the model. Nevertheless,
in the vicinity of the bulk critical point, the extrapola-
tion to the thermodynamic limit of the order parameter
presents some difficulties, due to the aforementioned crossover
behavior.

In the case of the three-dimensional Blume-Capel model,
the system studied here can be experimentally realized by
considering a classical binary liquid mixture. At the critical
demixing point, the mixture undergoes a second-order phase
transition in the Ising UC, where the order parameter is given
by the difference of the concentration of one of the species with
its critical concentration. The inclusion of a colloidal particle
in the solvent typically leads to a preferential adsorption of
one component of the mixture at the colloidal surface, which
can be modeled by a surface field [67]. Thus the present
setup of a pinning-field line can be experimentally realized
by considering an elongated cylindrical colloid immersed in
a critical binary mixture, in the limit of small radius and
large length of the colloid. A variety of rodlike particles are
experimentally available, such as Boehmite rods [77,78], gold
nanorods [79], carbon nanotubes [80], microtubules [81], lipid
tubules [82], the mosaic tobacco virus [83], and cylindrical
micelles [84].

The present setup lends itself to further generalizations.
(i) Surface pinning field.
Here we consider a pinning field coupled to a one-

dimensional line in a d-dimensional quantum model or,
correspondingly, to a two-dimensional plane in a classical
model in D = d + 1 dimensions.

This is a case that closely resembles surface critical
phenomena. A simple generalization of the argument of
Sec. III B allows to conclude that the RG dimension of the
pinning field at the h0 = 0 fixed point is y ′ = yh − (d − 1) for
the quantum model, and y ′ = yh − (D − 2) for the classical
one. For the 3D O(N ) UC, one has y ′ ≈ 1.5, therefore, as
for the models studied in this paper and in surface critical
phenomena, such pinning field is a relevant perturbation.
Analogous to the present case, the RG flow for h0 > 0 leads
to a critical adsorption fixed point at h0 = ∞. We observe that
for the 3D O(N ) UC the value of the exponent y ′ ≈ 1.5 is
considerably larger than the one found for a pinning-field line
investigated in this paper. Therefore there is a significantly
faster crossover from the “ordinary” fixed point h0 = 0 to
the normal UC h0 = ∞. In other words, the flattening of the
scaling functions shown in Figs. 2 and 7 occurs for smaller
lattice sizes and pinning-field strengths.

At the critical adsorption fixed point, one expects the same
critical behavior as for the case of an ordered surface, i.e.,
a surface normal UC. In this case, the leading operator in
the short-distance expansion of the order parameter is the
perpendicular component of the stress-energy tensor [17,70],
such that the leading finite-size correction in the decay of the
order parameter is ∝ L−3, and the correlations parallel to the
plane decay as ∝ |�x ′

‖ − �x‖|−2D (see the discussion at the end
of Sec. III C). Concerning irrelevant surface operators, field
theory calculations for the Ising UC in the presence of a surface
field reported an additional irrelevant surface scaling field with
negative dimension ω = ε, thereby suggesting the existence of

additional scaling corrections of relevant magnitude [18,19].
However, MC studies of improved models in the Ising UC
did not find additional scaling corrections [39–43,60] beside
those ∝ L−1 arising from the broken translational invariance.
Therefore, all critical observables are affected by corrections
to scaling ∝ L−ω, with ω the leading bulk irrelevant exponent
(ω ≈ 0.8 [38,64] for the 3D O(N ) UC), or ∝ L−1 in the
case of an improved model, where the leading bulk irrelevant
scaling field is suppressed. Nevertheless, the magnetization
is further affected by a significantly larger correction arising
from the nonsingular part of the free energy. At the bulk
critical point and the surface critical adsorption fixed point,
neglecting irrelevant operators and the corrections ∝ L−1, the
magnetization m satisfies the following FSS ansatz:

m = AL−β/ν + 1

LD−2
B, (53)

where B is the amplitude of the nonsingular part of the
surface magnetization [compare with Eq. (15)]. Equation (53)
shows that the nonsingular part of the free energy gives rise
to a correction to scaling with an effective exponent ω =
D − 2 − β/ν. For the three-dimensional O(N ) UC one has
ω ≈ 0.5, hence this constitutes a significant scaling correction.
In absence of additional irrelevant surface fields, this is the
leading correction to scaling. An advantage with respect to the
case of a pinning-field line is that the leading ω exponent is
not a new exponent, but is obtained from the magnetization
exponent β/ν. Notice that the background scaling corrections
in Eq. (53) affect also the FSS behavior of the magnetization
in the presence of a finite pinning field.

Away from the critical point, a surface pinning field can be
used to identify the ordered and disordered phases, as done
in Sec. IV B. Nevertheless, one expects in the paramagnetic
phase a slower convergence of the magnetization to the
thermodynamic limit of 0, because of the relatively larger
contribution to the magnetization due to the surface pinning
field.

(ii) Site pinning field.
Here we consider a pinning field coupled to a single site

in a D-dimensional classical lattice model, or a pinning field
in a d-dimensional quantum model, whose contribution to the
action is, in the continuum limit,

h0

∫
dd �xdτδd (�x)δ(τ )φ(�x,τ ), (54)

where τ denotes the imaginary-time coordinate.
In this case a simple generalization of the argument of

Sec. III B gives the scaling dimension of the pinning field y ′ =
yh − D = −β/ν. Such value is always negative, therefore,
at variance with the previous cases, the pinning field is an
irrelevant perturbation, and the RG flow always leads to the
h0 = 0 fixed point. Since at this fixed point the system is
translationally invariant, there are no additional irrelevant
operators, beside the usual bulk ones. At the critical point, the
magnetization exhibit the following scaling behavior [compare
with Eqs. (13) and (14)]:

m = (L + c)−β/νfm(h0(L + c)y
′
,{ui(L + c)−ωi },ρ)

+ 1

LD
gsite(h0), y ′ = −β/ν. (55)
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Expanding Eq. (55) for L → ∞, and using the fact that for
every lattice size m = 0 when h0 = 0, we obtain

m = A(ρ)(L + c)−2β/ν

· (1 + A1(ρ)(L + c)−β/ν + A2(ρ)(L + c)−ω + . . .)

+ 1

LD
gsite(h0), ω = min{ωi}. (56)

Equation (56) shows that the leading scaling exponent for
the magnetization is, unlike the cases discussed above, 2β/ν.
In Appendix C, we provide a proof of this statement based
on a rigorous identity holding for classical O(N )-symmetric
systems. In Eq. (56), the exponent of the leading scaling correc-
tion is min{1,{ωi},β/ν,D − 2β/ν}. For the three-dimensional
O(N ) UC, the dominant correction-to-scaling exponent is
given by ω = β/ν ≈ 0.5 and corresponds to the next-to-
leading Taylor expansion of the scaling function fm of Eq. (55)
in the first variable. In this case the background scaling
correction does not play a relevant role, since it decays with
an effective exponent D − 2β/ν ≈ 2, for the 3D O(N ) UC.

Away from the bulk critical point, and in the paramagnetic
phase, the magnetization approaches quickly the thermody-
namic limit of 0, because the contribution to m due to the local
nonzero magnetization around the pinning-field site is ∝ L−D .
In the ordered phase, the Gibbs weight for a configuration
with m antiparallel to h0 is depressed by a factor exp(−Ch0)
with respect to a configuration with m parallel to h0, with
C a constant of O(1) for L → ∞. Therefore, in the broken
phase, the measured magnetization approaches a nonzero,
but h0 − dependent value m ∝ (1 − exp(−Ch0)). Although
this implies that the site pinning field can in principle be
used to identify the ordered phase, the computed m might
be numerically small, thereby hindering a precise location of
the critical point.

Beside these generalizations in the pinning-field geome-
try, the present study lends itself to further extensions. A
numerical investigation of a classical lattice model in the
three-dimensional O(3) UC would be desirable, in order to
compute the scaling dimension of the leading operator in
the short-distance expansion of the order parameter and to
verify if, as for the Ising UC, this operator is responsible
for the slowly decaying scaling corrections discussed in
Sec. IV B. Moreover, a generalization to the 3D O(N ) UC,
N = 1,3 represents a natural extension of the present study.
For these investigations improved lattice models like the
Blume-Capel model considered here would be preferable,
since the absence of relevant bulk scaling corrections then
allows a precise determination of the critical exponents.
Finally, another interesting issue is the crossover behavior of
the order-parameter profile for small values of the pinning
field.
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APPENDIX A: FSS BEHAVIOR OF THE LOCAL
SUSCEPTIBILITY AT ZERO PINNING FIELD

In this Appendix we analyze the FSS behavior of the local
line susceptibility defined in Eq. (41), in the absence of a
pinning field. The results provide an alternative argument
leading to Eq. (17).

We consider for illustration the classical lattice model and
compute χloc(�x⊥,K,h0,Lz,L) for h0 = 0. The right-hand side
of Eq. (41) can be computed using the scaling behavior of
the two-point function which, according to standard scaling
arguments and neglecting scaling corrections, is given by

〈S(x,y,z)S(x,y,z′)〉 − 〈S(x,y,z)〉〈S(x,y,z′)〉

= 1

LD−2+η
f2

(
uL1/ν,

z − z′

L
,ρ

)
, h0 = 0. (A1)

By inserting Eq. (A1) into Eq. (41), one finds

χloc(�x⊥,K,h0 = 0,Lz,L)

= 1

LD−2+η
Lz

∑
z

1

Lz

f2

(
uL1/ν,

z

L
,ρ

)
+ fχ,back(K)

= L3−D−η

∫ 1

0
dz̃ρf2(uL1/ν ,̃z,ρ) + O

(
1

L2

)
+ fχ,back(K), (A2)

where fχ,back(K) is due to the terms in the sum of Eq. (41)
for which |z − z′| � Lz, i.e., the nonuniversal short-distance
behavior of the two-point function which does not obey to the
scaling behavior of Eq. (A1); due to the translational invariance
at h0 = 0, χloc is actually independent of �x⊥. On the other hand,
χloc(�x⊥,K,h0,Lz,L) can also be computed by differentiating
twice the free energy density F with respect to h0:

χloc(�x⊥,K,h0,Lz,L) = LD−1 ∂2

∂h2
0

F(K,h = 0,h0,Lz,L).

(A3)
Using Eq. (10) and Eq. (11) in Eq. (A3), and setting h0 = 0
we find

χloc(�x⊥,K,h0 = 0,Lz,L)

= L2y ′−1fχ,line(uL1/ν,ρ) + ∂2f
(ns)
line (K,h = 0,h0)

∂h2
0

∣∣∣∣
h0=0

,

(A4)

where for the sake of clarity we have introduced a scaling
function fχ,line(uL1/ν,ρ) and, as in Eq. (A2), corrections to
scaling have been neglected. By comparing Eq. (A4) with
Eq. (A2) we finally recover Eq. (17).

APPENDIX B: PINNING FIELD IN THE HUBBARD
MODEL ON THE HONEYCOMB LATTICE

In Ref. [1], the quantum critical behavior of the Hubbard
model on the honeycomb lattice was investigated by using
the pinning-field approach. As a function of the hopping
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parameter t and the Hubbard repulsion U , the Hubbard
model on the honeycomb lattice exhibits a second-order
quantum phase transition at T = 0 between a semimetallic
and an antiferromagnetic state, in the so-called Gross-Neveu
Heisenberg UC [74]. By extrapolating the magnetization to
the thermodynamical limit, Ref. [1] located the critical point at
U/t = 3.78, a value in line with recent numerical simulations
[75,76]. According to the present study, the pinning field is
a relevant perturbation for the line critical behavior, so that
for h0 = 0, under the RG the model flows away from the
“ordinary” fixed point h0 = 0. In the absence of other line
fixed points, a natural hypothesis is to assume that the RG
flow leads to the h0 = h∗

0 = ∞ fixed point, i.e., to a critical
adsorption fixed point. Such a statement should be carefully
checked, for instance by means of field theory calculations.

There are also some important quantitative differences with
respect to the models studied here. The RG dimension of the
pinning field at the h0 = 0 fixed point is considerably smaller
than for the 3D O(N ) UC. Using the results of Ref. [75] in
Eq. (17), we find y ′ = 0.15(8), with the results of Ref. [76] we
obtain y ′ = 0.25(3). Here, we have assumed that the dynamical
exponent z = 1, as implied by the Gross-Neveu-Yukawa field
theory [74]. Such a small value of y ′ indicates a rather
slow crossover, so that one needs very large lattice sizes in
order to realize the line fixed point, which is presumably
the critical adsorption fixed point. Moreover, at variance with
the spin models considered here, it is not a priori clear how
to tune the model as to realize the line critical adsorption
fixed point. Indeed, the introduction of a local magnetic field
is described by the interaction term given in Eq. (3), with
Sz

i0
= ni0,↑ − ni0,↓. The limit h0 → +∞ leads to a complete

localization of the charge on the pinning-field site in the
ground state, such that the occupation numbers are fixed as
ni0,↑ = 1, ni0,↓ = 0. In this subspace of the full Hilbert space,
the matrix elements of the hopping terms between the site i0

and any other nearest-neighbor site are suppressed to zero.
Therefore, there is no interaction between the pinning-field
site and the rest of the lattice, and the system is equivalent to a
Hubbard Hamiltonian with a missing site (the pinning-field
site), together with a spin degree of freedom, polarized
parallel to the pinning field. Only the isolated pinning-field
site contributes to the magnetization, while in the rest of the
lattice the symmetry remains unbroken and the magnetization
profile is exactly vanishing outside the pinning-field site.
Notice that the difficulty in tuning the model parameters to the
critical adsorption fixed point does not imply that such a fixed
point is unreachable to the RG flow. Indeed, the description
of the critical behavior in terms of a Gross-Neveu-Yukawa
field theory emerges only after a RG treatment of the model,
where the relevant degrees of freedom are identified and
the resulting renormalized coupling constants are in general
nontrivial functions of the parameters of the original lattice
model. As such, it is a priori not obvious for which parameters
of the lattice model one realizes an effective field theory with
an infinite line pinning field. Nevertheless, the spin models
studied in this paper can be thought of as a proper lattice
regularization of a scalar φ4 theory, so that the critical adsorp-
tion fixed point can indeed be obtained by setting the pinning
field h0 = ∞; the results presented in Sec. IV support this
observation.

Irrespective of the pinning-field fixed point h∗
0, some of

the conclusions discussed in Sec. III are independently valid.
For small values of h0, the magnetization m exhibits the
scaling behavior shown in Figs. 2 and 7. At the fixed point
h∗

0, the same line of argument that leads to Eq. (20) is still
valid, so that at the bulk critical point m ∝ L−β/ν . Finally,
for finite values of h0 the scaling function of m at criticality
approaches a constant for L → ∞. This can be understood
by the following heuristic argument, adapted from a similar
argument concerning the tail of the order-parameter profiles
[16]. After an RG transformation of scale b, the magnetization
m at the bulk critical point is transformed as

m = b−β/νf (h0(b),L/b). (B1)

If we choose the scale b to be large enough, and the size L

sufficiently large such that L/b � 1, we can substitute h0(b)
by its fixed-point value h∗

0 (possibly the critical adsorption
fixed point h∗

0 = ∞) and set the scale by fixing L/b = c, so
that we obtain

m = (L/c)−β/νf (h∗
0,c) ∝ L−β/ν. (B2)

In other words, unlike what is stated in the Appendix of
Ref. [1], the asymptotic FSS behavior of the magnetization
is characterized by the usual β/ν exponent.

Due to the crossover behavior found for h0 = 0, a scaling
analysis of the magnetization which ignores the RG flow of
the pinning field would measure an effective magnetization
exponent β/ν which, only for large values of L, approaches
the correct value. As explained above, the small value of y ′ may
render effectively impossible to reach the asymptotic behavior.
Instead, for small values of the scaling variable h̃0 = h0L

y ′
, a

first-order Taylor expansion of the leading scaling function
fmc in Eq. (15), gives m ∝ L−β/νh0L

y ′ = h0L
−η (see the

corresponding discussion in Sec. IV B.). Thus, for small
values of h0L

y ′
, one observes an effective magnetization

exponent which is in fact the η exponent. For the Gross-Neveu
Heisenberg UC, one has η = 0.70(15) and β/ν = 0.85(8) [75].
Since these two values are close to each other, the analysis
of Ref. [1], which incorrectly ignored the RG flow of the
pinning-field line, nevertheless, did not introduce a significant
bias in the results.

APPENDIX C: FSS BEHAVIOR OF THE MAGNETIZATION
IN THE PRESENCE OF A SINGLE-SITE PINNING FIELD

In this Appendix, we show that, in the presence of a
single-site pinning field, the effective scaling exponent of
the magnetization is 2β/ν, in agreement with Eq. (56). The
following argument is based on an exact identity which holds
for classical O(N )-symmetric systems in the symmetric phase
and is a generalization of an identity proven for Ising-like
systems in Sec. 2.3 of Ref. [66].

Let us consider a classical O(N )-symmetric spin model on
a lattice, in the absence of any external fields. Upon fixing the
origin at a site 0, the two-point function 〈�S0 · �Si〉 is given by

〈�S0 · �Si〉 = 1

Z

∫
dμ(�S0)C(�S0,i), (C1)
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C(�S0,i) ≡ �S0 ·
∫ ∏

k =0

dμ(�Sk)�Sie
−βH(�S0,{�Sk}k =0),

Z =
∫

dμ(�S0)
∫ ∏

k =0

dμ(�Sk)e−βH(�S0,{�Sk}k =0), (C2)

where Z is the partition function, dμ(�S) = δ(�S2 − 1)dN �S is
the O(N )-symmetric measure for a N -component spin variable
�S = (S(1),S(2), . . . ,S(N)) and we have explicitly indicated the
dependence of the Hamiltonian H(�S0,{ �Sk}k =0) on �S0. In
the O(N )-symmetric phase, the function C(�S0,i) defined in
Eq. (C2) is actually independent of the value of �S0. To show
this, we compute it for a different value �S ′

0 of the spin at the
origin. If R ∈ O(N ) is the matrix such that �S ′

0 = R�S0, we have

C(�S ′
0,i) = R�S0 ·

∫ ∏
k =0

dμ(�Sk)�Sie
−βH(R�S0,{�Sk}k =0). (C3)

Performing a change of variables �Sk → R�Sk in the pre-
vious equation and exploiting the O(N )-invariance of the
Hamiltonian H(R�S0,{R�Sk}k =0) = H(�S0,{ �Sk}k =0), we obtain
C(�S ′

0,i) = C(�S0,i). In particular, we can choose to fix �S0 =
�e1 = (1,0, . . . ,0). By using the same change of variables in the
integral for the partition function Z entering in the denominator
of Eq. (C1), the integral over dμ(�S0) drops out and we find

〈�S0 · �Si〉 =
∫ ∏

k =0 dμ(�Sk)S(1)
i e−βH(�e1,{�Sk}k =0)∫ ∏

k =0 dμ(�Sk)e−βH(�e1,{�Sk}k =0)
. (C4)

The right-hand side of Eq. (C4) can be interpreted as the local
magnetization at the site i when the spin at the origin is fixed
to �e1, i.e., in presence of an infinitely strong site pinning-field
coupled to �S0 and parallel to �e1. Therefore Eq. (C4) can be
expressed as the following identity:

〈�S0 · �Si〉h0=0 = 〈
S

(1)
i

〉
h0=∞, �h0 ‖ �e1, (C5)

where we have emphasized that the two-point function on
the left-hand side is calculated in the absence of symmetry-
breaking fields. By summing over the lattice site i in Eq. (C5),
we obtain a relation between the magnetization m(h0 = ∞) in
the presence of an infinitely strong site pinning-field and the
susceptibility χ (h0 = 0) in the absence of external fields:

m(h0 = ∞) = 1

LD

∑
i

〈�S0 · �Si〉h0=0 = 1

LD
χ (h0 = 0). (C6)

Equation (C6) holds in particular in a finite volume at
criticality. Neglecting for simplicity corrections to scaling,
and employing the standard FSS behavior of χ which can
be obtained by differentiating twice Eq. (11) with respect to h,
we find

m ∝ 1

LD
L2−η ∝ L−2β/ν. (C7)

Due to universality, the result of Eq. (C7) holds also for any
system whose critical behavior belongs to the O(N ) UC.
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