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Effects of interactions on periodically driven dynamically localized systems
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It is known that there are lattice models in which noninteracting particles get dynamically localized when
periodic δ-function kicks are applied with a particular strength. We use both numerical and analytical methods
to study the effects of interactions in three different models in one dimension. The systems we have considered
include spinless fermions with interactions between nearest-neighbor sites, the Hubbard model of spin-1/2
fermions, and the Bose-Hubbard model with on-site interactions. We derive effective Floquet Hamiltonians up
to second order in the time period of kicking. Using these we show that interactions can give rise to a variety
of interesting results such as two-body bound states in all three models and dispersionless few-particle bound
states with more than two particles for spinless fermions and bosons. We substantiate these results by exact
diagonalization and stroboscopic time evolution of systems with a few particles. We derive a pseudo-spin-1/2
limit of the Bose-Hubbard system in the thermodynamic limit and show that a special case of this has an
exponentially large number of degenerate eigenstates of the effective Hamiltonian. Finally, we study the effect
of changing the strength of the δ-function kicks slightly away from perfect dynamical localization; we find that
a single particle remains dynamically localized for a long time after which it moves ballistically.
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I. INTRODUCTION

Periodically driven quantum systems have been studied
extensively for many years as they exhibit a wide variety of
interesting phenomena. These include the coherent destruction
of tunneling [1,2], the generation of defects [3,4], dynamical
freezing [5], dynamical saturation [6] and localization [7–11],
dynamical fidelity [12], edge singularity in the probability
distribution of work [13], and thermalization [14] (for a review
see Ref. [15]). There have also been proposals of Floquet
driving of graphene by radiation [16–19], Floquet topological
insulators, and the generation of topologically protected edge
states [20–42]; some of these aspects have been experimentally
studied [43–48].

The effects of interactions between electrons in periodically
driven systems have received much attention in recent times
[49–63]. It has been shown that a sinusoidal perturbation of the
Hubbard model can lead to coherent destruction of tunneling,
creation of gauge fields, and density-dependent tunneling [64].
The effects of interactions on Floquet topological insulators
have been examined in Ref. [65]. It has been shown that
interactions can lead to a chaotic and topologically trivial
phase in the periodically driven Kitaev model [66]. The
impact of such driving on the stability of a bosonic fractional
Chern insulator has been investigated [67]. Interestingly
some of these systems have been realized experimentally
demonstrating correlated hopping in the Bose-Hubbard model
[68] and many-body localization [69,70], and realizing bound
states for two particles in driven photonic systems [71].

A particularly interesting phenomenon which can arise due
to driving is dynamical localization. Here, the particles become
perfectly localized in space due to periodic driving of some
parameter in the Hamiltonian. Examples of systems showing
dynamical localization include driven two-level systems [1],
classical and quantum kicked rotors [72–76], the Kapitza
pendulum [77,78], and bosons in an optical lattice [79]. It
has been shown that remnants of dynamical localization may
survive even in the presence of strong disorder [80].

In this paper, we will study the effects of periodic driving on
a number of systems with interacting particles. The motivation
for this is as follows. Suppose we consider a system without
any interactions and subject it to a periodic driving which
dynamically localizes the particles. This means that the
effective Floquet Hamiltonian of the system has no kinetic
energy; for instance, in a tight-binding model, the effective
hopping amplitude is zero. We now add interaction terms
to the Hamiltonian. We may then expect that the properties
of the system will be entirely dominated by these terms.
Systems which are dominated by interactions often have
interesting ground states, such as fractional quantum Hall
systems and fractional Chern insulators in general [81–85].
We will therefore look at the effects of interactions on systems
which are dynamically localized in the absence of interactions.
We will consider only one-dimensional models here although
many of our results can be easily generalized to higher
dimensions. As will become clear, new effective hopping terms
are generated by the interactions; these lead to dispersing
two-particle bound states and dispersionless bound states with
more than two particles. We will mainly study systems with a
few particles rather than a finite density of particles. However,
for the Bose Hubbard model we will study, the eigenstates
of the effective Hamiltonian of a large system with a finite
particle density in a particular limit.

The plan of our paper is as follows. In Sec. II, we will show
that particles moving in a bipartite lattice with a noninteracting
Hamiltonian can become dynamically localized if periodic
δ-function kicks with a particular strength given by α = π are
applied to the sublattice potential. (The advantage of looking
at periodic δ-function kicks, in contrast to sinusoidal driving
[10], is that the problem can be studied analytically to a large
extent [9,11,86].) The dynamical localization becomes clear
when we view the system stroboscopically, at intervals of time
given by 2T , where T is the time period of the kicking. We
find that the effective Hamiltonian which evolves the system
for time 2T is exactly zero for this noninteracting problem. In
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Sec. III, we will show how a generic model with interactions
can be studied by computing the effective Hamiltonian. This
Hamiltonian can be derived as an expansion in powers of
T , and we will carry out the expansion up to order T 2.
In Sec. IV, we will consider a model of spinless fermions
with nearest-neighbor interactions in one dimension. After
deriving the effective Hamiltonian to order T 2, we will show
that the system has two branches of two-body bound states;
these states move slowly if T is small in appropriate units.
We will also show that there are bound states with three or
more particles; these objects have zero dispersion and do not
move. We will demonstrate these results both analytically and
numerically. In Sec. V, we will consider the Hubbard model
in one dimension, namely, a spin-1/2 model with on-site
interactions. After deriving the effective Hamiltonian, we will
show analytically and numerically that this has two branches of
two-body bound states which are spin singlets. In Sec. VI, we
will study the Bose Hubbard model with on-site interactions
in one dimension. We will derive the effective Hamiltonian
and show that there are again two dispersing branches of
two-particle bound states and dispersionless bound states with
more than two particles. We will then consider a limit in which
the interactions have a two-fold degenerate ground state on
each site. After defining a pseudo-spin-1/2 on each site, we
derive an effective Hamiltonian for the system. This contains
both two-spin and three-spin interactions. For a special case
(one in which particle occupation numbers zero and 1 are
degenerate on each site), we show that a class of degenerate
eigenstates of the effective Hamiltonian can be found exactly
and the number of such states grows exponentially with the
system size. In Sec. VII, we will study the effects of two kinds
of perturbations on dynamical localization when there are no
interactions. First, we study what happens if the strength of the
δ-function kicks, α, is slightly different from π . We show that
a particle remains dynamically localized for a long time, which
is of the order of 1/|π − α|. After that time the particle begins
to move ballistically with a maximum velocity which is of the
order of |π − α|. Second, we study what happens if α = π but
there is some randomness in the nearest-neighbor hoppings. In
this case, we find that a particle remains dynamically localized
if we view at intervals of time 2T . We end in Sec. VIII with
a summary of our main results and some directions for future
work.

II. DYNAMICAL LOCALIZATION

In this section, we will consider a general noninteracting
Hamiltonian on a bipartite lattice which respects the sublattice
symmetry. We will show that such a system exhibits dynamical
localization when periodic δ-function kicks with a particular
strength are applied to the sublattice potential.

We consider a Hamiltonian on a bipartite lattice given by

HNI =
∑
ij

tij (c†iAcjB + H.c.), (1)

where i and j represent site labels residing on the two
sublattices A and B. We now apply periodic δ-function kicks
to the sublattice potential as follows: the kicking part of the

Hamiltonian, HK , is given by

HK = α

∞∑
n=−∞

δ(t − nT )

⎛
⎝∑

i

niA −
∑

j

njB

⎞
⎠, (2)

where niA = c
†
iAciA and njB = c

†
jBcjB denotes the number of

particles on site i on sublattice A and site j on sublattice B.
We define the total number of particles on the two sublattices
as

NA =
∑

i

niA and NB =
∑

j

njB. (3)

Without the kick the time evolution operator is given by

UNI = e−iHNI T . (4)

(We will set � = 1 in this paper.) The time evolution corre-
sponding to the kick is

UK = e−iα(NA−NB ). (5)

The total time evolution operator U for a time period T is the
product of the two operators above. For α = π/2, we obtain

U = UKUNI = e− iπ
2 (NA−NB )e−iHNI T . (6)

Since the number operators of different sites commute, we can
use the identities in Eqs. (A2) and (A7) to obtain

U = e− iπ
2 NA exp

⎛
⎝−iT

∑
ij

tij
(
c
†
iAe− iπ

2 cjB + e
iπ
2 c

†
jBciA

)⎞⎠
× e

iπ
2 NB

= exp

⎛
⎝−iT

∑
ij

tij
(
c
†
iAe− iπ

2 e− iπ
2 cjB + e

iπ
2 e

iπ
2 c

†
jBciA

)⎞⎠
× e− iπ

2 (NA−NB )

= eiHNI T e− iπ
2 (NA−NB ). (7)

Hence the kick converts

HNI → −HNI , (8)

and the evolution operator for two time periods 2T is

U 2 = e− iπ
2 (NA−NB )e−iHNI T eiHNI T e− iπ

2 (NA−NB )

= e−iπ(NA−NB )

= e−iπ(NA+NB ), (9)

where the last line follows from the previous line because NB

is an integer. Equation (9) implies that after time 2T , all wave
functions remain exactly the same up to a factor of ±1. Hence
if we view the system with any number of particles at intervals
of 2T , all the particles will appear to be localized. Note that
this argument for dynamical localization works in exactly the
same way for bosons, since the algebra leading up to Eq. (9)
remains the same.

Equation (9) shows that U 2 is equal to I if the total number
of particles Ntot = NA + NB is even and −I if Ntot is odd. We
can now define an effective Hamiltonian for evolution for time
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2T as follows:

U 2 = e−i2T Heff ,

implying Heff = i

2T
ln(U 2). (10)

Since U 2 = ±I , we see that

Heff = 0 if Ntot is even,

= π

2T
if Ntot is odd. (11)

Hence, for a noninteracting problem, the effective Hamiltonian
only depends on Ntot and has no information about HNI .

We note that Heff and therefore its eigenvalues (called
quasienergies) are only defined up to multiples of ω = 2π/T .
In the following sections, we will derive Heff as an expansion
in powers of T in the limit that ω is much larger than all the
other energy scales of the problem like the nearest-neighbor
hopping amplitude γ . This implies that the band width, which
is typically given by 4γ , is much smaller than ω. Since ω is
much larger than the energy difference between any two states
in the band, we will not need to consider the possibility of
resonances.

The above analysis of dynamical localization by periodic
δ-function kicks can be generalized as follows. Consider a
kicking Hamiltonian

HK =
∞∑

n=−∞
δ(t − nT )(αNA − βNB ), (12)

where α + β = π . The time evolution operator for one time
period is now given by

U = e−i(αNA−βNB ) exp

⎛
⎝−i

∑
ij

tij {c†iAcjB + c
†
jBciA}T

⎞
⎠

= exp

⎛
⎝−i

∑
ij

tij {c†iAcjBe−i(α+β) + c
†
jBciAei(α+β)}T

⎞
⎠

× e−i(αNA−βNB ). (13)

As we can see, this has the effect of converting HNI → −HNI

for any α,β which satisfy α + β = π . Therefore the evolution
operator for time 2T is

U 2 = e−i2(αNA−βNB )

= e−i2αNtot , (14)

where we have used the facts that α + β = π and NB is an
integer. The effective Hamiltonian is now

Heff = α

T
Ntot. (15)

Thus, by changing the values of α,β and the total number
of particles Ntot in the system, we can modulate the value of
the quasienergy (the eigenvalue of Heff) at which dynamical
localization occurs.

In the rest of this paper, we will take α = π,β = 0 so that the
periodic δ-function kicks are applied to only the A sublattice;
the kicking operator is therefore

UK = e−iπNA . (16)

Then the eigenvalue of the noninteracting effective Hamilto-
nian will always be zero. This will allow us to look at the
effects of interactions more cleanly.

III. INTERACTIONS

We will now consider what happens if we take the dynam-
ically localized system considered in the previous section and
turn on density-density interactions between the particles. We
will first make some general remarks before turning to three
examples of interacting systems. In each case, we will use
perturbation theory to calculate the effective Hamiltonian for
evolution by a time 2T .

We consider a generic interaction term of the kind

HI = U
∑
ij

ninj , (17)

where ni denotes the particle number at site i. This term
commutes with the kicking Hamiltonian HK . Hence, when we
pass the unitary operator UK = e−iHKT across the Hamiltonian
HI + HNI , the sign of HI does not flip while the sign of
HNI flips. The effective Hamiltonian after two time periods is
therefore

e−iHeff 2T = e−i(−HNI +HI )T e−i(HNI +HI )T . (18)

Now we use Eqs. (A5) and (A6) to evaluate the above term.
Setting C = −iHIT and D = iHNIT in those equations, we
obtain

− iHeff2T = −i2HIT + [HNI ,HI ]T 2 + i

3
([HI ,HNI ]HNI

+HNI [HNI ,HI ])T 3 + · · · . (19)

This implies that

Heff = HI + iT

2
[HNI ,HI ] − T 2

6
[HNI ,[HNI ,HI ]] + · · · .

(20)

This equation is one of the central results of this work. It
provides a perturbative expansion if we assume that T is a
small parameter.

We now prove another result which will be important in our
analysis later. Namely, Heff only contains odd powers of HI .
This can be proved as follows. Let

ln(eC+DeC−D) = f (C,D). (21)

Then

f (−C,D) = ln(e−C+De−C−D)

= ln((eC−D)−1(eC+D)−1)

= − ln(eC+DeC−D)

= −f (C,D). (22)

This implies that f (C,D) is an odd function of C. Now we
recall that C is proportional to HI . This shows that Heff only
contains odd powers of HI .

To get an idea of the kinds of terms that can arise due to the
commutators in Eq. (20), we consider a particular interaction
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term given by

H
ij

I = ninj (23)

where i �= j , and a hopping term given by

Hkl
NI = c

†
kcl + c

†
l ck (24)

where k �= l. We now look at the commutator of these
interacting and noninteracting terms. We find the following:

i �= k,l; j �= k,l;
[
Hkl

NI ,H
ij

I

] = 0.

i = k(l); j = l(k);
[
Hkl

NI ,H
ij

I

] = 0.

i = k; l �= j ;
[
Hkl

NI ,H
kj

I

] = nj (−c
†
kcl + c

†
l ck).

(25)

We note the interesting fact that the commutator with
interactions leads to correlated hoppings where the hopping is
proportional to the particle number at some site. In the next few
sections, we will look at some well-known interacting models
in one dimension systems and find the effective Hamiltonian
that is generated by periodic δ-function kicks. The commutator
manipulations were partly performed using Ref. [87].

Before ending this section, we note that when the driving
frequency ω = 2π/T is large, a Floquet-Magnus expansion
in powers of 1/ω can be used to find the effective Floquet
Hamiltonian [8,65]. This works well when the time-dependent
Hamiltonian H (t) has only a few harmonics, namely, when
only a few terms are nonzero in

H (t) =
∞∑

n=−∞
Hne

−inωt . (26)

For instance, if only H0, H1, and H−1 are present in Eq. (26),
we get

Heff = H0 + [H−1,H1]

ω
. (27)

However, in the case of periodic δ-function kicks, an infinite
number of terms are present in (26) and the Floquet-Magnus
expansion is not convenient.

IV. SPINLESS FERMIONS WITH NEAREST-NEIGHBOR
INTERACTIONS

In this section, we will consider a system of spinless
fermions hopping on a one-dimensional chain with nearest-
neighbor interactions and periodic boundary conditions. Given
N sites we have 2N states, which are labeled by the occupan-
cies, zero or 1, of the different sites. The Hamiltonian is

H =
N∑

j=1

[−γ (c†j cj+1 + H.c.) + V njnj+1], (28)

with cN+1 ≡ c1. Note that the Hamiltonian does not mix the
various sectors of total particle number Ntot = ∑N

j=1 c
†
j cj .

Hence we can consider a state with a given number of particles
and look at its time evolution. For the sector with p particles,
the number of relevant states is given by NCp. In the absence
of kicking, this model is exactly solvable by the Bethe ansatz
and all its energy levels are known for any number of particles
[88,89].

Following the notation in the previous section, we identify

HNI = −γ

N∑
j=1

(c†j cj+1 + H.c.),

HI = V

N∑
j=1

njnj+1. (29)

We now evaluate [HNI ,HI ]. The relevant terms are of the kind

[c†j cj+1 + c
†
j+1cj ,nj−1nj + njnj+1 + nj+1nj+2]

= (c†j+1cj − c
†
j cj+1)(nj−1 − nj+2). (30)

Next, we evaluate [HNI ,[HNI ,HI ]] which involves terms like

−γV [HNI ,(c
†
j+1cj − c

†
j cj+1)(nj−1 − nj+2)]. (31)

This gives

γ 2V [2(nj − nj+1)(nj−1 − nj+2) + (c†j−1cj+1 + c
†
j+1cj−1)(nj+2 − nj ) + (c†j cj+2 + c

†
j+2cj )(nj−1 − nj+1)

+ (c†j cj+1 − c
†
j+1cj )(c†j−1cj−2 − c

†
j−2cj−1) + (c†j+1cj − c

†
j cj+1)(c†j+2cj+3 − c

†
j+3cj+2)]. (32)

Using Eq. (20), we see that the total effective Hamiltonian up to terms of order γ 2T 2 (this is a dimensionless parameter) is
given by

Heff = V
∑

j

njnj+1 − iγ T V

2

∑
j

(c†j+1cj − c
†
j cj+1)(nj−1 − nj+2) − γ 2T 2V

3

∑
j

(
(nj − nj+1)(nj−1 − nj+2)

+ 1

2
(c†j−1cj+1 + c

†
j+1cj−1)(nj+2 + nj−2 − 2nj ) − (c†j−2cj−1 − c

†
j−1cj−2)(c†j cj+1 − c

†
j+1cj )

)
. (33)

It is interesting to note the scales of the various terms in
Eq. (33). We see that the first three terms in the effective
Hamiltonian all have the same energy scale as V , and γ T

is the only tuning parameter. From the result we had proved

using Eq. (22), we know that the next higher-order terms will
be of order γ 3T 3V and γ T 3V 3.

For a system with only one particle located at, say, site j , it
is clear from Eq. (33) that the hopping amplitude to any other
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TABLE I. Effect of various terms in Heff acting on the first term in |ψk〉.

Terms in Heff Acting on aeik(j+1/2)|j,j + 1〉
V njnj+1 V aeik(j+1/2)|j,j + 1〉
− iγ T V

2 (c†j+1cj − c
†
j cj+1)(nj−1 − nj+2) − iγ T V

2 aeik(j+1/2)(|j,j + 2〉 + |j − 1,j + 1〉)
− γ 2T 2V

3 (nj − nj+1)(nj−1 − nj+2) − 2γ 2T 2V

3 aeik(j+1/2)|j,j + 1〉
− γ 2T 2V

6 (c†j−1cj+1 + c
†
j+1cj−1)(nj+2 + nj−2 − 2nj ) − γ 2T 2V

6 aeik(j+1/2)(2|j − 1,j〉 + 2|j + 1,j + 2〉
+|j,j + 3〉 + |j − 2,j + 1〉)

− γ 2T 2V

3 (c†j−1cj−2 − c
†
j−2cj−1)(c†j cj+1 − c

†
j+1cj ) − γ 2T 2V

3 aeik(j+1/2)|j − 1,j + 2〉

site is zero, regardless of the value of V . This is expected since
interactions only play a role if there are at least two particles.

A. Two-particle bound states

We can use the Hamiltonian in Eq. (33) to find eigenstates
of a system with two or more particles. In particular, we can
look for bound states in which the wave function goes to zero
when one or more of the particles goes far away from the other
particles. For example, consider the case of two particles. We
look for a bound state solution of the form

|ψk〉 =
∑

j

[aeik(j+1/2)|j,j + 1〉 + beik(j+1)|j,j + 2〉], (34)

where a,b are some complex numbers that we have to
determine while k represents the center-of-mass momentum.
For periodic boundary conditions, we must have k = 2πm/N ,
where m = 0,1, . . . ,N − 1.

We now want to solve the eigenvalue equations

Heff|ψk〉 = E|ψk〉. (35)

To do this, we first look at the effect of each of the terms in the
Hamiltonian in Eq. (33) on the two parts of the wave function
in Eq. (34). This is shown in Tables I and II; a sum over j from
1 to N is assumed in those tables.

By inspection, we see that a particular solution of Eq. (35)
is given by b = 0, k = π and E = V ; the corresponding wave
function is

|ψk〉 =
∑

j

(−1)j |j,j + 1〉. (36)

Note that this is an exact eigenstate of the Hamiltonian in
Eq. (28); a state like this is called a singular solution of the
Bethe ansatz [90,91]. In fact, the state in Eq. (36) is an exact
eigenstate of the kicking problem. This is because the number
of particles on sublattice A is given by NA = 1; hence this state

is an eigenstate with eigenvalue −1 of the kicking operator UK

in Eq. (16).
We will now look for solutions of Eq. (35) with arbitrary

values of k based on the terms of order γ 2T 2V coming from
Tables I and II. To do this consistently, we have to keep both
the terms of order γ 2T 2V as they are and add the effect of the
terms of order γ T V to second order in perturbation theory,
taking the first term in Eq. (33), V njnj+1, as the unperturbed
Hamiltonian.

From Table I, we find that the term of order γ T V

takes an initial state |j,j + 1〉 with amplitude aeik(j+1/2) to
an intermediate state |j,j + 2〉 and then back to the state
|j,j + 1〉. The numerator of this second-order process is given
by

γ 2T 2V 2

4
aeik(j+1/2)(1 + eik)(|j + 1,j + 2〉 + |j,j + 1〉)

= γ 2T 2V 2

4
aeik(j+1/2)(1 + eik)(e−ik + 1)|j,j + 1〉. (37)

Dividing this by the energy denominator which is the differ-
ence of the unperturbed energies of the initial state |j,j + 1〉
and the intermediate state |j,j + 2〉, namely, V − 0 = V , we
obtain a contribution equal to

γ 2T 2V

2
aeik(j+1/2)(1 + cos k)|j,j + 1〉. (38)

Next we see from Table I that the three terms of order γ 2T 2V

acting on the state |j,j + 1〉 gives

−2γ 2T 2V

3
(1 + cos k)|j,j + 1〉, (39)

where we have used the fact that j is summed over, and we
have ignored states which are not of the form |j,j + 1〉.

TABLE II. Effect of various terms in Heff acting on the second term in |ψk〉.

Terms in Heff Acting on beik(j+1)|j,j + 2〉
V njnj+1 zero

− iγ T V

2 (c†j+1cj − c
†
j cj+1)(nj−1 − nj+2) − iγ T V

2 beik(j+1)(|j,j + 1〉 + |j + 1,j + 2〉)
− γ 2T 2V

3 (nj − nj+1)(nj−1 − nj+2) 2γ 2T 2V

3 beik(j+1)|j,j + 2〉
− γ 2T 2V

6 (c†j−1cj+1 + c
†
j+1cj−1)(nj+2 + nj−2 − 2nj ) zero

− γ 2T 2V

3 (c†j−1cj−2 − c
†
j−2cj−1)(c†j cj+1 − c

†
j+1cj ) γ 2T 2V

3 beik(j+1)(|j − 1,j + 1〉 + |j + 1,j + 3〉)
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The total contribution is therefore[
V + γ 2T 2V

(
1

2
− 2

3

)
(1 + cos k)

]
aeik(j+1/2)|j,j + 1〉

=
[
V − γ 2T 2V

3
cos2

(
k

2

)]
aeik(j+1/2)|j,j + 1〉. (40)

Similarly, from Table II we find that the term of order
γ T V takes an initial state |j,j + 2〉 with amplitude bei(j+1)k

to an intermediate state |j,j + 1〉 and then back to the state
|j,j + 2〉. The numerator of this second-order process is

γ 2T 2V 2

4
beik(j+1)(1 + e−ik)(|j,j + 2〉 + |j − 1,j + 1〉)

= γ 2T 2V 2

4
beik(j+1)(1 + eik)(1 + e−ik)|j,j + 2〉. (41)

The denominator is the difference of the unperturbed energies
of the states |j,j + 2〉 and |j,j + 1〉, namely, 0 − V = −V .
We therefore find the contribution from this process to be

−γ 2T 2V

2
beik(j+1)(1 + cos k)|j,j + 2〉. (42)

The total contribution is therefore

γ 2T 2V

(
−1

2
+ 2

3

)
(1 + cos k)beik(j+1)|j,j + 2〉

= γ 2T 2V

3
cos2

(
k

2

)
beik(j+1)|j,j + 2〉. (43)

Thus we find two branches of bound states: one branch has
the dispersion

E1k = V − γ 2T 2V

3
cos2

(
k

2

)
, (44)

in which the wave function has a large component in states
of the form |j,j + 1〉 and a small component in the states
|j,j + 2〉, and the other branch has the dispersion

E2k = γ 2T 2V

3
cos2

(
k

2

)
, (45)

in which the wave function is large for the states |j,j + 2〉
and small for the states |j,j + 1〉. We note that in both
cases, the group velocity is given by vg = |dEak/dk| =
(γ 2T 2V/6)| sin k|. Hence these bound states move slowly if
γ T is small.

We find that these are the only two-particle bound states.
All other two-particle states have a distance of three or more
lattice spacings between the two particles, and all such states
are completely localized and have zero quasienergy. We have
verified these results numerically. In Fig. 1, we compare the
numerically obtained Floquet eigenvalues of a two-particle
system with the analytical expressions given in Eqs. (44) and
(45) for V = 1,T = 0.5, and γ = 1. The agreement is seen to
be extremely good.

In Figs. 2 and 3, we show the time evolution of two particles
placed on a ring of 20 sites, with various initial conditions, in-
teraction strengths and kicking; this system has 190 states. The
time evolution is found by numerically evaluating the Floquet
operator U given in Eq. (6); we have taken γ = 1 and T = 0.5
in all these studies. We discuss below our numerical results

FIG. 1. Numerically obtained eigenvalues of the Floquet operator
as compared with the analytical expressions in Eqs. (44) and (45), for
V = 1, T = 0.5, and γ = 1. All other eigenvalues are zero. We have
two particles on 20 sites.

FIG. 2. Time evolution of a two-particle state for four cases:
(i) V = 0, no kicking, (ii) V = 1, no kicking, (iii) V = 0, with
kicking, and (iv) V = 1, with kicking. In all cases γ = 1 and T = 0.5.
There are two particles on 20 sites, and they are initially located at two
adjacent sites. The color shows the expectation value of the particle
number at different sites.
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FIG. 3. Time evolution of a state with two particles on 20 sites
in the presence of kicking, for four cases. In (i) the two particles
are initially on adjacent sites and there is no interaction (V = 0).
The state is dynamically localized due to kicking. In (ii)–(iv), the
initial distance between the particles is progressively increased from
two to four lattice spacings, and interactions are present with V = 1.
The color shows the expectation value of the particle number at
different sites. Note that with increasing initial spacing the overlap
with the two-particle bound states gets reduced, and the states get
more localized.

and how they compare with what we expect from the effective
Hamiltonian up to order γ 2T 2V that we have derived above.

In Fig. 2, we consider the time evolution when the initial
state has the two particles on adjacent sites. The first two rows
of this figure show that the particles spread out over the ring
if there is no kicking; there is no major difference between

the interacting and noninteracting cases. The third row shows
that the particles are dynamically localized if there is kicking
but no interaction. The fourth row shows that there is no
dynamical localization if there is both kicking and interaction;
however, since γ T = 0.5 is small, the two particle bound state
dispersion is almost flat which implies that the group velocity is
small. Hence the particles spread out over the ring more slowly
compared to the first two rows where there is no kicking. (In
the fourth row, the eigenstates have large components on states
of the form |j,j + 1〉.)

In Figs. 3, we show the time evolution of two particles
on 20 sites in the presence of kicking. In Figs. 3(i) and 3(ii),
the initial state has two particles which are separated by two
lattice spacings. Figure 3(i) shows dynamical localization in
the absence of interactions (V = 0). The behavior in Fig. 3(ii)
(where interactions are present with V = 1) is similar to
that in Fig. 2(iv), except that the eigenstates now have large
components on states of the form |j,j + 2〉. In Figs. 3(iii) and
3(iv), the initial state has two particles, which are separated
by three and four lattice spacings, namely, states of the form
|j,j + 3〉 and |j,j + 4〉 respectively. In these cases, the states
has no overlap with the two-particle bound states and therefore
do not disperse. In the presence of interactions, the particles
seem to be localized. Looking more closely, we find that the
particles do spread a little bit when they are initially separated
by three lattice spacings but not for four lattice spacings. This
occurs because the wave function in the case of three lattice
spacings has a small overlap with the two-particle bound states
when we go to terms in the effective Hamiltonian which are
of higher order than γ 2T 2V .

B. States with three or more particles

We will now study what happens when there are more
than two particles. We begin with the case of three particles.
Assuming that they are on three neighboring sites, Table III
shows the action of the different terms in Eq. (33) on the state
|j,j + 1,j + 2〉.

A second-order process involving the second term in Heff

brings an initial state |j,j + 1,j + 2〉 back to itself, with an
amplitude γ 2T 2V 2

4(2V −V ) = γ 2T 2V/4; the denominator 2V − V is
the difference in the unperturbed energies of the initial state
and the intermediate states given by |j − 1,j + 1,j + 2〉 and
|j,j + 1,j + 3〉. This process can happen in two ways since
there are two possible intermediate states; hence this contribu-
tion is equal to γ 2T 2V/2. The total contribution is therefore,

TABLE III. Effect of various terms in Heff acting on the state |j,j + 1,j + 2〉. The − symbol in the right
column means we have states, which only contribute to the bound state at orders higher than γ 2T 2V .

Terms in Heff Acting on |j,j + 1,j + 2〉
V njnj+1 2V |j,j + 1,j + 2〉
− iγ T V

2 (c†j+1cj − c
†
j cj+1)(nj−1 − nj+2) − iγ T V

2 (|j − 1,j + 1,j + 2〉
+|j,j + 1,j + 3〉)

− γ 2T 2V

3 (nj − nj+1)(nj−1 − nj+2) − 2γ 2T 2V

3 |j,j + 1,j + 2〉
− γ 2T 2V

6 (c†j−1cj+1 + c
†
j+1cj−1)(nj+2 + nj−2 − 2nj ) −

− γ 2T 2V

3 (c†j−1cj−2 − c
†
j−2cj−1)(c†j cj+1 − c

†
j+1cj )
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FIG. 4. Numerically obtained eigenvalues of the Floquet operator
as compared with the analytical expression in Eq. (46), for V =
1, T = 0.5 and γ = 1, for n = 3, 4, 5 particles on 12 sites. Note that
for each n, we have N = 12 eigenvalues which are nondispersing.

( 1
2 − 2

3 )γ 2T 2V = −γ 2T 2V/6. Therefore we find nondispers-
ing eigenstates with quasienergy 2V − (γ 2T 2V/6). The num-
ber of such states is equal to the number of sites N , since the
index j of the first particle can take any value from 1 to N .

In fact, there is an interesting solution for any number of
particles n, where N − 2 > n > 2. Consider a state where n

particles are located next to each other. Due to the second-order
process described above, this is an eigenstate of Heff with
quasienergy

En = (n − 1)V − γ 2T 2V

6
. (46)

Thus we have nondispersing states of clustered particles; the
number of such states is N . These multiparticle states are
dynamically localized due to the kicking, and this remains
true even when interactions are taken into account. The flat
dispersion for these states is shown in Fig. 4 for some
representative cases; we find that the eigenvalues of the
Floquet operator obtained numerically agree very well with
the analytical expression.

As a striking demonstration of the dynamical localization
of multiparticle systems, we show the time evolution of a
system with four particles on 12 sites in Fig. 5. We see

FIG. 5. Time evolution of a four-particle state: (i) V = 1, no
kicking, and (ii) V = 1, with kicking. In both cases, γ = 1 and
T = 0.5. There are four particles on 12 sites, and they are initially
located on four adjacent sites. The second row shows that the particles
do not move even in the presence of interactions.

that the particles remain dynamically localized when they are
initially located on four adjacent sites.

V. SPIN-1/2 FERMIONS WITH ON-SITE INTERACTIONS

We now look at the one-dimensional model of spin-1/2
interactions with on-site interactions between spin-up and
spin-down electrons. This is called the Hubbard model and
it is also exactly solvable by the Bethe ansatz [88,89]. The
Hamiltonian of the model is

H = −γ
∑
j,σ

(c†jσ cj+1σ + H.c.) + U
∑

j

nj↑nj↓. (47)

We naturally identify the first term as HNI and the second
term as HI . As before, we first evaluate [HNI ,HI ], which has
relevant terms

= [c†jσ cj+1σ + c
†
j+1σ cjσ ,nj↑nj↓ + nj+1↑nj+1↓]

= (c†j+1↑cj↑ − c
†
j↑cj+1↑)(nj↓ − nj+1↓)

+ (c†j+1↓cj↓ − c
†
j↓cj+1↓)(nj↑ − nj+1↑). (48)

Next we find

[HNI ,[HNI ,HI ]] = γ 2T 2U{4((nj↑ − nj+1↑)(nj↓ − nj+1↓) + (c†j↑cj+1↑ − c
†
j+1↑cj↑)(c†j↓cj+1↓ − c

†
j+1↓cj↓))

+ [((c†j↑cj+2↑ + c
†
j+2↑cj↑)(nj↓ − nj+1↓) + (c†j↑cj+1↑ − c

†
j+1↑cj↑)(c†j+2↓cj+1↓ − c

†
j+1↓cj+2↓)) + (↑ ↔ ↓)]

+ [((c†j+1↑cj−1↑+c
†
j−1↑cj+1↑)(−nj↓+nj+1↓) + (c†j↑cj+1↑ − c

†
j+1↑cj↑)(c†j↓cj−1↓ − c

†
j−1↓cj↓)) + (↑ ↔ ↓)]}.

(49)The effective Hamiltonian in (20) therefore takes the form

Heff = U
∑

j

nj↑nj↓ − iγ T U

2

∑
j,σ

(c†j+1σ cjσ − c
†
jσ cj+1σ )(njσ̄ − nj+1σ̄ )

− γ 2T 2U

6

∑
j

[4((nj↑ − nj+1↑)(nj↓ − nj+1↓) + (c†j↑cj+1↑ − c
†
j+1↑cj↑)(c†j↓cj+1↓ − c

†
j+1↓cj↓))

+ ((c†j↑cj+2↑ + c
†
j+2↑cj↑)(nj↓ − nj+1↓) + (↑ ↔ ↓)) − ((c†j−1↑cj+1↑ + c

†
j+1↑cj−1↑)(nj↓ − nj+1↓) + (↑ ↔ ↓))

+ (2(c†j↑cj+1↑ − c
†
j+1↑cj↑)(c†j+2↓cj+1↓ − c

†
j+1↓cj+2↓) + (↑ ↔ ↓))]. (50)
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TABLE IV. Effect of various terms in Heff on the state eikj |j↑,j↓〉. The − symbol in the right column
means we have states which only contribute to the bound state at orders higher than γ 2T 2U .

Terms in Heff Acting on eikj |j↑,j↓〉
Unj↑nj↓ Ueikj |j↑,j↓〉
− iγ T U

2 (c†j+1σ cjσ − c
†
jσ cj+1σ )(njσ̄ − nj+1σ̄ ) − iγ T U

2 eikj (|j↑,j + 1↓〉 + |j↑,j − 1↓〉
+|j + 1↑,j↓〉 + |j − 1↑,j↓〉)

− γ 2T 2U

6 [4((nj↑ − nj+1↑)(nj↓ − nj+1↓) − 2γ 2T 2U

3 eikj (2|j↑,j↓〉
+(c†j↑cj+1↑ − c

†
j+1↑cj↑)(c†j↓cj+1↓ − c

†
j+1↓cj↓)) +|j + 1↑,j + 1↓〉 + |j − 1↑,j − 1↓〉)

+((c†j↑cj+2↑ + c
†
j+2↑cj↑)(nj↓ − nj+1↓) + (↑ ↔ ↓)) −

−((c†j−1↑cj+1↑ + c
†
j+1↑cj−1↑)(nj↓ − nj+1↓) + (↑ ↔ ↓))

+(2(c†j↑cj+1↑ − c
†
j+1↑cj↑)(c†j+2↓cj+1↓ − c

†
j+1↓cj+2↓)

+(↑ ↔ ↓))]

We now use the effective Hamiltonian in Eq. (50) to look
at two-particle states. In particular, we will again search for
bound states. In the Hubbard model, two particles can interact
with each other only if they have opposite spins. We will
therefore take the two particles to have spins ↑ and ↓.

We first look at a state where the two particles are at the same
site j . (This is a spin singlet state). A momentum eigenstate
will be of the form

|ψk〉 =
∑

j

eikj |j↑,j↓〉. (51)

[For k = π , this is again an exact eigenstate of both the
Hamiltonian in Eq. (47) and of the kicking problem since
NA = 0 or 2 implies that UK |ψk〉 = |ψk〉.] We will look at the
effect of each of the terms in Eq. (50) on the state |j↑,j↓〉.
This is shown in Table IV, with a sum over j being assumed.

From Table IV, we see that the terms of order γ T U can give
rise to a second-order process where an initial state |j↑,j↓〉
can go to intermediate states |j↑,j ± 1↓〉 and then return to
|j↑,j↓〉. The contribution of this is

γ 2T 2U 2

4
2eikj (1 + eik)(1 + e−ik)|j↑,j↓〉 (52)

divided by the energy difference between the initial and
intermediate states which is U . We therefore get

γ 2T 2U (1 + cos k). (53)

To this we add the contribution of the terms of order γ 2T 2U ,
which is equal to

−4γ 2T 2U

3
(1 + cos k). (54)

The total quasienergy is therefore

E1k = U + γ 2T 2U

(
1 − 4

3

)
(1 + cos k)

= U − 2γ 2T 2U

3
cos2

(
k

2

)
. (55)

This is the quasienergy for a wave function in which there is a
large amplitude for the particles with up and down spins to be
at the same site.

We now look at a different case where the two particles with
opposite spins (to be denoted as σ and σ̄ ) are at adjacent sites
j and j + 1. The wave function with momentum k is then

|ψk〉 =
∑
jσ

eik(j+1/2)sσ |jσ,j + 1σ̄ 〉, (56)

where sσ = +1 if σ = ↑ and −1 if σ = ↓. (This is again a
spin singlet state.) The action of the different terms in Eq. (50)
on the wave function in Eq. (56) is shown in Table V, with a
sum over j and σ being assumed.

Table V shows that the term of order γ T U takes an initial
state sσ |jσ,j + 1σ̄ 〉 to an intermediate state |jσ,j σ̄ 〉 and then
back to the initial state. This gives a contribution equal to

γ 2T 2U 2

4
2eik(j+1/2)(1 + eik)(1 + e−ik)sσ |jσ,j + 1σ̄ 〉. (57)

Dividing by a denominator −U equal to the energy difference
of the two states, we get

−γ 2T 2U (1 + cos k). (58)

FIG. 6. Numerically obtained eigenvalues of the effective Hamil-
tonian as compared with the analytical expressions in Eqs. (55) and
(59), for U = 1, T = 0.25, and γ = 1. All other eigenvalues are zero.
We have one ↑ and one ↓ particle on 20 sites.
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TABLE V. Effect of various terms in Heff on the state eik(j+1/2)sσ |jσ,j + 1σ̄ 〉.

Terms in Heff Acting on eik(j+1/2)sσ |jσ,j + 1σ̄ 〉
Unj↑nj↓ zero

− iγ T U

2 (c†j+1σ cjσ − c
†
jσ cj+1σ )(njσ̄ − nj+1σ̄ ) iγ T Ueik(j+1/2)(|j↑,j↓〉

+|j + 1↑,j + 1↓〉)
− γ 2T 2U

6 [4((nj↑ − nj+1↑)(nj↓ − nj+1↓) 4γ 2T 2U

3 eik(j+1/2)sσ |jσ,j + 1σ̄ 〉
+(c†j↑cj+1↑ − c

†
j+1↑cj↑)(c†j↓cj+1↓ − c

†
j+1↓cj↓))

+((c†j↑cj+2↑ + c
†
j+2↑cj↑)(nj↓ − nj+1↓) + (↑ ↔ ↓)) 2γ 2T 2U

3 eik(j+1/2)sσ

−((c†j−1↑cj+1↑ + c
†
j+1↑cj−1↑)(nj↓ − nj+1↓) + (↑ ↔ ↓)) × (|j + 1σ,j + 2σ̄ 〉 + |j − 1σ,j σ̄ 〉)

+(2(c†j↑cj+1↑ − c
†
j+1↑cj↑)(c†j+2↓cj+1↓ − c

†
j+1↓cj+2↓)

+(↑ ↔ ↓))]

Adding the contribution from the terms of order γ 2T 2U , we
get a total contribution equal to

E2k =
(

4

3
− 1

)
γ 2T 2U (1 + cos k)

FIG. 7. Time evolution of a two-particle state for four cases:
(i) U = 0, no kicking, (ii) U = 1, no kicking, (iii) U = 0, with
kicking, and (iv) U = 1, with kicking. In all cases γ = 1 and
T = 0.25. There are two particles, with spins ↑ and ↓, on 20 sites,
and they are initially located at the same site. The colors of the dots
on the outer (inner) ring show the expectation values of the number
of up (down) spin particles at different sites.

= 2γ 2T 2U

3
cos2

(
k

2

)
. (59)

In Fig. 6, we compare the numerically obtained eigenvalues
of the Floquet operator for two particles with spins ↑ and ↓
with the analytical expressions in Eqs. (55) and (59). The
agreement can be seen to be excellent.

In Fig. 7, we show the time evolution of a system with
two particles, with spins ↑ and ↓, on 20 sites; the particles
are initially at the same site. The third row shows that the
particles are dynamically localized when there is kicking but
no interactions. The fourth row shows that when interactions
are turned on, the particles move but very slowly; this is
because the group velocity for the dispersion in Eq. (55) is
small when γ 2T 2 is small.

VI. BOSONS WITH ON-SITE INTERACTIONS

As our final example of an interacting system, we will
consider a system of bosons with on-site interactions in one
dimension. This is called the Bose-Hubbard model. For a
system with N sites and periodic boundary conditions, the
Hamiltonian is

H =
N∑

j=1

[
−γ (b†j bj+1 + H.c.) + U

2
nj (nj − 1)

]
, (60)

where nj = b
†
j bj is the particle number at site j .

As before we first evaluate

[HNI ,HI ]

= −γU ((b†j+1njbj − b
†
j njbj+1)

− (b†j+1nj+1bj − b
†
j nj+1bj+1))

= −γU (b†j+1(nj − nj+1)bj − b
†
j (nj − nj+1)bj+1). (61)
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TABLE VI. Effect of various terms in Heff on the state eikj |j,j〉.

Terms in Heff Acting on eikj |j,j〉
U

2 nj (nj − 1) Ueikj |j,j〉
− iγ T U

2 (b†
j+1(nj − nj+1)bj − b

†
j (nj − nj+1)bj+1) − iγ T U

2

√
2eikj (|j,j + 1〉 + |j − 1,j〉)

− γ 2T 2U

3 [2nj (nj − 1) − 4njnj+1 − 4γ 2T 2U

3 eikj |j,j〉
+(b†

j bj+1(b†
j + b

†
j+2)bj+1 + H.c.) − 2γ 2T 2U

3 eikj (|j − 1,j − 1〉 + |j + 1,j + 1〉)
+ 1

2 (b†
j (nj+2 + nj − 4nj+1)bj+2 + H.c.)] −

The next term is

[HNI ,[HNI ,HI ]]

= γ 2T 2U [2(nj (nj − 1) + nj+1(nj+1 − 1) − 4njnj+1) + 2(b†j bj+1b
†
j bj+1 + H.c.) + (b†j (nj − 2nj+1)bj+2 + H.c.)

+ (b†j bj+1b
†
j+2bj+1 + H.c.) + (b†j−1(nj+1 − 2nj )bj+1 + H.c.) + (b†j−1bjb

†
j+1bj + H.c.)]. (62)

Putting all this together, the effective Hamiltonian in Eq. (20) takes the form

Heff = U

2

∑
j

nj (nj − 1) (63)

− iγ T U

2

∑
j

(b†j+1(nj − nj+1)bj − b
†
j (nj − nj+1)bj+1)

− γ 2T 2U

3

∑
j

[
2nj (nj − 1) − 4njnj+1

+ (b†j bj+1(b†j + b
†
j+2)bj+1 + H.c.) + 1

2
(b†j (nj+2 + nj − 4nj+1)bj+2 + H.c.)

]
.

(64)

(65)

(66)

We can again look for two-particle bound states just as in
the previous sections. We first look for a state with momentum
k which consists mainly of states in which both the particles
are at site j , namely,

|ψ1k〉 =
∑

j

eikj |j,j 〉. (67)

For k = π , this is an exact eigenstate of the Hamiltonian
in Eq. (60) and of the kicking problem since UK |ψ1k〉 =
|ψ1k〉. The action of Heff on the state in (67) is given in
Table VI.

The terms in the second line in Table VI take |j,j 〉 to an
intermediate state |j,j ± 1〉 and act again to take it back to
|j,j 〉 with a contribution

γ 2T 2U 2

4
2eikj (1 + eik)(1 + e−ik)|j,j 〉. (68)

Dividing by the energy difference between the initial and
intermediate states, U , gives the contribution

γ 2T 2U (1 + cos k). (69)

The third and fourth lines in Table VI give a diagonal
contribution of the form

−4γ 2T 2U

3
(1 + cos k). (70)

The total contribution to the quasienergy is therefore

E1k = U + γ 2T 2U

(
1 − 4

3

)
(1 + cos k)

= U − 2γ 2T 2U

3
cos2

(
k

2

)
. (71)

We now look at the second kind of two-particle bound states
which consists mainly of states where the particles are on sites
j and j + 1, namely,

|ψ2k〉 =
∑

j

eik(j+1/2)|j,j + 1〉. (72)

The action of Heff on this state is given in Table VII.
The second line in Table VII takes |j,j + 1〉 to intermediate

states |j,j 〉 and |j + 1,j + 1〉, and acts again to take it back
to |j,j + 1〉 with a contribution

γ 2T 2U 2

4
2eikj (1 + eik)(1 + e−ik)|j,j + 1〉. (73)

Dividing by the energy difference between the initial and
intermediate states, −U , gives the contribution

−γ 2T 2U (1 + cos k). (74)
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TABLE VII. Effects of various terms in Heff on the state eik(j+1/2)|j,j + 1〉.

Terms in Heff Acting on eik(j+1/2)|j,j + 1〉
U

2 nj (nj − 1) zero

− iγ T U

2 (b†
j+1(nj − nj+1)bj − b

†
j (nj − nj+1)bj+1) iγ T U

2

√
2eik(j+1/2)(|j,j〉 + |j + 1,j + 1〉)

− γ 2T 2U

3 [2nj (nj − 1) − 4njnj+1
4γ 2T 2U

3 eik(j+1/2)|j,j + 1〉
+(b†

j bj+1(b†
j + b

†
j+2)bj+1 + H.c.) −

+ 1
2 (b†

j (nj+2 + nj − 4nj+1)bj+2 + H.c.)] 2γ 2T 2U

3 eik(j+1/2)(|j − 1,j〉 + |j + 1,j + 2〉)

To this we have to add the contributions from the third and
fifth lines of Table VII. The total quasienergy is therefore

E2k = γ 2T 2U

(
4

3
− 1

)
(1 + cos k)

= 2γ 2T 2U

3
cos2

(
k

2

)
. (75)

We note that the dispersions given in Eqs. (71) and (75)
are identical to Eqs. (55) and (59). A comparison between the
numerically obtained eigenvalues of the effective Hamiltonian
and the analytical expressions in Eqs. (71) and (75) therefore
looks exactly the same as in Fig. 6 if we take the same values
of U,T and γ .

Finally, we find that just as in the case of spinless fermions,
we have n-particle bound states which are dynamically
localized and which do not disperse if n � 3; such bound
states consist mainly of states in which all the n particles are
on the same site j . For a system of N sites, there are N such
bound states corresponding to the different possible values of
j . The quasienergy of these states is given by

En = U

2
n(n − 1)

(
1 − γ 2T 2

3

)
. (76)

We have verified that our numerical results for n-particle states
match this analytical expression.

A. Effective Hamiltonian when each site has a double
degeneracy

We will now consider what happens if a uniform potential
is applied at all sites (this is equivalent to applying a
chemical potential μ) in such a way that, in the absence
of periodic driving, the ground state of the interaction part
of the Hamiltonian has a two-fold degeneracy at each site
corresponding to occupancies p and p + 1; here, p can be
0,1,2, . . . . (These are the points where the Mott lobes meet in
the phase diagram of the Bose Hubbard model in the limit of
zero hopping [92].) Namely, we modify the interaction term
in Eq. (60) to

U

2
(nj − c)2, where c = p + 1

2
, (77)

so that the states with nj = p and p + 1 are degenerate with
energy U/8. We then find that the effective Hamiltonian is
given by Eqs. (63)–(66) except that Eq. (63) is now replaced
by U

2

∑
j (nj − p − 1

2 )2.
We will now assume U is so large that the energies of

the states with nj = p and p + 1 are well separated from

the energies of states with any other value of nj . With this
assumption, we will turn on the periodic driving and derive an
effective Hamiltonian Heff in the space of states in which nj =
p or p + 1 at each site. To this end, we introduce pseudospin
Pauli matrices σa

j at each site (where a = x, y, z), so that the
states with nj = p and p + 1 correspond to σ z

j = −1 and +1,
respectively. Hence

nj = p + 1 + σ z
j

2
. (78)

Further, within the space of these two states, we have the
identities

b
†
j =

√
p + 1σ+

j and bj =
√

p + 1σ−
j . (79)

We will derive Heff up to order γ 2T 2U . As before there are
two kinds of contributions: those coming from second-order
processes induced by the terms of order γ T U in Eq. (64),
and those coming directly from the terms of order γ 2T 2U in
Eqs. (65) and (66). The second-order processes can lead to
terms in Heff , which involve either two sites or three sites.
We present the details of the calculation in Appendix B. The
effective Hamiltonian is found to be

Heff = γ 2T 2U

12

∑
j

[
2(p + 1)σ z

j + σ z
j σ z

j+1 + (p + 1)

× (
p + 1 + σ z

j+1

)
(σ+

j σ−
j+2 + H.c.)

+ (2p2 + 4p + 1)
]
. (80)

B. Highly degenerate eigenstates for the case p = 0

We now consider the special case p = 0 for the effective
Hamiltonian in Eq. (80), namely, the states with nj = 0 and
1 are degenerate for the interaction part of the Hamiltonian in
(60). We then get

Heff = γ 2T 2U

12

∑
j

[(
1 + σ z

j

)(
1 + σ z

j+1

)
+ (

1 + σ z
j+1

)
(σ+

j σ−
j+2 + σ−

j σ+
j+2)

]
. (81)

It turns out that this has an exponentially large number of
degenerate eigenstates with zero quasienergy. This can be
shown as follows.

We first consider a local Hamiltonian defined as
Hj = (

1 + σ z
j

)[
1
2

(
1 + σ z

j−1

) + 1
2

(
1 + σ z

j+1

)
+ σ+

j−1σ
−
j+1 + σ−

j−1σ
+
j+1

]
. (82)

It is easy to find the eigenvalues of Hj since it only involves
three spins and therefore eight states. We find that the
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eigenstates have a sixfold degeneracy with eigenvalue zero and
a twofold degeneracy with eigenvalue 4. Further, all the states
in which two neighboring sites (either j − 1,j or j,j + 1) do
not both have σ z

n = +1 are eigenstates with zero eigenvalue.
Next, we note that the Hamiltonian in (81) can be written

as a sum of the Hamiltonians in (82),

Heff = γ 2T 2U

12

∑
j

Hj . (83)

Given this structure, it can be shown that if there is a state
which is an eigenstate of each of the Hj ’s simultaneously,
then it is also an eigenstate of Heff ; further, the eigenvalue of
Heff is equal to the sum of the eigenvalues of all the Hj ’s. (The
opposite is not necessarily true; an eigenstate of Heff need not
be an eigenstate of each of the Hj ’s.) It follows from this and
the statement made above about the eigenstates of Hj that
any state in which no two neighboring sites have σ z

n = +1 is
an eigenstate state of Heff , and the corresponding eigenvalue
(quasienergy) is zero.

If the number of sites N is large, one can use the transfer
matrix method [93] to find the number of states in which
two sites with σ z

n = +1 are not next to each other. Consider
the one-dimensional Ising model in a magnetic field whose
strength is such that the Hamiltonian takes the form

HIsing = J
∑

j

(
1 + σ z

j

)(
1 + σ z

j+1

)
, (84)

where J > 0. The four possible states for two neighboring sites
j and j + 1 have the energies 4J when both sites have σ z

n =
+1 and zero for the other three cases. Hence the eigenstates of
Eq. (84) also have the property that two neighboring sites must
not both have σ z

n = +1. The partition function of this system
at an inverse temperature β is given by

Z(β) = tr

[(
e−4βJ 1

1 1

)N
]

(85)

for a periodic system with N sites. In the limit β → ∞, the
partition function gives the number of eigenstates. For large
N , we see that the number of eigenstates grows exponentially
as

Z(∞) = tr

[(
0 1
1 1

)N
]

� τN, (86)

where τ = (
√

5 + 1)/2 is the golden ratio. This is a lower
bound on the eigenstate degeneracy since there may be other
eigenstates of Heff which are not of the form described above.

Before ending this section, we note that our analysis of the
large number of degenerate eigenstates that we have found
for the effective Hamiltonian derived up to order γ 2T 2U is
only valid up to some finite time scale; beyond that time,
higher-order effects will become important and the system
may eventually heat up [94–96].

VII. EFFECTS OF PERTURBATIONS ON
DYNAMICAL LOCALIZATION

In this section, we will consider various perturbations and
study how far the phenomenon of dynamical localization is

robust against them. We will ignore the effects of interactions
in this section. Hence the discussion below will be the same
for bosons and fermions.

We consider noninteracting spinless particles in one dimen-
sion with nearest-neighbor hopping. This is a bipartite system
with the Hamiltonian

H = −γ

N∑
n=1

(c†ncn+1 + H.c.), (87)

where we have assumed that the system has N sites (we will
take N to be even), and we use periodic boundary conditions.
We Fourier transform to momentum space as

ck = 1√
N

N∑
n=1

e−ikncn,

(88)

cn = 1√
N

∑
−π<k�π

eiknck,

where k goes from −π to +π in steps of 2π/N . Then Eq. (87)
can be written as

H =
∑

−π<k�π

(−2γ cos k)c†kck. (89)

As one example of a perturbation, we consider what happens
if this system is kicked by an operator of the form in Eq. (16),

UK = e−iαNA, (90)

where α can be different from π . If we take the A sublattice
to be the sites corresponding to even values of n, we have

NA =
∑

even n

c†ncn =
∑
all n

1

2
(1 + (−1)n)c†ncn

=
∑

−π<k�π

1

2
(c†kck + c

†
k+πck). (91)

In the two-level space given by k and k + π , we can write
Eqs. (89) and (91) as

H =
∑

0�k<π

(c†k c
†
k+π

)(−2γ cos k)σ z

(
ck

ck+π

)
,

NA =
∑

0�k<π

(c†k c
†
k+π

)
1

2
(I + σx)

(
ck

ck+π

)
, (92)

respectively, where I,σ x and σ z denote identity and Pauli
matrices in pseudospin space. Since the pair of modes (k,k +
π ) (where 0 � k < π ) corresponding to different values of k

are decoupled from each other, we can consider the different
values of k separately. Following Eq. (92), we define two
matrices:

hk = (−2γ cos k)σ z and nak = 1
2 (I + σx). (93)

The Floquet operator for one time period for momentum k is
then given by

Uk = exp

[
− iα

2
(I + σx)

]
exp(i2γ T cos kσ z). (94)
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FIG. 8. Plot of vmax versus α for T = 0.5 and γ = 1. The solid
red line shows the analytical result obtained from Eq. (96), while the
black squares show the result obtained numerically from a study of
the propagation of a particle as discussed in the text.

Writing the eigenvalues of Uk in Eq. (94) as e±iεkT , where εk

is the quasienergy, we find that

εk = − 1

T
cos−1

[
cos

(α

2

)
cos(2γ T cos k)

]
+ α

2T
. (95)

For α = 0 (no kicking), we recover the usual dispersion
εk = −2γ cos k with group velocity given by vg = |dεk/dk| =
2γ sin k, while for α = π (dynamical localization), we obtain
εk = 0 with group velocity vg = 0 for all k. In general, we
have

vg(k) = 2γ cos
(

α
2

)| sin(2γ T cos k) sin k|√
1 − cos2

(
α
2

)
cos2(2γ T cos k)

. (96)

For some given values of α and γ T , it is convenient to
define a quantity vmax as the maximum value of vg in the
range 0 � k � π . This has the physical meaning of being
the maximum velocity (called the Lieb-Robinson bound) with
which information can propagate in the system [97]. We will
see below that vmax plays an important role. For α close to π ,
we can see from Eq. (96) that vmax is of order |π − α|.

In Fig. 8, the solid red line shows a plot of vmax versus α for
T = 0.5 and γ = 1 as obtained from Eq. (96); we see that vmax

smoothly goes from 2 to zero as α goes from zero to π . The
black squares in Fig. 8 show the maximum velocity derived
from a numerical study of the propagation of a particle at long
times as discussed below.

We now study the time evolution of a one-particle state,
where the particle is initially at one particular site in the middle
of a long chain with N sites. Taking this site to be n = 0, the
initial state is given by

|ψ(0)〉 =
∫ π

−π

dk

2π
|k〉, (97)

where we have taken the limit N → ∞ so that k is now a
continuous variable. Upon evolving this for a time T (but
before acting with a δ-function kick), |k〉 → ei2γ T cos k|k〉. The

wave function at site n is then

ψn(T ) =
∫ π

−π

dk

2π
ei(kn+2γ T cos k). (98)

This integral gives a Bessel function [98] and we find that the
probability of finding the particle at site n is

|ψn(T )|2 = |J|n|(2γ T )|2. (99)

This probability remains unchanged when the particle is then
given a kick with an arbitrary strength α, since a kick only
changes the phase of ψn by e−iα on sites belonging to the A

sublattice. We therefore conclude that Floquet evolution for
one time period spreads out the probability from the initial
value of 1 at site n = 0 to the expression given in Eq. (99).

For a given value of 2γ T , it is known that J|n|(2γ T ) rapidly
goes to zero when |n| becomes much larger than 2γ T . Namely,
[98]

J|n|(2γ T ) ∼ 1√
2π |n|

(
eγ T

|n|
)|n|

(100)

for |n| 
 2γ T . Equation (99) therefore implies that the
particle spreads out a distance of the order of 2γ T in time
T ; this is consistent with the fact that vmax = 2γ for a particle
with the dispersion εk = 2γ cos k. To make this more precise,
we calculate the square of the width of the wave function at
time t ,

m2(t) ≡
∞∑

n=−∞
n2|ψn(t)|2. (101)

Using the identity
∑∞

n=1 n2[Jn(x)]2 = x2/4 for real x, we see
from Eq. (99) that

m2(T ) = 1
2v2

maxT
2, (102)

where vmax = 2γ .
We now study what happens to m2 at integer multiples of

T up to very large times. Figure 9 shows a plot of m2 versus
t = nT for α = 3.12, T = 0.5 and γ = 1. Since α is close
to π , the particle should be almost dynamically localized. We
indeed see that m2 remains of order 1 up to a large time t

although there are pronounced oscillations between odd and
even integer values of t/T . Beyond that large time, however,
odd and even integer values of t/T give the same values of
m2. For such large times, a fit of the form

m2 = Atp (103)

gives p = 2.0. Figure 8 compares the dependence of vmax on α

as obtained analytically from Eq. (96) (solid red line) and the
dependence of

√
2A on α as found numerically by fitting the

large time behavior in Fig. 9 to the form in Eq. (103) (black
squares), for γ = 1 and T = 0.5. The fact that the two match
perfectly means that the parameter A in Eq. (103) is equal to
v2

max/2 for all values of α.
We can understand the time dependence of m2 for both

small and large times as follows. We begin with Eq. (94). For
α close to π , the leading-order form of Uk is given by

Uk � exp

[
− iπ

2
(I + σx)

]
exp(i2γ T cos kσ z)

= − cos(2γ T cos k)σx − sin(2γ T cos k)σy. (104)
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FIG. 9. Plot of m2 versus t for α = 3.12, T = 0.5, and γ = 1.
The particle is initially at a site in the middle of a system with 2000
sites. At short times, m2 alternates between two values depending on
whether t/T is an odd or even integer. At long times, a power law fit
between m2 and t shows that m2 increases as t2.0, implying that the
particle is moving ballistically.

Acting with Uk on the column (1,1)T [which corresponds
to the initial wave function |k〉 + |k + π〉 given in Eq. (97)],
we get (−e−i2γ T cos k, − ei2γ T cos k)T , which corresponds to
the wave function −e−i2γ T cos k|k〉 − ei2γ T cos k|k + π〉. This
is the same as the wave function in Eq. (98); this implies
that m2(T ) = (2γ T )2/2. Next, Eq. (104) implies that U 2

k �
I . We therefore have U

2p+1
k � Uk , while U

2p

k � I for any
integer p. This would imply that ψ((2p + 1)T ) � ψ(T ) so
that m2((2p + 1)T ) � (2γ T )2/2, while ψ(2pT ) � ψ(0) so
that m2(2pT ) � 0. Thus m2 is expected to alternate between
(2γ T )2/2 and a small number as t/T alternates between odd
and even integers. This agrees with what we see in Fig. 9 till
t/T reaches a large value of about 90; beyond this time m2

has the same value for odd and even integer values of t/T and
increases quadratically with t . We can estimate the value of
t/T where this behavior begins as follows.

For α = π − η, where η is small, we find from Eq. (94)
that

U 2
k = eiη exp[iη cos(2γ T cos k){cos(2γ T cos k)σx

+ sin(2γ T cos k)σy}] (105)

up to first order in η. We can compare this with the value of
Uk for α = π which, from Eq. (104), is given by

Uk = i exp

{
iπ

2
[cos(2γ T cos k)σx + sin(2γ T cos k)σy]

}
.

(106)

We have seen above, time evolution with Uk gives m2(T ) =
(2γ T )2/2. Ignoring the k-independent phases in Eqs. (105)
and (106) which do not affect the value of m2, we see that the
form of U

2p

k will become identical to the form of Uk when
2p = t/T is given by

pη cos(2γ T cos k) = π

2
. (107)

It is clear that the value of p depends on k. However, the
ballistic motion that is visible for t � 90 in Fig. 9 is dominated
by the values of k where vg(k) = vmax. For α = 3.12 (hence
η = π − 3.12), T = 0.5, and γ = 1, we find from Eq. (96)
that vg = vmax for k = 0.829 and 2.313 (these add up to π ).
At these values of k, we have cos(2γ T cos k) = 0.780; we
then get p = (π/2)/(0.780 × η) = 93. We see from Fig. 9
that t � 2 × 93 × T = 93 does approximately give the point
at which the values of m2 for odd and even integer values of
t/T merge and the ballistic motion begins.

We conclude that for α close to π , a single particle remains
dynamically localized up to a large time of order 1/|π − α|;
up to this time m2 alternates between two values, one of
order (2γ T )2/2 and the other of order zero, for odd and
even values of t/T . Beyond that large time, m2 increases
quadratically with time indicating that the particle moves
ballistically with a velocity vmax, which is of order |π − α|.
(The initial oscillations in m2 are similar to those seen for
other quantities in some recent papers on Floquet time crystals
[60–63].)

As another example of a perturbation, we consider what
happens if there is disorder in the hopping amplitudes and
the system is given δ-function kicks with α = π . Namely, the
Hamiltonian is

H =
N∑

n=1

tn,n+1(c†ncn+1 + H.c.), (108)

where tn,n+1 can have some randomness. If this is kicked with
an operator of the form UK = e−iπNA , we find that the time
evolution operator for two time periods is given by

U 2 = e−iπNAe−iHT e−iπNAe−iHT

= I (109)

since e−iπNA anticommutes with (c†ncn+1 + H.c.). Hence a
particle will be dynamically localized after every integer
multiple of 2T .

VIII. CONCLUDING REMARKS

In this paper, we have examined the effects of interactions
in bipartite lattice systems where periodic δ-function kicks
applied to the sublattice potential with a strength α = π lead to
dynamical localization if we view the system stroboscopically.
We have shown that interactions can generate new kinds of
hoppings between nearest- and next-nearest-neighbor sites,
which depend on the occupation numbers on some nearby
sites. These hoppings give rise to a variety of interesting
effects.

We began by describing a formalism for calculating the
effective Floquet Hamiltonian in an expansion in powers of
T . We then calculated the Hamiltonian to second order in
T in three different models in one dimension. For spinless
fermions with a nearest-neighbor interaction V , we showed
that the two-particle sector has two branches of bound states:
one branch, which has a dispersion lying around V and
another branch with a dispersion around zero. We further
showed that there are n-body bound states, with n � 3, which
are dispersionless; hence they do not move with time. For
the Hubbard model of spin-1/2 fermions with an on-site
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interaction U , we showed that the two-particle spin singlet
sector has two branches of bound states with dispersions lying
close to U and zero, respectively. In this model, we do not
find any n-body bound states if n � 3. For the Bose-Hubbard
model of bosons with on-site interaction U , we again found
two branches of two-particle bounds states with quasienergies
close to U and zero, and dispersionless n-body bound states if
n � 3. We also studied a special case of this model in which the
interactions make states with occupancies p and p + 1 degen-
erate at each site. This allowed us to define a pseudo-spin-1/2
degree of freedom at each site, and we found an effective
Hamiltonian which lies in the subspace of these states. For
p = 0, we obtained a particularly simple form of the effective
Hamiltonian. We showed that a class of eigenstates of the
effective Hamiltonian can be found exactly, and the degeneracy
of the corresponding quasienergy grows exponentially with the
system size. Finally, we showed that if the kicking strength α

is slightly different from π , a particle remains dynamically
localized for a long time of the order of 1/|π − α| but then
moves ballistically with a maximum velocity of the order of
|π − α|.

Turning to possible experimental realizations of the models
studied in this paper, we note that a dynamical localization-
to-delocalization transition has been observed in a quantum
kicked rotor. Such a system is realized by placing cold
atoms in a pulsed standing wave; the transition is detected
by measuring the number of atoms which have zero velocity
when a quasiperiodic driving is applied [99]. Given that cold
atom systems provide a versatile platform for simulating a
wide variety of condensed matter systems, our paper shows
that a combination of periodic driving and interactions can
lead to a variety of remarkable phenomena.

We would like to end by pointing out some possible
directions for future studies. (i) It would be interesting to
study if dynamical localization induced by periodic driving
along with interactions can give rise to topological phases.
We note that in Ref. [65], it was shown that circularly
polarized light (which corresponds to simple harmonic driv-
ing) can give rise to transitions to topological phases; the
effect of interactions was then studied within dynamical
mean-field theory. One can similarly investigate if periodic
δ-function kicks and interactions can drive topological phase
transitions.

(ii) A generalization of our results to bipartite lattice models
in higher dimensions may be interesting. It is not difficult to
carry out a perturbative expansion of the effective Hamiltonian
in any dimension. However, it may be more difficult to find
bound states of two or more particles and to study the time
evolution of few-particle states in higher than one dimension.

(iii) We have mainly concentrated on the dynamics of
systems with a small number of particles. (An exception to
this was the analysis in Secs. VI A and B where we looked
at systems with an arbitrary number of particles.) It may
be useful to study the thermodynamics of a system with
a finite filling fraction of particles. In particular, one can
look at the possible phases of such systems (for instance, if
they are metals, superfluids or insulators) and the nature of
the excitations in the different phases. We note that such a
study requires us to couple the system to a thermal reservoir,
and the phases of the system may depend on the form

of the system-reservoir couplings [100,101]. Some recent
papers have studied scattering processes and heating effects
in periodically driven systems with interactions [94,95].

(iv) We have seen in some cases that there are few-particle
bound states with a dispersionless spectrum. This raises the
question of whether the spectrum would continue to be so
simple if we expand the effective Hamiltonian to higher than
second order in T . Another interesting question to ask is: what
is the time scale up to which the results obtained from the
effective Hamiltonian derived to order T 2 remain accurate?
An answer to this has been provided in Ref. [96] where a
time scale is found up to which the results obtained using
an effective Hamiltonian derived to order T n and the exact
Floquet operator match well and beyond which they start
disagreeing.

We also know that the models of interacting spinless and
spin-1/2 fermions are Bethe ansatz solvable [88,89]. We may
investigate if this has any implications for the properties of the
system in the presence of periodic δ-function kicking.

(v) It is interesting to compare our results with those found
in many-body localization (MBL). In MBL, the localization
is due to the spatial disorder and/or interactions. Some studies
have then looked at the effects of periodic driving on the MBL
state [55–57]. Our motivation and study are completely dis-
tinct. We begin with a system which is completely dynamically
localized even in the absence of disorder. We then probe the
effect of interactions on systems with a few particles. The
few-particle bound states that we find are again dynamically
localized. Unlike MBL systems, the driving protocol plays
the essential role here of localizing the particles. It would
be interesting to study an interplay of dynamical localization
due to driving, spatial localization due to disorder, and
interactions.
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APPENDIX A: MATHEMATICAL IDENTITIES

We begin with the identity

eXeY = eY+[X,Y ]+ 1
2! [X,[X,Y ]]+ 1

3! [X,[X,[X,Y ]]]+···eX. (A1)

If [X,Y ] = γ Y , where γ is a number, then the above equation
implies that

eXeY = e(eγ )Y eX. (A2)

If [X,Z] = 0 along with [X,Y ] = γ Y , then we get

eXeY+Z = e(eγ )Y+ZeX. (A3)

The Baker-Campbell-Hausdorff formula gives

eXeY = eX+Y+ 1
2 [X,Y ]+ 1

12 ([X,[X,Y ]]+[Y,[Y,X]])+···, (A4)
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which implies that

ln(eXeY ) = X + Y + 1
2 [X,Y ]

+ 1
12 ([X,[X,Y ]] + [Y,[Y,X]]) + · · · . (A5)

If X = C + D and Y = C − D, then

ln(eC+DeC−D)

= 2C + [D,C] + 1
3 ([C,D]D + D[D,C]) + · · ·

= 2C + [D,C] + 1
3 [D,[D,C]] + · · · . (A6)

Finally, for fermion operators we know that

[nj ,cj ] = −cj and [nj ,c
†
j ] = c

†
j , (A7)

where nj = c
†
j cj . For bosons,

[bi,b
†
j ] = δij , (A8)

and this gives the same commutation relations between nj =
b
†
j bj and bj ,b

†
j as in Eq. (A7).

APPENDIX B: DERIVATION OF EFFECTIVE
HAMILTONIAN FOR THE BOSONIC MODEL

We now present the details of the calculation of the effective
Hamiltonian when the occupancies p and p + 1 of a site are
degenerate.

1. Second-order processes involving two sites

The various processes will be shown below as tables. Each
table will show an initial (or intermediate) state I and an
intermediate (or final) state F , with Ij and Fj denoting the
number of particles at site j in the I and F states, respectively.

1.

Ij Ij+1 Fj Fj+1 Amplitude

p p p − 1 p + 1 iγ T U

2

√
p
√

p + 1

p − 1 p + 1 p p − iγ T U

2

√
p
√

p + 1

(B1)

(i) The energy denominator coming from the difference
of the unperturbed energies of the initial and final states is
−U . (ii) This process can occur in two ways, as we can have
Fj = p + 1, Fj+1 = p − 1. So we get a total contribution

2

(
iγ T U

2
√

p
√

p + 1

)(−iγ T U

2
√

p
√

p + 1

)(
1

−U

)

= −p(p + 1)γ 2T 2U

2
. (B2)

2.

Ij Ij+1 Fj Fj+1 Amplitude

p p + 1 p − 1 p + 2 iγ T U
√

p
√

p + 2
p − 1 p + 2 p p + 1 −iγ T U

√
p
√

p + 2

(B3)

(i) The energy denominator is −2U . (ii) The total contribu-
tion is

− p(p + 2)γ 2T 2U

2
. (B4)

(iii) A similar process occurs when the initial state has Ij =
p + 1,Ij+1 = p.

3.

Ij Ij+1 Fj Fj+1 Amplitude

p + 1 p + 1 p p + 2 iγ T U

2

√
p + 1

√
p + 2

p p + 2 p + 1 p + 1 − iγ T U

2

√
p + 1

√
p + 2

(B5)

(i) The energy denominator is −U . (ii) This process can
occur in two possible ways. So the total contribution is

− (p + 1)(p + 2)γ 2T 2U

2
. (B6)

We now find that all the above terms can be fitted to an
expression of the form

a1σ
z
j + a2σ

z
j+1 + a3σ

z
j σ z

j+1 + a4. (B7)

Comparing this expression with the contributions given above,
we obtain

− a1 − a2 + a3 + a4 = −γ 2T 2U

2
p(p + 1),

−a1 + a2 − a3 + a4 = −γ 2T 2U

2
p(p + 2),

(B8)

a1 − a2 − a3 + a4 = −γ 2T 2U

2
p(p + 2),

a1 + a2 + a3 + a4 = −γ 2T 2U

2
(p + 1)(p + 2).

These imply

a1 = −γ 2T 2U

4
(p + 1),

a2 = −γ 2T 2U

4
(p + 1),

(B9)

a3 = −γ 2T 2U

4
,

a4 = −γ 2T 2U

4
(2p2 + 4p + 1).

We therefore have the following terms in Heff so far

−γ 2T 2U

4

[
(p + 1)

(
σ z

j + σ z
j+1

)+ σ z
j σ z

j+1 + (2p2 + 4p + 1)
]
.

(B10)
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2. Second-order processes involving three sites

1.

Ij Ij+1 Ij+2 Fj Fj+1 Fj+2 Amplitude
p p p − − − − (B11)

The symbol − in the table means that the terms in Eq. (64) take the state (Ij ,Ij+1,Ij+2) to a state which is not relevant to the
calculation of Heff .

2.

Ij Ij+1 Ij+2 Fj Fj+1 Fj+2 Amplitude

p p p + 1 p + 1 p − 1 p + 1 iγ T U

2

√
p
√

p + 1

p + 1 p − 1 p + 1 p + 1 p p − iγ T U

2

√
p
√

p + 1

(B12)

(i) The energy denominator is −U . (ii) The total contribution is

− p(p + 1)γ 2T 2U

4
. (B13)

3.

Ij Ij+1 Ij+2 Fj Fj+1 Fj+2 Amplitude
p p + 1 p − − − − (B14)

The terms in Eq. (64) take the state (Ij ,Ij+1,Ij+2) to a state, which is not relevant to the calculation of Heff .
4.

Ij Ij+1 Ij+2 Fj Fj+1 Fj+2 Amplitude

p p + 1 p + 1 p p + 2 p
iγT U

2

√
p + 1

√
p + 2

p p + 2 p p + 1 p + 1 p − iγ T U

2

√
p + 1

√
p + 2

(B15)

(i) The energy cost from the on-site energy is −U . (ii) The total contribution is

− (p + 1)(p + 2)γ 2T 2U

4
. (B16)

5.

Ij Ij+1 Ij+2 Fj Fj+1 Fj+2 Amplitude

p + 1 p p p + 1 p − 1 p + 1 iγ T U

2

√
p
√

p + 1

p + 1 p − 1 p + 1 p p p + 1 − iγ T U

2

√
p
√

p + 1

(B17)

(i) The energy denominator is −U . (ii) The total contribution is

− p(p + 1)γ 2T 2U

4
. (B18)

6.

Ij Ij+1 Ij+2 Fj Fj+1 Fj+2 Amplitude
p + 1 p p + 1 − − − − (B19)

The terms in Eq. (64) take the state (Ij ,Ij+1,Ij+2) to a state, which is not relevant to the calculation of Heff .
7.

Ij Ij+1 Ij+2 Fj Fj+1 Fj+2 Amplitude

p + 1 p + 1 p p p + 2 p
iγT U

2

√
p + 1

√
p + 2

p p + 2 p p p + 1 p + 1 −−iγ T U

2

√
p + 1

√
p + 2

(B20)

(i) The energy denominator −U . (ii) The total contribution is

− (p + 1)(p + 2)γ 2T 2U

4
. (B21)
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8.

Ij Ij+1 Ij+2 Fj Fj+1 Fj+2 Amplitude
p + 1 p + 1 p + 1 − − − − (B22)

The terms in Eq. (64) take the state (Ij ,Ij+1,Ij+2) to a state which is not relevant to the calculation of Heff . Looking at the
processes in items 2, 4, 5, and 7 above, we see that all of them interchange nj and nj+2 keeping nj+1 unchanged.

3. Direct contributions from terms of order γ 2T 2U involving three sites

Ij Ij+1 Ij+2 Fj Fj+1 Fj+2 Amplitude

p p p + 1 p + 1 p p
γ 2 T 2U

3 p(p + 1)

p + 1 p p p p p + 1 γ 2T 2U

6 p(p + 1)

p p + 1 p + 1 p + 1 p + 1 p
γ 2T 2U

6 (p + 2)(p + 1)

p + 1 p + 1 p p p + 1 p + 1 γ 2T 2U

6 (p + 2)(p + 1)

(B23)

We see that these processes also interchange nj and nj+2 keeping nj+1 unchanged. Adding up the contributions of the second-order
processes and direct contributions involving three sites, we obtain the following table.

Ij Ij+1 Ij+2 Fj Fj+1 Fj+2 Amplitude

p p p + 1 p + 1 p p
(

1
3 − 1

4

)
γ 2T 2Up(p + 1) = γ 2 T 2U

12 p(p + 1)

p + 1 p p p p p + 1 γ 2T 2U

12 p(p + 1)

p p + 1 p + 1 p + 1 p + 1 p
γ 2T 2U

12 (p + 2)(p + 1)

p + 1 p + 1 p p p + 1 p + 1 γ 2T 2U

12 (p + 2)(p + 1)

(B24)

We now recall from Eq. (78) that nj is related to the pseudo-spin σ z
j . Hence the terms in (B24) can be fitted to a three-spin

interaction of the form

(b1 + b2σ
z
j+1)(σ+

j σ−
j+2 + σ−

j σ+
j+2). (B25)

To be explicit, we find that this part of Heff is given by

γ 2T 2U

12
(p + 1)(p + 1 + σ z

j+1)(σ+
j σ−

j+2 + σ−
j σ+

j+2). (B26)

4. Direct contributions from terms of order γ 2T 2U involving two sites

Finally, we find that the terms in Eq. (65) contribute to terms in Heff which involve only two sites. Using Eq. (78), we find
that

− γ 2T 2U

3

∑
j

[2nj (nj − 1) − 4njnj+1] = γ 2T 2U

3

∑
j

[
2(p + 1)σ z

j + σ z
j σ z

j+1 + (2p2 + 4p + 1)
]
. (B27)

Putting together Eqs. (B10), (B26), and (B27), we find the complete effective Hamiltonian shown in Eq. (80) in the main text.
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[69] P. Bordia, H. P. Lüschen, S. S. Hodgman, M. Schreiber,
I. Bloch, and U. Schneider, Phys. Rev. Lett. 116, 140401
(2016).
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