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Antiferromagnets (AFMs) are presently considered as promising materials for applications in spintronics and
random access memories due to the robustness of information stored in the AFM state against perturbing magnetic
fields. In this respect, AFM multiferroics may be attractive alternatives for conventional AFMs as the coupling
of magnetism with ferroelectricity (magnetoelectric effect) offers an elegant possibility of electric-field control
and switching of AFM domains. Here we report the results of comprehensive experimental and theoretical
investigations of the quadratic magnetoelectric (ME) effect in single crystals and highly resistive ceramics
of Pb(Fe1/2Nb1/2)O3 (PFN) and (1−x)Pb(Fe1/2Nb1/2)O3−xPbTiO3(PFN-xPT). We are interested primarily in
the temperature range of the multiferroic phase, T < 150 K, where the ME coupling coefficient is extremely
large (as compared to the well-known multiferroic BiFeO3) and shows sign reversal at the paramagnetic-to-
antiferromagnetic phase transition. Moreover, we observe strong ME response nonlinearity in the AFM phase in
the magnetic fields of only a few kOe. To describe the temperature and magnetic field dependencies of the above
unusual features of the ME effect in PFN and PFN-xPT, we use a simple phenomenological Landau approach
which explains experimental data surprisingly well. Our ME measurements demonstrate that the electric field
of only 20–25 kV/cm is able to switch the AFM domains and align them with ferroelectric ones even in PFN
ceramic samples.
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I. INTRODUCTION

Pb(Fe1/2Nb1/2)O3 (PFN) and its solid solutions with
PbTiO3 (PT) and PbZr1−xTixO3 (PZT) are among the most
intensively studied multiferroic materials; see recent publi-
cations [1–5]. The disorder in PFN perovskite structure is
due to the presence of two different ions, magnetic Fe3+
and nonmagnetic Nb5+, at the same octahedral position.
Nevertheless, it undergoes a quite normal ferroelectric phase
transition at the temperature TC ≈ 370 K with large enough
remanent polarization (see, e.g., Refs. [6,7]). On cooling, PFN
undergoes antiferromagnetic (AFM) phase transition at the
Néel temperature TN ≈ 150 K, and finally at low temperatures
(11–12 K) it freezes into a spin-glass state which, however,
coexists with the above-mentioned long-range ordered AFM
phase. The latter coexistence has recently been studied in detail
both experimentally and theoretically [3,8].

It is worth also noting that there are a number of publications
in which room-temperature hysteresis loops with a weak
magnetization have been reported for ceramics, nanopowders,
and thin films of PFN [9–11] and its analog Pb(Fe1/2Ta1/2)O3

(PFT) [12,13]. As the Néel temperature of both PFN and PFT
is well below room temperature [1–4,14], a possible origin
of these room-temperature ferromagneticlike properties was
supposed to be the formation of superparamagnetic clusters
[10], Fe spin clustering [5], and the possible presence of a
small admixture of parasitic ferromagnetic or ferrimagnetic
phase such as PbFe12O19 [15]. As a rule, the amount of latter
superparamagnetic or ferromagnetic phases is below the detec-
tion limit for x-ray diffraction and Mössbauer spectroscopy. At
the same time, these phases can be well detected by magnetic
resonance spectroscopy [2,16].

The magnetoelectric (ME) effect had been observed in PFN
many years ago, starting from 1980. This was done mainly
for single crystals and in the AFM phase [1,14,17]. We have
found recently [18] that a sizable ME effect exists also in
the paramagnetic (PM) phase of both PFN single crystals and
ceramics as well as in PFN-PT solid solution ceramics. This
ME effect disappears only in the paraelectric phase, where
there is no spontaneous polarization. It is worth noting that
while the linear ME effect in PFN is well researched [1,14],
the quadratic ME coupling is much less studied despite its huge
value (β333 = 10−17 − 10−16 s/A [1,17]), which is almost
three orders of magnitude larger than that in the well-known
AFM multiferroic BiFeO3(β333 = 2.1 × 10−19 s/A [19,20]).
The reason for this difference is still not clarified.

Large ME coupling in PFN, especially in ceramic samples,
may be attractive for applications in ME memory elements
and spintronics as AFM domains are almost unsusceptible
to external magnetic fields which preserves well the stored
information. The coupling between ferroelectricity and antifer-
romagnetism in PFN offers an intriguing possibility of electric
field control and switching of AFM domains. Such electric-
field switching of AFM domains has been demonstrated in
BiFeO3 single crystals [21].

Another important question which we want to clarify
in this paper is the behavior of the ME coupling between
disordered (dynamically or statically) spin ensemble and
electric polarization in magnetoelectrics with spin-glass or
superparamagnetic phases. In this context, the PFN diluted by
PT is an almost ideal system as both ferroelectric and magnetic
phases can be predictably modified by varying the Ti content
in PFN-xPT solid solution [2,4,7].
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Interestingly, the phenomenological Landau theory predicts
the ME coupling increase on cooling proportional to the
square of magnetic susceptibility [18,22]. Such an increase
has not been experimentally observed in PFN [1], though its
susceptibility increases substantially at temperatures below
TN ≈ 150 K [2]. On the contrary, ME coupling was reported
to decrease below the spin-glass freezing temperature Tg ≈
11 K [1].

In the present paper, we report the results of compre-
hensive investigations of the quadratic ME effect in crys-
tals and highly resistive ceramics of Pb(Fe1/2Nb1/2)O3 and
(1−x)Pb(Fe1/2Nb1/2)O3-xPbTiO3. Usage of ceramic samples
enables performing dielectric and ME response measure-
ments up to the temperatures 400–450 K without marked
influence of conductivity. We pay attention mainly to low
(T < 150 K) temperatures, where the ME coupling coefficient
is extremely large as compared, for instance, to BiFeO3 and
shows sign reversal at the paramagnetic-to-antiferromagnetic
phase transition. Moreover, we observed strong ME response
nonlinearity in the AFM phase in the fields of only a few
kOe. We also present the results of ME measurements in PFN
ceramics with 90° and 180° switching of electric polarization
in the AFM phase which demonstrate that the alignment of
electric domains leads to corresponding alignment of magnetic
domains. To describe the temperature and magnetic field
dependencies of the ME effect we use a simple Landau
theory of phase transitions which explains experimental data
surprisingly well.

The plan of our paper is the following. After a short
description of the applied experimental methods (Sec. II), we
report on our experimental exploration of the ME effect firstly
in pure PFN (both single crystals and ceramics, Sec. III A) and
then in PFN-PT solid solutions (Sec. III B). Section IV presents
phenomenological theory of the quadratic ME coupling in both
paramagnetic and AFM phases. Finally, in Secs. V and VI, we
discuss the results obtained and make conclusions.

II. EXPERIMENT

Single crystals of PFN-xPT at x = 0, 0.03, and 0.2 were
grown by spontaneous crystallization from the PbO-B2O3 flux
in the temperature range from 1010 °C down to 850 °C (see
Refs. [2,23] for details). The fabricated crystals were cubic
shaped with the edges up to 4–6 mm and the faces parallel to
(100) planes of the prototype perovskite structure. Chemical
composition of the crystals obtained has been determined by
the electron probe x-ray microanalyzer “Camebax-Micro,”
using PFN and PbTiO3 as reference samples. In our mea-
surements, crystals were cut either along (111) or (100) planes
depending on the spontaneous polarization direction.

Ceramic samples of PFN-xPT (x = 0, 0.05) solid solution
have been fabricated by the solid-state reaction route using
high-purity Fe2O3,Nb2O5, PbO, and TiO2. These oxides were
batched in stoichiometric proportions and 1 wt % of Li2CO3

was added to the batch. This addition promotes formation
of the PFN perovskite modification and inhibits conductivity
[24]. The sintering has been performed at 1030 ◦C−1070 ◦C
for 2 h in a closed alumina crucible. The density of the obtained
ceramics was about 92%−97% of the theoretical one. X-ray

diffraction analysis showed that all investigated compositions
were single phase and had a perovskite-type structure.

Typical sample size for ME measurements was 2.5 × 5 ×
0.9 mm3. The electrodes for measurements were deposited by
silver paint (SPI Supplies, USA). Before the ME measure-
ments, ceramic samples were poled at room temperature by
dc electric field of 10 kV/cm for 10 min. Single crystals were
poled at T = 77−180 K to avoid influence of conductivity
which makes crystal poling at higher temperatures impossible.
Poled samples were tested by measuring the piezoelectric
coefficient, d31, by the standard resonance-antiresonance
method.

The ME coefficient was determined by a dynamic method
[25] as a function of bias magnetic field H at a small ac
field h = 1−5 Oe and frequencies 0.2–1 kHz (at these low
frequencies ME response did not depend on frequency) by
measuring the voltage across the sample utilizing a lock-in
amplifier with a high-impedance preamplifier. Both ac and dc
magnetic fields were applied normally to the surface of the
sample with electrodes. In every ME experiment, more than
two runs were repeated with the direction of H reversed and
the change of the signal sign was confirmed. In this way, a
possible spurious signal was segregated from a true ME one
whose sign is dependent on the PH product.

In our experiment, the ME effect is manifested as a
polarization P induced by a small ac magnetic field hac under
application of dc field Hdc [25,26]. The magnetic field induced
components of the polarization can be obtained from the
free-energy expansion [27]:

F (Ē,H̄ ) = F0 − P s
i Ei − Ms

i Hi − 1

2
ε0εijEiEj

− 1

2
μ0μijHiHj − αijEiHj

− 1

2
βijkEiHjHk − · · · , (1a)

Pi = − ∂F

∂Ei

= P s
i + ε0εijEj + αijHj

+ 1

2
βijkHjHk + · · · , (1b)

where i,j,k = x,y,z are Cartesian coordinates, P s and Ms

are, respectively, the spontaneous polarization and magneti-
zation; μij and εij are, respectively, magnetic and dielectric
permittivities (μ0 and ε0 are the vacuum permittivities in SI
units); αij and βijk are linear and linear-quadratic ME coupling
coefficients, respectively. Using collinear dc and ac magnetic
fields H = Hdc + h sin ωt , the first harmonic amplitude of the
ac polarization detected by lock-in detector is

Pi(T ) = αij (T )hj + βijj (T )Hjhj . (1c)

Since the linear ME coupling in PFN is much smaller
than the quadratic one [14] and we are interested primarily
in the quadratic ME effects, we neglect the α term hereafter.
Technically, the quadratic ME effect is described by a third-
rank tensor βijk for the arbitrary orientations of polarization
and magnetic field vectors. In our experimental geometry,
when both magnetic field and polarization are aligned along
one crystallographic direction ([111] or [100] depending on
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the spontaneous polarization direction), the measured ME
coefficient is β333. Obviously, only an effective coupling
constant β333, which represents an average of the different
elements of the βijk tensor, should be considered in ceramics.
For simplification, we will omit indices in the β333 element.
Note that a microscopic theory of the quadratic ME effect for
C3h symmetry has been presented in Ref. [28].

The ME response was measured as the voltage induced by
the ac polarization in a sample. The ME voltage is determined
from Eq. (1b) as

UME = dPac

dt
(ωC + 1/Ri)

−1 ≈ βHdchS

C
, (2)

where C and S are the samples’ capacitance and area,
respectively. The expression for UME is valid under the
condition (ωC)−1 � Ri, where Ri ∼ 109� is the impedance
of a lock-in amplifier with preamplifier. This relation is always
fulfilled at the frequencies 0.2–1 kHz due to high capacitance
of the samples.

III. EXPERIMENTAL RESULTS

As the dielectric and magnetic properties of our PFN
single crystals and ceramics have been studied previously (see,
e.g., Refs. [2,6,7]), here we present the results of ME effect
measurements only. Also, here we primarily use the PFN-xPT
solid solution crystals because ceramic samples contained
ferromagnetic or superparamagnetic impurity phases, which
masked intrinsic ME response at low magnetic fields.

A. ME effect in PFN crystals and ceramics

Figure 1(a) shows temperature dependence of the ME
voltage measured in PFN crystal when a magnetic field
is parallel to spontaneous polarization, aligned along the
[111] crystal direction. One can see that the ME response
strongly increases on cooling below the Néel temperature
and changes sign at the transition from PM to AFM phase.
Note that a similar effect has been observed previously (in
measurements of electric-field-induced ME moment) but with
lower resolution [1]. The sign change of the ME voltage
is well seen in highly resistive PFN ceramics [Fig. 1(b)].
In ceramic samples, the ME signal can be measured up to
the temperature of ferroelectric (FE) phase transition as it
was demonstrated in Ref. [18]. Note that the quadratic ME
coefficient in the AFM phase of PFN (β333 = 2.5 × 10−17 s/A
in a crystal at T = 10 K and β = 1.0 × 10−16 s/A in ceramics
at T = 20 K) is two to three orders of magnitude higher than
that in BiFeO3 crystal (β333 = 2.1 × 10−19 s/A at T = 4.2 K
[19]). Such a large ME coefficient in PFN ceramics indicates
that the sublattice magnetization is preferably aligned along
electric polarization so that magnetization can in principle be
switched by an electric field in AFM phase.

The data in Fig. 1 also suggest that the paramagnetoelectric
(PME) contribution is nonzero in the magnetically ordered
phase. It competes with the ME contribution related to AFM
order parameter which has the opposite sign. This is well
seen in ceramics, where the inversion point is shifted to about
100 K due to lower Néel temperature typical of Li-doped PFN
ceramics [29]. These two contributions to the ME response in
the free-energy expansion have the following form [18] (see

FIG. 1. Temperature dependence of the ME voltage measured in
poled PFN crystal (a) and ceramics (b) in the field cooling (FC) and
field heating (FH) modes under the field of 10 kOe. The magnetic
field H is applied parallel to the electric polarization P .

also Sec. IV, below):

GME = 1
2 (ξMP M2 + ξLP L2)P 2. (3)

Here L is the AFM order parameter and ξMP and ξLP are
biquadratic ME coefficients that couple corresponding order
parameters.

Essentially nonlinear dependence of ME response on
applied field in the AFM phase [Fig. 2(a)] may be gen-
erated by the competition between two terms in Eq. (3)
as they have opposite signs and different temperature and
field dependencies. In particular, the (positive) AFM order
parameter saturates at low temperatures, while the absolute
value of the (negative) second term still increases as the
square of susceptibility. However, this is only one of the
possible reasons for the observed nonlinearity. The second
mechanism of the ME effect nonlinearity can be caused by
spin-flip and spin-flop transitions, but for PFN the critical
fields of these transitions are much higher than those used in
our experiment. Namely, the estimations of both the above
fields from exchange energies [2,30] show that they are larger
than 50 and 250 kOe, respectively. Magnetostriction may
also play a role in the AFM phase. As it will be shown
in Sec. IV, a simple phenomenological Landau-Ginzburg-
Devonshire (LGD) approach with appropriate coefficients in
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FIG. 2. ME voltage vs magnetic field in AFM (a) and PM (b) phases of PFN ceramics at selected temperatures shown in the legends. The
anomaly around zero magnetic field in (b) is due to a parasitic superparamagnetic phase. Solid lines show the fits to Eqs. (33) and (34) of
Sec. IV.

the free-energy expansion allows one to explain satisfactorily
the ME response nonlinearity.

In the PM phase where L = 0, the ME voltage becomes a
linear function of the magnetic field [Fig. 2(b)] as only the PM
term contributes to the ME effect now. The anomaly around
zero magnetic field is produced by a parasitic superparamag-
netic phase in ceramics.

B. ME effect in PFN-xPT solid solution

An addition of PT to PFN permits us to manipulate the
parameters of magnetic and FE phase transitions in the PFN-
xPT solid solution. For instance, at the PT concentration x is
larger than about 10 mol %, the long-range AFM ordering of
Fe3+ spins is suppressed [2,4], and the ferroelectric phase has
tetragonal symmetry [4,7]. For the reader’s convenience, Fig. 3
reports the magnetic and electric phase diagrams of PFN-xPT

FIG. 3. Phase diagrams of PFN-xPT solid solution. Solid and
dashed lines separate different magnetic and electric phases. The
red line with stars separates paraelectric (PE) and ferroelectric
(FE) phases. The dotted brown line marks the morphotropic phase
boundary between rhombohedral (Rh) and tetragonal (T) phases.
SAF indicates the superantiferromagnetic state. SG and CG stand for
spin-glass and spin-cluster-glass states, respectively [1,2].

solid solution plotted on the base of published experimental
data [2,4,7].

Figure 4(a) shows temperature dependence of the ME
voltage measured in the PFN-0.03PT crystal. The weak
dilution of PFN by nonmagnetic Ti ions lowers the Néel
temperature from 150 to 120 K but does not essentially
change the temperature behavior of the ME response. The
latter becomes much more nonlinear vs the magnetic field
as compared to undoped material [Fig. 4(b)]. Both Figs. 4(a)
and 4(b) show some anomalous variation in ME response at
the temperatures 30–40 K. For instance, the magnetic field
dependence of the ME voltage in Fig. 4(b) changes its slope
from negative to positive at H > 13 kOe. The physical origin
of this feature is presently not clear.

It is expected that further increase of the Ti concentration
would weaken the AFM phase so that the negative PM-like
(i.e., PME) contribution may become dominating. Indeed, the
negative PME contribution dominates at all the temperatures
already for PFN-0.05PT [Fig. 5(a)] as its Néel temperature
is essentially shifted to low temperatures around 55–60 K.
Besides, as it can be seen from the phase diagram (Fig. 3),
the magnetic state of this composition is complex enough.
It contains superposition of various phases: PM, superanti-
ferromagnetic (SAF), AFM, and spin glass (SG). Therefore,
a complex interplay between electric and different magnetic
order parameters occurs in PFN-0.05PT. As a result, the ME
response being a perfect linear function of magnetic field in the
PM phase becomes strongly nonlinear at lower temperatures in
the magnetically ordered phase even at low fields of a few kOe
[Fig. 5(b)]. This composition is also close to the morphotropic
boundary between the tetragonal and rhombohedral phases.
We cannot thus exclude the rotation of the polarization from
the [111] rhombohedral axis to the [100] tetragonal one on
cooling that will essentially influence the ME response. At
T ≈ 35 K, the ME coefficient is negative with large enough
modulus, β = −1.5 × 10−17 s/A. We calculate this value from
the slope of the UME(H ) curve at low fields. However, the ME
coefficient decreases almost to zero on further cooling even at
low fields due to the competition between the AFM phase and
spin-glass state.
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FIG. 4. Temperature (a) and magnetic field (b) dependencies of the ME voltage in PFN-0.03PT solid solution crystal under magnetic field
parallel to the [111] crystal direction.

Further dilution of PFN by Ti (PFN-0.2PT composition)
suppresses the long-range ordering of Fe3+ spins so that only a
spin-glass state emerges below the freezing temperature about
23 K. This can be seen from zero field cooled (ZFC) and
field cooled (FC) magnetic susceptibilities shown in the inset
of Fig. 6(a) and the phase diagram in Fig. 3. The ME voltage
thus increases on cooling according to temperature variation of
the FC magnetic susceptibility as polarization and dielectric
susceptibility are almost constant at these temperatures; see
Fig. 6(a). The ME response is negative, PME-like, but large
enough at low temperatures (β = −1.45 × 10−17 s/A at T =
10 K), being comparable with that in the AFM phase of
PFN. The ME response is a perfect linear function of applied
magnetic field even at the lowest temperatures, Fig. 6(b). The
data presented in Fig. 6 can be thus described by the following
relation derived by us in Ref. [18]:

β(T ) = −PS(T )χFE(T )[χM (T )]2ξMP . (4)

The solid line in Fig. 6(a) is a fit to Eq. (4) assuming
that the only temperature-dependent quantity is the magnetic
susceptibility shown in the inset of Fig. 6(a). Taking into
account that the FC susceptibility in the SAF and SG phases
depends on magnetic field (it was measured at 500 Oe,

while ME voltage was measured at 10 kOe), we obtain the
qualitatively good coincidence with experiment.

IV. MAGNETOELECTRIC COEFFICIENT IN THE SIMPLE
PHENOMENOLOGICAL MODEL

A. Statement of the problem and free-energy function

The electric polarization of a magnetoelectric depends on
magnetic field H , PME ≡ P (H ). Below we will find P (H )
from the minimum of corresponding free energy, but for now
we suppose that the function P (H ) is known. The magnetic
field in experiment consists of two parts,

H = Hdc + hac, hac = h sin ωt, hac � Hdc.

As hac � Hdc, we can expand the polarization P (H ) =
P (Hdc + hac) in a power series in small hac. This yields

P (Hdc + hac) ≈ P (Hdc) + hac
dP

dH

∣∣∣∣
H=Hdc

+ · · · .

Now, according to Eq. (1b), P (Hdc) is proportional to H 2
dc;

i.e., rewriting Eq. (1b) in scalar notation, we obtain

P (Hdc) = P0 + 1
2βH 2

dc,
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where P0 comprises three first terms in Eq. (1b) and β

is a quadratic ME coupling coefficient. The term P (Hdc)
is inaccessible by experiment with lock-in detection on the
frequency of the hac field so that we have for experimentally
measurable polarization

Pac(H ) ≈ h
dP

dH

∣∣∣∣
H=Hdc

.

As the measured ME voltage is related to the polarization
as UME = (S/C)Pac(H ), where S is an area of electrode and
C is a sample capacity, we finally obtain

UME = S

C
Pac(H ) ≈ Sh

C

dP

dH

∣∣∣∣
H=Hdc

.

As the coefficient Sh/C does not depend on H = Hdc, i.e.,
it is a constant, our result for UME will be proportional to
dP /dH . By comparing Eq. (2) with the last expression, the
quadratic ME coefficient can be expressed as

β = 1

Hdc

dP

dH
, H = Hdc. (5)

The aim of the present consideration is to study the magnetic
field and temperature dependence of the magnetoelectric
coefficient β of Pb(Fe1/2Nb1/2)O3 to describe the experiment
in its PM and AFM phases. Below we suggest a simple
phenomenological approach which can be used not only for
a description of the ME effect in PFN, but in other AFM
multiferroics. For this purpose we use the simplest possible
free-energy function [18]:

G = GP + GM + GME,

GP = 1
2αP (T )P 2 + 1

4βP P 4 − PE,

GME = 1
2

(
ξMP M2 + ξLP L2

)
P 2,

GM = 1
2αL(T )L2 + 1

4βLL4 + 1
2αM (T )M2

+ 1
4βMM4 + 1

2ξLML2M2 − MH, (6)

where P , M , and L are, respectively, ferroelectric (po-
larization), ferromagnetic (magnetization), and AFM order

parameters; E and H are the strengths of external electric and
magnetic fields. The only temperature-dependent coefficients
are those where explicit temperature dependence is indicated,
namely,

αP (T ) = αP0 (T − TC), αM (T ) = αM0 (T − θ ),

αL(T ) = αL0 (T − TN ), (7)

where TC ≈ 370 K is the temperature of paraelectric-
ferroelectric phase transition, TN ≈ 150 K is the Néel tem-
perature, and θ ≈ −520 K is the temperature of the (virtual)
ferromagnetic phase transition [2]. Below we will use this
phase transition temperature hierarchy to describe the exper-
imentally observed β(T , H ) dependencies. Note that for our
purposes it is sufficient to consider the ferroelectric phase
transition of the second kind; i.e., we truncate the power series
in GP on the P 4 term assuming that βP > 0.

We note here that the stresses and strains are already
included implicitly in the free-energy function (6). The point
is that for the quasihomogeneous system (single crystal,
poled micrograin ceramics) studied here, the inhomogeneous
stresses are effectively averaged so that only spatially homoge-
neous ones can affect the free energy. In turn, the homogeneous
spontaneous elastic stresses and strains can be “removed”
from the resulting free-energy function (6) by the preceding
minimization of the initial free-energy function over stresses
and strains. This had been done in Ref. [31] and leads simply to
renormalization of the initial free-energy function coefficients.

B. Calculation of temperature and magnetic field dependence of
magnetoelectric coefficient

The idea behind this calculation is natural and simple.
First, minimizing the free energy (6), we find the field
(magnetic and electric) and temperature dependences of order
parameters P,M , and L and then, taking the derivative dP /dH

(with respect to the field and temperature dependences of
the rest order parameters), obtain the desired dependence
β(T ,H ) in paramagnetic (L = 0,T > TN ) and antiferromag-
netic (L �= 0,T < TN ) phases of PFN. Note that according
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to Eq. (5) the quadratic ME coefficient can be expressed as
β = (1/H )(dP/dH ). Therefore, the experimentally measured
ME voltage is directly proportional to the dP/dH .

The equations for equilibrium order parameters assume the
form

∂G

∂P
= 0,

∂G

∂M
= 0,

∂G

∂L
= 0, (8)

∂G

∂P
= P (αP + ξMP M2 + ξLP L2) + βP P 3 − E = 0, (9)

∂G

∂M
= M(αM + ξLML2 + ξMP P 2) + βMM3 − H = 0,

(10)

∂G

∂L
= L(αL + ξLMM2 + ξLP P 2) + βLL2. (11)

We pay attention here that as parameters P and M couple
with external fields [there are terms PE and MH in the free
energy (6) and hence E and H in Eqs. (9) and (10)], while L

does not, this permits us to factor Eq. (11) for L considering
separately the cases L = 0 (PM phase) and L �= 0 (AFM
phase). This eventually yields the nonlinear dependence β(H )
in the AFM phase.

Actually, the set of equations (8) [with respect to its
detailed versions (9)–(11)] contains all the information we
need. Namely, it determines the fields (electric and magnetic)
and temperature dependences of order parameters P , M , and L

and hence their field (and temperature if necessary) derivatives
also.

The set (9)–(11) has plenty of solutions depending on the
phase we choose. The experiment to be described suggests to
us what class of solutions we are to pick up. Namely, as we do
not have experimental dependences on the electric field, we
set it to be zero: E = 0. The second fact is that ferroelectric
TC = 370 K is higher then TN = 150 K so that the spontaneous
polarization P exists and we do not choose the solution P = 0
(at E = 0) of Eq. (9). Rather, we cancel P in (9) at E = 0 and
obtain the following equation for spontaneous polarization
P = P (T ,H ):

αP + ξMP M2 + ξLP L2 + βP P 2 = 0. (12)

The set of equations (12), (10), and (11) defines the
necessary solutions for our experimental case of interest.
Namely, in the paramagnetic case we should consider solutions
with L = 0 while in AFM one we consider L �= 0.

1. Paramagnetic phase

In the paramagnetic phase we consider the solution L = 0
so that Eq. (11) is satisfied identically. The set of remaining
equations at L = 0 assumes the form

αP + ξMP M2 + βP P 2 = 0, (13)

M(αM + ξMP P 2) + βMM3 = H. (14)

Note that while here P is spontaneous (electric-field-
independent) polarization, the magnetization M is entirely
generated by magnetic field. In principle, the nonlinear term
βMM3 can be neglected but we will not do that as the set (13)

and (14) is very simple and admits an analytical expression
for magnetoelectric coefficient. Namely, it follows from
Eq. (13) that

P 2 = −αP − ξMP M2

βP

⇒ P = Ps(T )

√
1 − ξMP M2

|αP (T )| , (15)

where we explicitly show the temperature-dependent
quantities. Here P 2

s = −αP /βP > 0 is a spontaneous
polarization value in the “pure ferroelectric” (i.e., without
magnetic contribution) case, where αP < 0. The derivative
dP /dH can be easily obtained from (15)

UME ∼ dP

dH
= − Ps(T )ξMP∣∣αP (T )

√
1 − ξMP M2

|αP (T )|
∣∣M

dM

dH

≡ − ξMP√
βP

√
|αP (T )| − ξMP M2

M
dM

dH
. (16)

The last expression in (16) shows that the temperature
dependence of β ∼ dP/dH in paramagnetic phase comes
from |αP (T )| under the square root in the denominator and
hence is weak. Another important fact is that we already
have a negative sign of β. This is because ξMP > 0 (at
least this can be asserted from comparison with experiment)
and MM ′ = (1/2)(dM2/dH ) > 0 as M(H ) is an increasing
function.

The dependence M(H ) can be obtained from (10) by
substitution of P 2 from Eq. (15), which yields

Q1M + Q2M
3 = H, Q1 = αM (T ) + |αP (T )|ξMP

βP

,

Q2 = βM − ξ 2
MP

βP

. (17)

In this case
dM

dH
= 1

Q1 + 3Q2M(H )2 . (18)

To find the dependence UME(H,T ) ∼ dP/dH numerically,
we first solve Eq. (17) at a given temperature for M(H )
and then substitute the obtained solution to Eq. (16) with
respect to relation (18). Our numerical solution shows (see
also below) that the dependence UME(H,T ) is a linear function
of H and in the experimentally available temperature range
(∼150−200 K) it is almost temperature independent.

To obtain UME(H,T ) analytically, we look for a solution of
Eq. (17) in the form

M = χ1H + χ3H
3 + · · · + χ2n+1H

2n+1. (19)

Substitution of this expression into Eq. (16) gives for the
first two coefficients (we can calculate as many coefficients as
possible) χ1 = 1/Q1, χ3 = −Q2/Q

4
1 so that

M ≈ H

Q1
− Q2

Q4
1

H 3. (20)

Then, in the lowest approximation in H ,

P ≈ Ps

(
1 − 1

2

ξMP H 2

Q2
1|αP |

)
, (21)

UME ∼ dP

dH
= − ξMP

Q2
1

√|αP |βP

H. (22)
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The expression (22) is the solution in the paramagnetic
phase. In accord with experiment it has the form of a linear
function of H with a negative slope. Below we will rewrite its
temperature dependence explicitly and plot this dependence.

2. Antiferromagnetic phase

Although this case is more complicated than the paramag-
netic one, the method of solution here is essentially the same.
In this case we consider the solution with L �= 0 (spontaneous
AFM moment) of Eq. (11). Canceling L in (11), we obtain now
the following system of equations instead of (13) and (14):

αL + ξLMM2 + ξLP P 2 + βLL2 = 0, (23)

M(αM + ξLML2 + ξMP P 2) + βMM3 = H. (24)

Equations (12), (23), and (24) constitute the “master” set
of equations for the AFM phase. Equation (23) permits us to
express L2 via M2 and P 2 and eliminate it from (24). This
yields

M

[
αM + ξLML2

0 + P 2

(
ξMP − ξLMξLP

βL

)]

+M3

(
βM − ξ 2

LM

βL

)
= H. (25)

Here we introduce the equilibrium spontaneous AFM
moment L2

0 = −αL/βL. The next step is to use the same trick
to eliminate L2 from Eq. (12) thus expressing P 2 via M2 only.
We have

P 2 = P 2
s − ξMP

βP

M2 − ξLP

βP

L2 = P 2
s − ξMP

βP

M2

− ξLP

βP

(
L2

0 − ξLM

βL

M2 − ξLP

βL

P 2

)

= P 2
s − ξLP

βP

L2
0 − M2

(
ξMP

βP

+ ξLM

βL

)
+ ξ 2

LP

βP βL

P 2. (26)

Equation (26) for P 2 looks complicated but actually it has
a simple form, P 2 = a1 + a2P

2. Its solution has the form
P 2 = a1/(1 − a2), or explicitly,

P 2 = A0 + B0M
2, A0 =

P 2
s − ξLP

βP
L2

0

1 − ξ 2
LP

βP βL

,

(27)

B0 = 1

βP

ξLMξLP

βL
− ξMP

1 − ξ 2
LP

βP βL

.

Substitution of Eq. (27) into Eq. (25) generates the
following equation for M(H ):

U1M + U2M
3 = H, (28)

U1 = αM + ξLML2
0 + A0

(
ξMP − ξLMξLP

βL

)
,

U2 = βM − ξ 2
LM

βL

+ B0

(
ξMP − ξLMξLP

βL

)
.

Equation (28) has a form similar to Eq. (17). To obtain
coefficients Q1 and Q2, we should not only put L0 = 0 in
U1 and U2 but also put ξLM = ξLP = 0. The comparison of
P 2(M2) dependences in the PM phase (15) and in the AFM
phase (27) shows that while in the AFM phase B0 > 0, in
the PM phase (ξLM = ξLP = 0) B0 becomes negative which is
responsible for the sign change of magnetoelectric coefficient
while traversing TN .

Proceeding along the same lines, as in the PM phase, we
obtain the desired dependence β(T ,H ) in the AFM phase,
suitable for numerical calculations,

UME ∼ dP

dH
= B0√

A0 + B0M2
M

dM

dH
,

(29)
dM

dH
= 1

U1 + 3M2U2
.

The numerical calculations with the help of Eq. (29) show
that it is possible to obtain very good analytical approximation
to this expression. Namely, looking for an approximate
solution of Eq. (28) in the form (19), we obtain

M ≈ H

U1
− U2

U 4
1

H 3, (30)

and further substitute this solution into (29). This gives the ana-
lytical formula, whose numerical outcome is indistinguishable
from that of (29):

dP

dH
= B0H

U 2
1

1
U1

− 4U2

U 4
1

1H 2√
A0 + B0

U 2
1
H 2 − 2B0U2

U 5
1

H 4
. (31)

The approximate analytical solution in the form of a power
series gives

dP

dH
≈ B0H

U 2
1

√
A0

[
1 − H 2 U1B0 + 8U2A0

2A0U
3
1

]
,

β = 1

H

dP

dH
≈ B0

U 2
1

√
A0

[
1 − H 2 U1B0 + 8U2A0

2A0U
3
1

]
,

(32)

showing explicitly that the ME coefficient β is positive for low
fields but it decreases with field increase.

C. Numerical results

1. Theoretical curves

It is convenient to introduce the dimensionless tempera-
ture τ = T/TC and coefficient κ = TC/TN > 1. As in PFN
TC ≈ 370 K,TN ≈ 150 K, and θ ≈ −520 K, in these units the
ferroelectric phase is realized at τ < 1 and AFM phase at
τ < 1/κ = 15/37 ≈ 0.405. Hence the PM phase occurs at
0.405 < τ < 1. Now we rewrite the temperature-dependent
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coefficients in the above units to obtain

A0 = αP0TC

βP

[
1 − ξ 2

LP

βP βL

] [1 − τ − κ2(1 − κτ )] ≡ a1 + a2τ,

a1 = αP0TC

βP

[
1 − ξ 2

LP

βP βL

] (1 − κ2), a2 = αP0TC

βP

[
1 − ξ 2

LP

βP βL

] (κ2κ − 1), κ2 = ξLP αL0TN

βLαP0TC

. (33)

Q1 = αM0TC

(
τ + |θ |

TC

)
+ ξMP αP0TC

βP

(1 − τ ) ≡ q11 + q12τ,
√

|αP | = q13

√
1 − τ , (34)

q11 = αM0 |θ | + ξMP αP0TC

βP

, q12 = αM0TC − ξMP αP0TC

βP

, q13 = √
αP0TC.

U1 = g1

(
τ + |θ |

TC

)
+ g2(1 − κτ ) + g3[1 − τ − κ2(1 − κτ )] ≡ u11 + u12τ, (35)

g1 = αM0TC, g2 = ξLMαL0TN

βL

, g3 = αP0TC

βP

[
1 − ξ 2

LP

βP βL

]
(

ξMP − ξLMξLP

βL

)
,

u11 = g1
|θ |
TC

+ g2 + g3(1 − κ2), u12 = g1 − g2κ + g3(κ2κ − 1).

The reduced temperatures are equal to |θ |/TC ≡ 520/370 = 1.405, κ = TC/TN = 2.47. Having temperature-dependent
parameters (33)–(35), we can write the dependences UME(H,τ ) in both PM and AFM phases explicitly,

UME ∼ dP

dH
= −p0

H

(q11 + q12τ )2
√

1 − τ
, p0 = ξMP

q13
√

βP

, PM phase, (36)

UME ∼ B0H

(u11 + u12τ )5/2

(u11 + u12τ )3 − 4U2H
2√

(a1 + a2τ )(u11 + u12τ )5 + B0(u11 + u12τ )3H 2 − 2B0U2H 4
, AFM phase, (37)

where B0 and U2 are also (fitting) parameters. Note that
magnetic field H here can be regarded as both a dimensional
and a dimensionless quantity. Really, if we divide H by some
H0 and introduce dimensionless field h = H/H0, we simply
renormalize coefficients such as p0.

The field dependences (36) and (37) are reported in Fig. 7.
The close resemblance to corresponding experimental curves
can be seen. Below we will fit these curves to real experimental
data.

We plot the temperature dependence of ME voltage in Fig. 8
at dimensionless magnetic field h = 1 and other parameters
similar to those in Fig. 7. At T = TN the discontinuity in the
temperature dependence is seen. This discontinuity is due to
the fact that coefficients ξLM and ξLP do not have temperature
dependence and appear abruptly in the AFM phase. In our
opinion, the effects of weak site disorder in the Fe spins of PFN
would, in accordance with experiment, lift this discontinuity.
These effects give spin-glass features such as the difference in
field cooled and field heated regimes, which are present in the
vicinity of TN in the experimental curves. The smearing of the
discontinuity may appear in the form of additional temperature
dependence of the coefficients ξLM and ξLP so that they will
no more appear abruptly in AFM phase.

2. Fitting to experiment

The fitting of the field dependences of the ME volt-
age by the expressions (33) (PM phase) and (34) (AFM
phase) is shown in Fig. 2 by solid lines. The best fit

in the AFM phase [Fig. 2(a)] has been achieved for the
following parameters values: B0 = 1000,U2 = 0.04,u11 =
0.9,u12 = 0.376,a1 = 1.0,a2 = 2.9933. For Fig. 2(b) (PM
phase) the best fit is achieved at q11 = 3.0,q12 = 2.2,p0 =
185.85. We note that the latter sets of best fit parameters are
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FIG. 7. Magnetic field dependence of ME voltage (arbitrary
units) in AFM (left panel) and PM (right panel) phases at different
temperatures, shown in the legend. The curves have been plotted using
Eqs. (36) and (37) with the following parameters: B0 = 0.6,U2 =
0.04,u11 = 0.762162,u12 = 0.376,a1 = 0.01,a2 = 2.9333.
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Weak disorder 
(glassy) effects

FIG. 8. Temperature dependence of ME coefficient (arbitrary
units) at dimensionless magnetic field h = 1. The parameters are
similar to those used in Fig. 7. At T = TN the discontinuity in the
temperature dependence is seen. This discontinuity is attributed to the
fact that the coefficients ξLM and ξLP do not depend on temperature
and appear abruptly in the AFM phase. The effects of weak disorder
in the Fe spins in PFN lead to spin-glass effects which smear
the discontinuity at T = TN . The inset highlights the temperature
dependence in the PM phase at T > TN = 150 K.

not unique so that additional experiments may be required to
determine unambiguously the coefficients of phenomenologi-
cal free-energy function (6) and hence the above parameters.
Nevertheless, the excellent coincidence with experimental
data is well seen. In our view this is because the simple
phenomenological approach, although having many unknown
coefficients, accounts correctly for order parameters coupling
with magnetic (and electric) fields.

At the same time, visual comparison of theoretical curve
UME(T ) at fixed H in both phases and experimental ones shows
that it is barely possible to achieve the quantitative coincidence
between theory and experiment in this case. Our analysis
confirms this point as we were not able to find a suitable

set of parameters which permits us to achieve the slope of the
UME(T ) curves observed in experiment at low temperatures.
This is because the phenomenological LGD approaches
usually have simplified temperature dependences of their
coefficients, which do not account, e.g., for possible spin-glass
effects. Hence, although it is possible to achieve excellent
quantitative coincidence in the UME field dependences, the
temperature dependences can be described only qualitatively.
For quantitative description of the temperature dependence,
more sophisticated approaches, considering (weak) disorder
effects, should be utilized.

V. DISCUSSION

We determined the quadratic ME coefficients for PFN and
its solid solutions with PT and listed them in Table I. This table
compares our values with the literature data for some other
magnetoelectric materials. In particular, the ME coefficient is
approximately the same in the PM phase of PFN and PFN-
PT as in the paramagnetic Gd2(MoO4)3 and NiSO4 · 6H2O
single crystals. In the AFM phase of PFN and PFN-PT, it
increases by almost two orders of magnitude exhibiting sign
reversal at the AFM phase transition. ME coefficient values
for PFN and PFN-PT are two to three orders of magnitude
higher than those for the well-known multiferroic BiFeO3 and
magnetoelectrics CsCuCl3,Ni3B7O13Cl, and BaMnF4 with
weak ferroelectricity. Note that although the ME effect is
weak in ScCuCl3, it shows the sign reversal at the AFM phase
transition similar to PFN [33].

Another important fact to which we want to draw attention
is the strong nonlinearity of the ME effect in the AFM phase of
PFN and PFN-PT even at low fields, 5–15 kOe. Usually non-
linearity of the ME effect appears in the vicinity of spin-flip,
spin-flop, or other magnetic field induced phase transitions.
The phenomenological theory introduced in Sec. IV allows one
to describe this nonlinearity by choosing appropriate values for
coefficients of the free-energy expansion. Obviously, the most
important is the coefficient ξLP , which describes the coupling
of ferroelectric polarization to AFM order parameter. This
coefficient cannot be directly extracted from our experiment.

TABLE I. Quadratic β333 ME coefficients in paramagnetic, antiferromagnetic, and spin-glass phases of PFN and PFN-PT solid solutions.
SC stands for single crystal. For comparison, the measured quadratic ME coefficient is reported for other AFM magnetoelectrics.

Material PM phase AFM phase SG phase References

PFN, SC 2.5 × 10−17 s/A This paper
PFN, SC (1 − 10) × 10−17 s/A [17,1]
PFN, ceramics −1 × 10−18 s/A 9.6 × 10−17 s/A This paper
PFN-0.03PT, SC 4.8 × 10−17 s/A This paper
PFN-0.05PT ceramics −2 × 10−18 s/A −1.5 × 10−17 s/A This paper
PFN-0.2PT, SC −1.45 × 10−17 s/A This paper
BiFeO3, SC 2.1 × 10−19 s/A [19,20]
Gd2(MoO4)3, SC 0.8 × 10−18 s/A [32]
NiSO4 × 6H2O, SC 2.2 × 10−9esu [26]

0.7 × 10−18 s/A
CsCuCl3, SC −0.02 pC/(cmT)2 0.14 pC/(cmT)2 [33]

−3.1 × 10−22 s/A 2.2 × 10−21 s/A
Ni3B7O13Cl, SC |0.6−1.6| × 10−18 s/A [34]
BaMnF4, SC (0.8−1.6) × 10−19 s/A [35]
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FIG. 9. Angular dependencies of the ME voltage in PFN ceramics under the electric-field polarity reversal (a) and 90° switching of
polarization (b) in the AFM phase at T = 77 K and H = 10 kOe. Solid lines are fit to Eq. (38).

However, it has to be much larger in PFN than in the other
magnetoelectrics listed in Table I.

In spite of the fact that the ME effect is highly anisotropic
(the quadratic ME coefficient is described by a third-rank
tensor) and should be averaged in ceramics, we found
approximately the same values of the ME coupling coefficient
in both single-crystal and ceramic samples. This means that
the magnetic anisotropy generates strong coupling of magnetic
domain structure to electric polarization and ferroelectric
domains. In other words, for instance, AFM domains can
be aligned by external electric field similar to ferroelectric
domains. This has been demonstrated previously for BiFeO3

crystals [21]. Therefore, from the application point of view,
PFN-based multiferroics are attractive in ME memory ele-
ments and spintronics as AFM domains are very stable with
respect to external magnetic fields.

Figure 9(a) illustrates the variation of the ME response
angular dependence in the AFM phase of PFN ceramics
after electric-field polarity reversal with respect to the initial
polarization direction. One can see that the ME signal changes
sign at electric-field polarity reversal indicating 180° switching
of polarization. Both curves are well fitted by the function

UME = A + B cos(2θ − ϕ), (38)

where θ is the angle between electric polarization and magnetic
field and ϕ = 0◦ or 180° determines the electric-field polarity.
This demonstrates that the ME coefficient (proportional to
B cos ϕ) changes sign at the electric-field polarity reversal.

The above experiment does not permit us to discern the
influence of the above polarization switching on the AFM
order parameter L. This is because the ME response is
proportional to L2 and both lattice distortion and magnetic
anisotropy remain to be along the same crystal direction. Here
we assume that magnetization and polarization are parallel
to each other in accordance with the neutron diffraction
data [36] and ME measurements in single crystals [14,17].
However, if the polarization is switched by 71° from the initial
rhombohedral direction into an equivalent one (in ceramics,
the average polarization switches by 90°), the AFM order
parameter should also change its orientation. This occurs
due to the influence of magnetic anisotropy, which forces

the magnetization to rotate along the polarization direction
in order to minimize the lattice energy with respect to a
new rhombohedral distortion. Such 90° switching of the
polarization in the AFM phase of the ceramic sample is
demonstrated in Fig. 9(b), which shows the change of ME
voltage angular dependence under the electric-field application
perpendicular to the initial polarization direction. One can see
that two curves having approximately the same amplitude are
now shifted from each other by the angle ϕ = 90◦, which
is two times smaller than in the case of 180° switching of
polarization. These data demonstrate that the AFM order
parameter L also rotates parallel to electric polarization in
the case of 90° switching. In the opposite situation, when
the magnetic order parameter retains the initial direction, the
two curves in Fig. 9(b) should be essentially different as P

and L are coupled by different ME coefficients corresponding
to P ||L or P⊥L. Certainly, in the course of sample cooling
from PM to AFM phase under poling field, magnetic domains
become aligned. Our results show that both ferroelectric and
AFM domains can be directly switched by an electric field
also in the AFM phase though the coercive field increases by
almost ten times (Ec ≈ 25 kV/cm) as compared to that in the
PM phase [7,18]. To confirm our latter conclusion, additional
neutron diffraction or AFM resonance measurements can be
used to monitor the AFM domains’ rotation. However, the
fact that even in ceramics we detect approximately the same
strong ME signal at different electric polarization directions
suggests that the electric domains’ alignment really causes
a corresponding adjustment of magnetic domains and this
process can be controlled by electric field in the AFM phase.

VI. CONCLUSIONS

To summarize, we have measured ME effect in PFN
and PFN-PT solid solutions multiferroics. We perform our
measurements both on crystalline and ceramic samples in
a broad temperature range from liquid helium up to room
temperature. Surprisingly, the ME effect turns out to be
approximately the same or even higher in ceramics than
in single crystals. In our opinion this is due to the better
possibility of poling the ceramics as the resistivity is much
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higher. This suggests that the alignment of polar domains
leads to corresponding adjustment of magnetic domains as
the magnetization axis is coupled to the polarization direction
via magnetic anisotropy. The latter anisotropy is high in PFN
due to strong lattice distortions generated by ferroelectric
phase transition. We also demonstrate the possibility of AFM
domains switching by external electric field even in ceramic
PFN samples. The latter effect could be attractive for spintronic
and ME random access memory applications as ME coupling
offers an elegant method of electric-field control and switching
of AFM domains. It is worth noting that though the Néel
temperature of PFN (≈150 K) is well below room temperature,
it can be increased substantially by mechanical activation
of precursors used for ceramics sintering [15] and by strain
engineering in epitaxial nanofilms [11,37].

There is a sign reversal of the ME coefficient at the
paramagnetic-to-antiferromagnetic phase transition. It indi-
cates that the ME response related to the AFM order parameter
has the sign opposite to that in the paramagnetic phase. The
PM-like contribution is nonzero in the AFM phase in spite
of the fact that Fe3+ spins are antiferromagnetically ordered.
This contribution increases on cooling proportionally to the
increase of FC susceptibility. This fact strongly supports
the model of the PFN ground magnetic state as coexistence
of the long-range ordered AFM phase with the short-range

ordered SG state on a microscopic level (see, e.g., Refs. [3,8]).
On the other hand, the ME coefficient does not show the sign
reversal at the transition from the paramagnetic phase to the
spin-glass state. The ME coefficient is negative in both PM and
SG states. Note that the ME coefficient in PFN and PFN-PT is
almost three orders of magnitude larger than that in BiFeO3.
It is obviously related to the fact that L2P 2 ME coupling
is essentially averaged by spin rotations along the BiFeO3

cycloid so that the M2P 2 term [Eqs. (3) and (6)] contributes
primarily to ME response similar to the PM-FE phase of PFN.

While the ME response is a perfect linear function of
applied magnetic field in both PM and SG phases, it becomes
strongly nonlinear in the AFM phase even at low magnetic
fields of only a few kOe. We naturally explain this phenomenon
in the framework of Landau theory by choosing appropriate
values for coefficients of the free-energy expansion.
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