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Quasiperfect absorption by subwavelength acoustic panels in transmission using accumulation
of resonances due to slow sound
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We theoretically and experimentally report subwavelength resonant panels for low-frequency quasiperfect
sound absorption including transmission by using the accumulation of cavity resonances due to the slow sound
phenomenon. The subwavelength panel is composed of periodic horizontal slits loaded by identical Helmholtz
resonators (HRs). Due to the presence of the HRs, the propagation inside each slit is strongly dispersive, with
near-zero phase velocity close to the resonance of the HRs. In this slow sound regime, the frequencies of the
cavity modes inside the slit are down-shifted and the slit behaves as a subwavelength resonator. Moreover, due to
strong dispersion, the cavity resonances accumulate at the limit of the band gap below the resonance frequency of
the HRs. Near this accumulation frequency, simultaneously symmetric and antisymmetric quasicritical coupling
can be achieved. In this way, using only monopolar resonators quasiperfect absorption can be obtained in a
material including transmission.
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I. INTRODUCTION

Two main types of audible acoustic panels are desired in
practical engineering applications: first, nonreflecting treat-
ments and, second, zero-transmission materials. The first
group requires that the reflection coefficient of a rigidly backed
material vanishes. This is typically achieved by using porous
or fibrous materials, that are mainly efficient in the inertial
regime and for frequencies higher than the so-called quarter
wavelength resonance of the backed layer, i.e., f = c0/4L, the
sound speed in current porous materials being nearly similar
to that in the air, c0. On the other hand, zero transmission
is commonly obtained by using highly reflecting materials
together with an interior frame made of a porous absorber.
These structures are efficient for frequencies higher than the
first Fabry-Pérot resonance of the slab of equivalent material,
i.e., f = c/2L. Concerning low frequency sound, both groups
of structures result in practical limitations due to the excessive
thickness, L, and weight of the treatments.

Designing materials with both zero reflection and zero
transmission simultaneously, i.e., perfect absorbers including
transmission, is of special interest. Perfect absorption is
of particular interest for many applications such as energy
conversion [1], time reversal technology [2], coherent perfect
absorbers [3], or soundproofing [4] among others. In the case of
rigidly backed materials, acoustic metamaterials are efficient
solutions to design sound absorbing materials which can
present simultaneously subwavelength dimensions and strong
or perfect acoustic absorption. These include double porosity
materials [5], metaporous materials [6–9], dead-end porosity
materials [10,11], metamaterials composed by membrane-type
resonators [4,12–14], Helmholtz resonators (HRs) [14–16],
and quarter-wavelength resonators (QWRs) [11,17–19]. These
last types of metamaterials [11,16–18] make use of strong
dispersion giving rise to slow-sound propagation inside the
material. Using slow sound results in a decrease of the cavity
resonance frequency and, hence, the structure thickness can be
drastically reduced to the deep-subwavelength regime [18].
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In transmission problems, where both reflection and
transmission are possible, acoustic metamaterials for perfect
absorption have also been presented recently using decorated
membrane resonators based on degenerate resonances [20].
In this case, monopolar and dipolar resonators are used to
critically couple the symmetric and antisymmetric problem
respectively and, therefore, to get perfect absorption of the full
problem with transmission [21]. Perfect absorption has also
been observed in metamaterials composed only by monopolar
resonators, e.g., by using two unsymmetrical HRs [22]. In these
structures, the transmission vanishes at the resonance of one
HR, behaving effectively as a hard wall. By tuning a second HR
the reflection problem can be critically coupled and, therefore,
perfect absorption is obtained. The propagation of acoustic
waves in waveguides loaded by arrays of monopolar resonators
have been also considered previously, e.g., as in arrays of
QWRs [23], arrays of HRs [24] producing Bragg interference
and local resonances, and arrays of two concentrically placed
QWRs producing Fano resonance [25]. In this work, we
present quasiperfect absorption in a subwavelength metamate-
rial panel for transmission problems using identical monopolar
resonators. The current design is based on the accumulation of
resonances due to slow sound. The system works as follows:
first, strong dispersion inside the slits is generated below the
resonance frequency of the HR, while around the resonance
frequency a band gap is generated and transmission vanishes.
Second, in the propagation band the cavity resonances of
each slit are stretched in frequency and accumulate below the
resonance frequency of the HR. Due to this accumulation of
resonances, the absorption using only monopolar resonators
can exceed 50%. Then, by tuning the geometry of the system
it can be almost critically coupled with the exterior medium,
therefore achieving quasiperfect absorption.

II. DESCRIPTION OF THE SYSTEM
AND THEORETICAL MODELS

The system consists in a panel perforated with a periodic
arrangement of open slits, of thickness h and length L, with
periodicity d in the x1 direction, as shown in Fig. 1. The
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JIMÉNEZ, ROMERO-GARCÍA, PAGNEUX, AND GROBY PHYSICAL REVIEW B 95, 014205 (2017)

lc

wn

wc,2 wc,1

ln

d

)b()a(

d

a

L
x2

x1 h

Ω(0) Ω(2)

n=1 n=N

Ω(1)

FIG. 1. (a) Conceptual view of the thin panel placed on a rigid wall with N = 4 layers of square cross-section Helmholtz resonators.
(b) Scheme of the unit cell of the panel composed of a set of N Helmholtz resonators. Symmetry boundary conditions are applied at boundaries
�x1=d and �x1=0.

upper wall of the slit is loaded by N identical HRs in a square
array of side a, in such a way that the length of the system is
L = Na. To maximize the volume of the cavity of the
resonators and hence to minimize the resonance frequency,
HRs with rectangular cross section are used, characterized by
a square neck with side wn, a rectangular cavity with sides wc,1

and wc,2, and length ln and lc respectively. The viscothermal
losses in the system are considered in both the resonators
and in the slit by using effective complex and frequency
dependent physical parameters [26]. Therefore, by changing
the geometry, the intrinsic losses of the system can be tuned.

In order to have a deeper understanding of the physics
involved in the system described above, several theoretical
models with different hypotheses have been applied to analyze
the scattering of the system. In this section, we briefly present
each one, more details being given in the Appendixes.

A. Modal expansion method (MEM)

The first model is a modal expansion method (MEM) [18].
The acoustic field is expanded in the modal basis for each
domain, and then each domain is assembled by applying the
boundary conditions (continuity of pressure and velocity are
considered at the entrance and exit of the slit). The effect
of the resonators is included by an impedance condition at
x1 = h in the slit, by considering Z = ZHR/φ, with ZHR the
impedance of the HRs and φ = w2

n/a
2 the slit surface porosity.

The impedance of the HR including the radiation correction of
the neck is presented in the Appendixes. Eventually, a mode-
matching linear system is obtained, allowing us to calculate
the reflection and transmission coefficients [18].

One of the interesting points of this method is that,
considering the first order terms in the expansion, the low
frequency approximation of the mode-matching system gives
the effective parameters, i.e., the complex and frequency
dependent effective bulk modulus, κe, and effective density,
ρe, as

κe = κs

φt

[
1 + κsφ(Vcκn + Vnκc)

κnh(Snκc − Vcρnlnω2)

]−1

, (1)

ρe = ρs

φt

, (2)

where φt = h/d is the total porosity of the metamaterial, ρs

and ρn are the effective densities of the slit and neck, κs , κn, and
κc are the effective bulk modulus of the slit, neck, and cavity,
respectively, Vn and Vc are the volumes of the neck and cavity
of the HRs, respectively, and ω is the angular frequency. From
Eqs. (1) and (2) it is clear that this metamaterial allows only
for negative compressibility for frequencies around the reso-
nance frequency of the HRs. The reflection and transmission
coefficients are linked to the effective parameters by

Rt = i
(
Z̄2

e − 1
)

sin(keL)

2Z̄e cos(keL) − i
(
Z̄2

e + 1
)

sin(keL)
, (3)

Tt = 2Z̄e

2Z̄e cos(keL) − i
(
Z̄2

e + 1
)

sin(keL)
, (4)

with normalized effective impedance Z̄e = ρeκe/ρ0κ0 and
effective wave number ke = ω

√
ρe/κe. Finally, the absorption

of the system is defined as α = 1 − |Tt |2 − |Rt |2. Another
interesting point of the MEM is that if high order terms are
included in the expansion, no end corrections are required
both at the entrance and exit of the slit.

B. Transfer matrix method (TMM)

The second model is based on the transfer matrix method
(TMM), in which the N resonators are included as 1D point
scatterers. N matrices are assembled for a system made of
N unit cells, giving the transfer matrix, from which the
reflection, transmission, and absorption coefficients can be
obtained. Using the transfer matrix of a single unit cell with the
Floquet-Bloch periodic boundary conditions, the dispersion
relations in the periodic system can be obtained. This model
accounts for the finite and discrete arrangement of HR while
the MEM model, being based on an average impedance
at the wall, does not consider the effect of discreteness, i.e.,
the finite number of HR. Moreover, contrary to the MEM,
in which we can obtain the effect of the higher order modes
in the system, the TMM directly considers the plane wave
approximation, which is valid for the low frequency regime.
The radiation corrections are included in the impedances of
the resonators and in the slits in order to mimic the effect of
the higher order modes. Importantly, the TMM gives a direct
information of the effect of the finite number of resonators.
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FIG. 2. (a) Dispersion relation in the slit calculated using (red)
modal expansion method (MEM), (blue) transfer matrix method
(TMM) in the lossless (dashed line), and lossy case (continuous line).
Wave number in the air k0 = ω/c0 (dotted line) and the low frequency
asymptotic limit ω/ceff (dashed-dotted line). (b) Representation of
c̃p = Re(ω/k), which is closely related to the phase speed. The inset
shows the slow sound regime.

C. Finite element method (FEM)

In order to validate the previous analytical models and to
show the limits of validity of each of them, we have used a finite
element method (FEM) algorithm (COMSOL Multiphysics)
to solve the scattering problem, where the effects of the finite
number of resonators, the higher order modes, and the losses
are taken into account numerically. The viscothermal losses
are introduced as effective parameters in the slit and the
resonator elements [26]. A plane wave impinges the system
and the complete geometry is considered using the radiation
conditions that simulate the Sommerfeld conditions in the
limits of the numerical domains.

III. DISPERSION RELATION AND SLOW SOUND
CONDITIONS IN THE SLIT

Figure 2(a) shows the real part of the complex wave number
in the slit using MEM and TMM for a metamaterial with
parameters h=1.2 mm, a=4.95 cm, wn =7.1 mm, wc = 4.9,
d = 5 cm, ln = 7.3 mm, and lc = d − h − ln. A band gap is
observed above the resonance frequency of the HRs, ωHR.
Inside the slit a dispersive propagation band is generated
below the band-gap frequency, where the wave number in
the slit is remarkably increased and, therefore, as Fig. 2(b)
shows, slow sound conditions are achieved in this range of
frequencies. It can be observed that the effective low-frequency
sound speed in the lossless case, calculated from Eqs. (1)
and (2), ceff = c0/

√
1 + Vtotφn/hSn, is accurately described

by both models, with Vtot the total volume of the resonator.
In the lossless case, zero phase velocity can be observed

for frequencies just below ωHR. It is worth noting here that the
maximum wave number using TMM is limited to kmax = π/a

due to the fact that this model accounts for the periodicity of
the system, while using MEM the wave number can be infinite
in the lossless case, due to the fact that the MEM does not
account for the periodicity of the system. This limitation of
the MEM will be discussed in more detail later in Sec. IV B.

Once thermoviscous losses are introduced, the dispersion
relation inside the slit is modified. As Theocharis et al. showed
[27], the minimum value of speed of sound is limited by
the thermoviscous losses. Figure 2(b) shows the slow sound

region below ωHR. We can clearly see that, although the
quantity c̃p = Re(ω/k), closely related to the phase velocity,
is anymore zero in the lossy case, slow sound conditions are
still observed in this range of frequencies: the mean phase
speed in the low frequency range is much lower than the speed
of sound in air, c0, and the phase speed near the resonance
frequency of the HR is extremely low. This makes possible the
shortening of the ratio λ/L and, therefore, the slit behaves as a
subwavelength resonator. The dispersion relation in the slit and
the sound speed predicted by the different theoretical models
agree in the low frequency regime, while only small differences
can be observed near the band gap between the TMM and
MEM calculations due to the different hypothesis used in each
model.

IV. REFLECTION AND TRANSMISSION PROBLEMS

In this work we deal with a symmetric and reciprocal
system. In the low frequency regime the problem can be
considered as 1D because only plane waves propagate. In
this situation, the two eigenvalues of the scattering matrix
(with Tt on the diagonal), which relates the amplitudes of
the input with the output waves, are given by Tt − Rt and
Tt + Rt . Therefore, the absorption of the system can be
described by decomposing the full problem in its symmetric
and antisymmetric equivalent problems in reflection [22], as
shown schematically in Fig. 3(a). In fact, the two eigenvalues
of the scattering matrix give the reflection coefficients for
the symmetric and antisymmetric subproblems in reflection,
respectively. Thus, by setting rigid, ∂p/∂x = 0 (symmetric),
and soft, p = 0 (antisymmetric), boundary conditions at the
symmetry plane of the system, the reflection coefficients of
each subproblem can be obtained as

Rsym = Tt − Rt = Z̄e sin keL/2 − i cos keL/2

Z̄e sin keL/2 + i cos keL/2
, (5)

Rasym = Tt + Rt = Z̄e cos keL/2 + i sin keL/2

i sin keL/2 − Z̄e cos keL/2
, (6)

for the symmetric and antisymmetric problems, respectively.
Then, the absorption coefficient of the full problem can be
obtained from the absorption of each subproblem as α =
(αsym + αasym)/2, where αsym(asym) = 1 − |Rsym(asym)|2 [22].

A. Asymptotic behavior, large number of resonators

Let us first consider N sufficiently large to accurately
describe the system as a slab of material with the effective
parameters. Figures 3(b) and 3(c) show the corresponding
reflection coefficient in the complex frequency plane. It is
obtained with the TMM, of the symmetric and antisymmetric
problems for N = 30 resonators considering a complex fre-
quency ω = ωr + iωi , with ωr and ωi the real and imaginary
frequencies. First, it can be observed that a series of zero-pole
pairs appears in the frequency complex plane [15]. The
poles correspond to the cavity modes inside the slab of
effective material [28]. Due to dispersion, these cavity modes
accumulate below the resonance frequency of the HRs. On
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FIG. 3. (a) Symmetric and antisymmetric problem decomposition for a homogeneous layer of material with effective parameters. (b),(c)
Complex frequency representation of the reflection coefficient for the symmetric and antisymmetric problem, respectively. (d) Reflection
coefficient at the real axis for symmetric (blue) and antisymmetric (dotted red). (e) Absorption for symmetric (blue), antisymmetric (dotted
red), total (thick black), and impedance matching condition (dashed gray).

the other hand, it can be seen that the cavity modes of the
symmetric problem (see Rsym) appear at frequencies different
from the frequencies of the antisymmetric one (see Rasym).
This effect is clearly seen in Fig. 3(d), where the reflection
coefficients for each problem are plotted at the real axis of
frequencies.

In addition, it can be seen that for some particular
frequencies, as those marked with the arrows in Figs. 3(b)
and 3(c), the zeros of the reflection coefficient are located
on the real axis of frequencies. At these frequencies, the
reflection coefficient of the (anti)symmetric vanishes and the
structure is critically coupled. This condition is enough to
achieve perfect absorption for, e.g., the symmetric problem,
as was demonstrated in rigid-backed materials [14,16,18].
However, to obtain perfect absorption of the full problem
including transmission, both symmetric and antisymmetric
reflection coefficients must simultaneously vanish [21,22],
as the following relations hold: Rt = (Rsym + Rasym)/2 and
Tt = (Rsym − Rasym)/2.

In general, for a homogeneous slab of material the cavity
resonances of the symmetric and antisymmetric problems,
i.e., its Fabry-Pérot modes, are staggered in frequency and
perfect absorption is not possible. However, in our system the
cavity modes are accumulated below the limit of the band gap
because of the strong dispersion introduced by the presence
of the resonators. Then, the zeros of the reflection coefficient
for the symmetric and antisymmetric problems can be close
to one another in frequency and quasiperfect absorption
can be obtained at the edge of the band gap. Figure 3(e)
shows the corresponding absorption of the full problem
(black line), where the absorption due to accumulation of
resonances around ωHR is observed. It is interesting to show
that, in the limit of a semi-infinite panel, both the reflection
coefficient of the symmetric and antisymmetric problems col-
lapse to the impedance matching condition, limL→∞ Rsym =
limL→∞ Rasym = (Z̄e − 1)/(Z̄e + 1), and then, only in this
limit, perfect absorption can be achieved, as shown in Fig. 3(e).
However, for a finite layer Rsym �= Rasym and only quasiperfect
absorption can be reached with a single homogenized slab of

material. Moreover, Z̄e is generally complex and no perfect
matching can be achieved.

B. Finite number of resonators

Figure 4 shows the scattering of the system in the lossless
case for N = 3 resonators with the same parameters as in
Sec. IV A. Figures 4(a) and 4(b) show the complex frequency
representation of the reflection coefficient obtained by using
the MEM, while Figs. 4(d) and 4(e) show the corresponding
one obtained by using the TMM. It is worth noting here
that if we solve the problem using the MEM (with an
effective-impedance boundary condition to represent the effect
of the HRs), it presents a zero-pole structure with an infinite
collection of resonances that accumulate around the band-gap
frequency. Note for a finite number of resonators there should
be a finite number of resonances. The TMM correctly accounts
for the finite number of resonances, in this case N = 3, in
agreement with FEM simulations as shown in Fig. 4(g). It is
also worth noting here that these cavity resonances are in fact
the collective modes of the HRs and there exist only N different
collective modes. Figure 4(f) shows the total reflection and
transmission in the real axis calculated with TMM and FEM.
The agreement between the two methods is very good, showing
that the hypothesis of the TMM are correct for the considered
frequency range. It can also be noticed that, by including
the discreteness of the system, the band-gap frequency is
shifted down from ωHR, as it was previously noticed from
the dispersion relations. However, the finite number of HRs
limits the accumulation of resonances near the band gap: as N

decreases the condition to have symmetric and antisymmetric
resonances close to one another in frequency will become
more difficult to achieve. Therefore, the number of (identical)
HRs is a critical parameter to obtain quasiperfect absorption in
metamaterials with transmission by means of the accumulation
of resonances.

Once losses are introduced in the system, the zero-pole
structure is down-shifted in the complex frequency plane and
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the system starts to absorb energy [15]. Figure 5(a) presents
the absorption of a panel as a function of the number of
resonators, N , and frequency. First, it can be observed that for
a relatively large number of resonators quasiperfect absorption
can be achieved even when the discreteness is retained, e.g.,
for N = 50 resonators as shown in Fig. 5(b). The material
is almost impedance matched with the exterior medium and
both MEM and TMM agree: the system can be described as
a homogenized slab of locally reactive material. Only small
differences between MEM and TMM solutions exist near the
band gap due to the infinite number of resonances of the MEM.

For most sound absorption applications it is desirable to
use panels with reduced thickness, and of special interest is
the design of panels with subwavelength dimensions. Then,
when reducing the panel thickness the number of resonators
must also be reduced and, therefore, the accumulation of

resonances becomes limited. Figure 5(c) shows the absorption
of a panel with N = 15 (L ≈ λαmax/2), while Fig. 5(d) shows
the absorption of a panel with N = 5 (L = λαmax/6.6). In both
cases, a peak of absorption is still observed, but its amplitude
falls to αmax = 0.96 and αmax = 0.92, respectively, for each
case. The corresponding reflection coefficient in complex
frequency plane for N = 5 is shown in Fig. 5(f) for the
symmetric and antisymmetric problems. Again, the zeros of
the symmetric problem appear staggered in frequency with
respect to the antisymmetric one and, as a consequence, the
accumulation of resonances is limited by the small number of
resonators. However, by tuning the geometry of the system,
high acoustic absorption can be achieved by locating one zero
of the reflection coefficient of the symmetric problem on the
real frequency axis and, simultaneously, locate another zero of
the antisymmetric problem as close as possible to the real axis
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at a different but near frequency. Therefore, the maximum
value of absorption is directly dependent on the number of
HRs and inversely dependent on the panel thickness. Using
an array of identical resonators the design of the panel is a
compromise between the peak acoustic absorption and the
parameter λmax/L.

V. EXPERIMENTAL RESULTS

A subwavelength thickness sample with N = 10 resonators
was built using stereolithography techniques using a photosen-
sitive epoxy polymer (Accura 60 R©, 3D Systems Corporation,
Rock Hill, SC 29730, USA), where the acoustic properties of
the solid phase are ρ0 = 1210 kg/m3 and c0 = 1630 ± 60 m/s.
The geometry of the structure was tuned using an optimization
method [sequential quadratic programming (SQP) method
[29]] in order to maximize the absorption at a given fre-
quency (350 Hz), while the panel thickness was constrained
to L = λ/10. The resulting parameters were h = 4.3 mm,
a = 9.8 mm, wn = 5.3 mm, wc,1 = 11.4 mm, wc,2 = 9.3 mm,
d = cm, ln = 25.2 mm, and lc = 139.6 mm. It is worth noting
here that we use the coiling of the HRs in order to save
space. The amplitude of the acoustic source was low enough
to consider negligible the contribution of the nonlinearity of
the HRs. Figure 6 summarizes the experimental results. First,
Fig. 6(a) shows a photograph of the panel, composed by three
unit cells with N = 10 for each one, allowing the measurement
of reflection and transmission coefficients at normal incidence,
which are shown in Fig. 6(b). A good agreement between

the experimental results, theoretical predictions, and FEM
simulations is observed. The results show the band gap
generated by the resonance of the HRs, where the low-cutoff
frequency of the band gap is just below the resonance
frequency of the HRs, fHR = 364 Hz. In this frequency range,
transmission almost vanishes and the total reflection does not,
as shown in Fig. 6(b), as a consequence of the staggered
structure of zero-pole structure. The corresponding absorption
is plotted in Fig. 6(c), where again good agreement can be
observed between theory and experiments. Here, at 350 Hz the
absorption peak obtained from the experiments was α = 0.87,
while α = 0.91 was obtained from TMM predictions. In
addition, small differences can be observed around 300 Hz.
These small discrepancies can be associated to imperfections
on the fitting of the structure to the impedance tube and due to
the coiling of the HRs.

On the other hand, the effective wave number inside the slits
was reconstructed using an inversion method [30]. Figures 6(d)
and 6(e) show the experimental and theoretical reconstruction
of the real and imaginary part of the wave number, respectively.
It can be observed that the experimental reconstruction agrees
with the theoretical prediction. Here, at f = 350 Hz where
the peak absorption is observed, the real part of the wave
number is greatly increased compared to the wave number in
air, k0. Moreover, the imaginary part of the wave number is also
increased, leading to the damping of the acoustic waves inside
the material. Finally, the quantity c̃p = Re(ω/k) is shown
in Fig. 6(f). It can be seen that slow sound conditions are
achieved by the experiment and the speed of sound inside the
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material is reduced to c̃p = 34 m/s at the peak absorption
frequency, f = 350 Hz. Finally, it is important to note that the
effect of the evanescent coupling between adjacent resonators
is negligible. This coupling is implicitly included in FEM
simulations and inherently present in the experiments. The
good agreement between FEM simulations and experiments,
and theoretical models shows the evanescent coupling can be
considered negligible.

VI. CONCLUSIONS

The absorption of panels in transmission with periodic
arrays of slits loaded by monopolar resonant inclusions made
of HRs has been studied. We have shown that by using an
array of identical monopolar resonators the symmetric and
antisymmetric resonances of the system exist at staggered
frequencies and, therefore, simultaneous critical coupling of
the symmetric and antisymmetric modes is not possible.
However, due to the loading HRs, strong dispersion is observed
in the interior of each slit and the cavity resonances accumulate
below the band-gap frequency, being the symmetrical and
antisymmetrical modes staggered but very close in frequency.
In this frequency range and by tuning the geometry, the system
can be quasicritically coupled with the exterior medium and
therefore quasiperfect absorption can be obtained.

The limits of acoustic absorption in symmetric and re-
ciprocal panels with transmission were explored experimen-
tally, and quasiperfect absorption for a subwavelength panel
with thickness L = λ/10 was demonstrated. These results
underline the necessity of breaking the symmetry of the
system to achieve perfect absorption in transmission or the
use of degenerate resonators with symmetric (monopolar) and
antisymmetric (dipolar) resonances. Strategies for breaking
the symmetry include the use of, e.g., different sized HRs
[22]. Strategies to use degenerate resonances have been also
studied [20,21].

On the other hand, the extension of the results shown in
this work to other analogous physical systems is also possible,
with special interest for those where the number of resonators
in the cavity can be remarkably increased, e.g., by using deep-
subwavelength resonators as arrays of identical membranes
with added mass or by using gas microbubbles for underwater
acoustic applications.

The proposed configuration presents interesting and re-
markable features as the open slits allow the air to flow
through the panel, e.g., being able to use these subwavelength
metamaterials for low-frequency noise control in industrial
applications where simultaneously chromatic noise absorption
and machinery refrigeration or air flow are required. These
promising results open the possibilities to study different
configurations based on these metamaterials and to extend the
results to broadband and omnidirectional perfect absorption
with deep subwavelength structures, which remains a great
scientific challenge.
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APPENDIX A: VISCOTHERMAL LOSSES MODEL

The viscothermal losses in the system are considered both
in the resonators and in the slit by using its effective complex
and frequency dependent parameters [26].

Slits. The effective parameters in the slit, considering only
plane waves propagate inside, are expressed as

ρs = ρ0

[
1 − tanh

(
h
2 Gρ

)
h
2 Gρ

]−1

, (A1)

κs = κ0

[
1 + (γ − 1)

tanh
(

h
2 Gκ

)
h
2 Gκ

]−1

, (A2)

with Gρ = √
iωρ0/η and Gκ = √

iωPrρ0/η, and where γ is
the specific heat ratio of air, P0 is the atmospheric pressure,
Pr is the Prandtl number, η the dynamic viscosity, ρ0 the air
density, and κ0 = γP0 the air bulk modulus.

Ducts. The propagation in a rectangular cross-section tube
can be described by its complex and frequency dependent
density and bulk modulus, and considering that plane waves
propagate inside, can be expressed as [26]

ρt = − ρ0a
2b2

4G2
ρ

∑
k∈N

∑
m∈N

[
α2

kβ
2
m

(
α2

k + β2
m − G2

ρ

)]−1 , (A3)

κt = κ0

γ + 4(γ−1)G2
κ

a2b2

∑
k∈N

∑
m∈N

[
α2

kβ
2
m

(
α2

k + β2
m − G2

κ

)]−1 ,

(A4)

with the constants αk = 2(k + 1/2)π/a and βm = 2(m +
1/2)π/b, and the dimensions of the duct a and b being either
the neck, a = b = wn, or the cavity, a = wc,1 and b = wc,2,
of the Helmholtz resonators.

APPENDIX B: MODAL EXPANSION METHOD (MEM)

1. Mode matching system

As sketched in Fig. 1, the full space is divided into three
subdomains: the forward exterior medium, �[0], the interior of
the slit, �[1], and the backward exterior air, �[2]. The field can
be represented on each �[i] domain as

p[0] =
∑

q

(
Aiδqe

−ik
[0]
2q (x2−L) + Rqe

ik
[0]
2q (x2−L))eik1qx1 , (B1)

p[1] =
∑

n

(
Bne

−ik
[1]
2n x2 + Cne

ik
[1]
2n x2

)
sin k1n(x1 − L), (B2)

p[2] =
∑

q

Tqe
ik1qx1−ik

[0]
2q x2 , (B3)

where Ai is the amplitude of the incident wave, Rq and Tq are
the reflection and transmission coefficients of the qth Bloch
mode, respectively, and δ0

n is the Kronecker delta. Here and
beyond the superscript [i] indicates the domain according to
Fig. 1. Periodic boundary conditions are assumed at x1 = 0
and x1 = d. It is worth noting here that for normal incidence
periodic boundary conditions reduce to symmetric (rigid)
boundary conditions. Inside the slit, at x1 = h, the effect of
the resonators is included by a wall impedance condition given
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by Zwall = ZHR/φ, with ZHR the impedance of the HRs and
φ = w2

n/a
2 the surface porosity of the slit. The application

of these boundary conditions and continuity between domains
leads to the following mode matching system:

Rq −
∑
q ′

∑
n

η[1]
n

η
[0]
nq

h

dNn

(
−iRq ′

tan k
[1]
2n L

)
I+
nq ′I

−
nq

−
∑
q ′′

η[1]
n

η
[0]
q

h

dNn

∑
n

(
iTq ′′

sin k
[1]
2n L

)
I+
nq ′′I

−
nq

= Ai +
∑

n

η[1]
n

η
[0]
q

h

d

−iAi

tan k
[1]
2n LNn

I+
n0I

−
nq (B4)

and

Tq +
∑
q ′

∑
n

η[1]
n

η
[0]
nq

h

d

(
−iRq

Nn sin k
[1]
2n L

)
I+
nq ′I

−
nq

+
∑
q ′′

∑
n

η[1]
n

η
[0]
nq

h

dNn

iTq ′′

tan k
[1]
2n L

I+
nq ′′I

−
nq

=
∑

n

η[1]
n

η
[0]
nq

h

d

iAi

sin
(
k

[1]
2n L

)
Nn

I+
n0I

−
nq, (B5)

where η
[j ]
q = k

[j ]
2q /ρ[j ]. Thus the reflection and transmission

coefficients can be calculated by solving the linear system
of Eqs. (B4) and (B5), where the integrals I±

nq are written in
analogy with Refs. [16–18].

2. Low frequency approximation: Effective parameters

In the low frequency regime, the system (B4) and (B5) leads
to the reflection and transmission coefficients as

R0 + iZ̄eR0

tan k
[1]
2 L

− iZ̄eT0

sin k
[0]
2 L

=
(

1 − iZ̄e

tan k
[1]
2 L

)
, (B6)

T0 − iZ̄eR0

sin k
[1]
2 L

+ iZ̄eT0

tan k
[1]
2 L

= iZ̄e

sin k
[1]
2 L

, (B7)

where the normalized effective impedance is defined as Z̄e =
η[1]h/η[0]d = Z[1]/Z[0]φt , with the total porosity φt = h/d,
and Ai = 1. We clearly identify the effective wave number
inside the panel as

k
[1]
2 =

√(
k

[1]
1

)2 − (k10)2. (B8)

The transversal component of the wave number is given by
[31]

k10 = 1

h

√
−iωρsh

Zwall
, (B9)

and using the Helmholtz resonator impedance in the low
frequency regime it becomes

k10 = 1

h

√
−ωρsh(VcZnkc + SnZcknln)φ

Zn(SnZc − VcZnkcknln)
. (B10)

Using Eq. (B8) the effective wave number reads

ke = k
[1]
2 = ω2

c2
0

[
1 + κs(Vcκn + Vnκc)φ

κn(Snκc − Vclnω2ρn)h

]
. (B11)

The effective parameters, i.e., the complex and frequency
dependent bulk modulus and density are given by

κe = κs

φt

[
1 + κsφ(Vcκn + Vnκc)

κnh(Snκc − Vcρnlnω2)

]−1

, (B12)

ρe = ρs

φt

. (B13)

Using these parameters, the reflection and transmission coef-
ficients can be calculated according to Eqs. (B6) and (B7) as

R0 = i
(
Z̄2

e − 1
)

sin(keL)

2Z̄e cos(keL) − i
(
Z̄2

e + 1
)

sin(keL)
, (B14)

T0 = 2Z̄e

2Z̄e cos(keL) − i
(
Z̄2

e + 1
)

sin(keL)
. (B15)

APPENDIX C: TRANSFER MATRIX METHOD

A discrete model is developed accounting for the finite
number of resonators using the transfer matrix method (TMM).
Thus, for identical resonators, the transfer matrix is written as(

Pi

Ui

)
= T

(
Po

Uo

)
, (C1)

where the transmission matrix T is written as

T =
(

T11 T12

T21 T22

)
= M�lslit (MsMHRMs)

NM�lslit .

Here, the transmission matrix for each lattice step in the
slit, Ms , is written as

Ms =
(

cos
(
ks

a
2

)
iZs sin

(
ks

a
2

)
i

Zs
sin

(
ks

a
2

)
cos

(
ks

a
2

)
)

, (C2)

where the slit characteristic impedance is written as
Zs = √

κsρs/Ss and Ss = h a. The resonators are introduced
as punctual scatters by a transmission matrix MHR as

MHR =
(

1 0
1/ZHR 1

)
, (C3)

and the radiation correction of the slit to the free space as

M�lslit =
(

1 Z�lslit

0 1

)
, (C4)

with the characteristic radiation impedance of the slit Z�lslit =
−iω�lslitρ0/φtS0, where S0 = d a, ρ0 is the air density, and
�lslit is the proper end correction that will be described later.
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The reflection and transmission coefficients of the system
can be directly calculated from the elements of the matrix T
as

TTMM = 2eıkL

T11 + T12/Z0 + Z0T21 + T22
, (C5)

RTMM = T11 + T12/Z0 − Z0T21 − T22

T11 + T12/Z0 + Z0T21 + T22
, (C6)

with Z0 = ρ0c0/S0, and the effective parameters can be
obtained from the transfer matrix elements as follows:

kTMM = 1

L
cos−1

(
T11 + T22

2

)
, (C7)

ZTMM = 1

Z0

√
T12

T21
. (C8)

APPENDIX D: RESONATOR IMPEDANCE
AND END CORRECTIONS

Using the effective parameters for the neck and cavity
elements given by Eqs. (A3) and (A4), the impedance of a
Helmholtz resonator can be written as

ZHR = iZn

A − tan knln tan kclc

A tan knln + tan kclc
, (D1)

with A = Zc/Zn, ln and lc are the neck and cavity lengths,
Sn = w2

n and Sc = wc,1wc,2 are the neck and cavity surfaces,
and kn and kc, and Zn and Zc are the effective wave numbers
and effective characteristic impedance in the neck and cavity,
respectively.

It is worth noting here that this expression is not exact as
long as correction due to the radiation should be included. The
characteristic impedance accounting for the neck radiation can
be expressed as [27]

ZHR = −i
cos(knln) cos(kclc) − Znkn�l cos(knln) sin(kclc)/Zc − Zn sin(knln) sin(kclc)/Zc

sin(knln) cos(kclc)/Zn − kn�l sin(knln) sin(kclc)/Zc + cos(knln) sin(kclc)/Zc

, (D2)

where the correction length is deduced from the addition of
two correction lengths �l = �l1 + �l2 as

�l1 = 0.82

[
1 − 1.35

rn

rc

+ 0.31

(
rn

rc

)3]
rn, (D3)

�l2 = 0.82

[
1 − 0.235

rn

rs

− 1.32

(
rn

rt

)2

(D4)

+1.54

(
rn

rt

)3

− 0.86

(
rn

rt

)4]
rn. (D5)

The first length correction, �l1, is due to pressure radiation
at the discontinuity from the neck duct to the cavity of the
Helmholtz resonator [32], while the second �l2 comes from
the radiation at the discontinuity from the neck to the principal
waveguide [33]. This correction only depends on the radius of
the waveguides, so it becomes important when the duct length
is comparable to the radius, i.e., for small neck lengths and for
frequencies where krn 
 1.

Another important end correction comes from the radiation
from the slits to the free air. The radiation correction for a
periodic distribution of slits can be expressed as [34]

�lslit = hφt

∞∑
n=1

sin2 (nπφt )

(nπφt )3
. (D6)

Note for 0.1 � φt � 0.7 this expression reduces to �lslit ≈
−√

2 ln[sin(πφt/2)]/π . Although Eq. (D6) is appropriate for
a periodic array of slits, it is not exact for slits loading HRs;
therefore, we can evaluate a more realistic value for the end
correction by reconstructing an equivalent impedance, Z̃, from
the reflection coefficient of the zeroth order Bloch mode
calculated with the MEM and comparing it to Z̄e = ρeκe/ρ0κ0

in analogy with Ref. [18]:

Z̃ − Z̄e = −iω
ρ0

φt

�lslit. (D7)

The slit end correction using this last approach gives a value
that depends on the geometry of the HRs and for the present
structures is around 1.5 times the one using Eq. (D6).
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FIG. 7. Effective parameters computed by (thick gray lines) the
low frequency approximation of the MEM, Eqs. (1) and (2), (markers)
reconstructed from the experimental data and (continuous lines)
reconstructed from the MEM analytical reflection and transmission
coefficients. (a) Real and (b) imaginary part of the complex density
normalized by the ambient density and total porosity. (c) Real and
(d) imaginary part of the complex compressibility normalized by the
ambient bulk modulus and total porosity. The dashed line marks the
resonance frequency of the Helmholtz resonators, fHR = 364.
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APPENDIX E: RECONSTRUCTION
OF EFFECTIVE PARAMETERS

The effective parameters of the metamaterial, i.e., the
complex and frequency dependent density and bulk modulus,
can be reconstructed from its effective wave number and
impedance. Figure 7 shows the reconstruction using the
experimental data (markers), the effective parameters given
by Eqs. (1) and (2) (gray line), and the reconstruction
method using the MEM analytical reflection and transmission
coefficients as the input (black line). It can be seen that the
inversion method, even with the analytical transmission and
reflection data, fails to reconstruct the effective parameters
at the frequencies corresponding to Re(k)L/π = (1,2, . . .).

This is caused by the poor reconstruction of the effective
impedance at the Fabry-Pérot resonances of a slab of effective
material. However, the main features of the effective param-
eters are captured by the reconstruction. First, the effective
density of the metamaterial is almost the density of air
normalized by the total porosity, φt , it being almost constant in
frequency. Second, the real part of the effective bulk modulus
is reduced up to 15% of the bulk modulus of the air at 350 Hz,
it vanishes at the resonance frequency of the HRs (fHR = 364
Hz, vertical dashed line), and it is negative for frequencies
above fHR. Therefore, the effective compressibility of the
material is greatly increased, allowing the structure to resonate
in the subwavelength regime.
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