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Various out-of-equilibrium processes produce a supersaturation of vacancies in the material. When these defects
show attractive binding energy with solutes, they will form stable point defect-solute clusters which will stabilize
solutes in the solid solution with respect to the equilibrium case. Hence the out-of-equilibrium dynamic solubility
limit increases, which can lead to the dissociation of solute precipitates. This vacancy-induced precipitate (VID)
dissolution mechanism is an alternative to the well-known ballistic mixing effect (BAL) under irradiation, and it
is also relevant for quenching, ball milling, and severe plastic deformation. Under irradiation, a BAL is efficient at
low temperature only, whereas a VID is expected to be effective at intermediate temperatures. A quantitative and
consistent prediction of the interstitial solute solubility limit increase generated by both BAL and VID mechanisms
is presented starting from ab initio binding energies and migration energies of solutes and point defects, and
using a low-temperature expansion of the free energy of the solid solution. These results are discussed for three
alloys: FeC, FeN, and FeO, the latter being relevant to discuss the stability of oxide dispersed strengthened alloys
microstructure under irradiation. We also suggest an experiment that would be able to determine steady-state
vacancy supersaturations from the measure of solute partial pressures in out-of-equilibrium systems.
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I. INTRODUCTION

Most materials processing routes consist in driving a system
out of equilibrium to reach a particular microstructure related
to the desired properties. These systems are then kinetically
trapped in a metastable state from which it is difficult to escape,
hence the durability of the materials properties. When the
external force that drives the system out-of-equilibrium is sus-
tained (irradiation, ball milling, severe plastic deformation),
the usual thermodynamic phase diagram becomes a dynamic
phase diagram, where the steady state, or dynamic equilibrium,
is a function of both thermodynamic and kinetic properties of
the system, as well as these external driving forces [1–9].

Materials under irradiation offer many examples of such
dynamic equilibrium, based on various mechanisms. The
first mechanism is denoted as ballistic mixing, which can
cause precipitate dissolution (or resolution) and patterning
(precipitation with a given precipitate length scale [7,9]). The
highly energetic incident neutron particle transfers enough
energy to an atom to kick it out of its location, thus creating
a Frenkel pair [vacancy V + self-interstitial atom (SIA)].
Consider a two-phase equilibrium (solid solution + precip-
itate): if the primary knock-on atom was located inside a
precipitate, there is a certain probability that it will be ejected
from this precipitate and end up in the solid solution. The
reverse is also true, an atom belonging to the solid solution can
also be displaced toward a precipitate. The atom in solution
will then diffuse and associate with a precipitate, or form
new precipitates over a diffusion time scale. Depending on
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the combination of various irradiation parameters such as
the nature and energy of incident particles, irradiation flux,
temperature, microstructure, etc., there are three possible
steady-state microstructures [7]: (1) a random solid solution;
(2) binary equilibrium between the solid solution and the pre-
cipitated phase (where the solubility limit may be higher than
the equilibrium one); (3) a steady state where both the solid
solution and finite-size precipitates exist, also called patterning
regime. As an example, the stability of the microstructure of
oxide-dispersed strengthened (ODS) alloys under irradiation
is key to the sustainability of their mechanical properties
and their safe use as structural and cladding materials in
future nuclear reactors [10,11]. Nevertheless, classical ballistic
mixing models do not seem to quantitatively account for
the observed dissolution of ODS particles under irradiation
at relatively high temperatures [12–14], while there seems
to be a qualitative agreement for samples irradiated at room
temperature [15]. Other mechanisms have been put forward to
explain the contradictory data on ODS particle stability under
irradiation (see, e.g., Ref. [16] for a review): vacancy flux
and solute drag effect [17], balance between ballistic mixing
and radiation-enhanced diffusion [16,18], interface coherency
effect [19,20]. While all of these effects might be happening
simultaneously, it is still unclear which factors control the
ODS particle size and density under irradiation. Also note that
radiation-enhanced diffusion is not applicable to interstitial
solutes like oxygen because they are able to diffuse on their
own, and a large concentration of point defects would be
necessary to significantly modify the average solute diffusivity.

Another mechanism of dynamic equilibrium is due to
the attractive interaction between solutes and point defects
(V and SIA). Defects are produced in excess under irradiation,
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so there is a driving force for them to eliminate at point
defect sinks. During the course of their diffusion to sinks, they
might encounter solute atoms and contribute to their transport
[21–24] and redistribution. Depending on the details of the
thermodynamic and kinetic interaction between point defects
and solutes, it can lead to radiation-induced segregation at
point defect sinks [25–28] and radiation-induced precipitation,
both heterogeneous [29,30] and homogeneous [31].

It has been shown in previous studies that despite the
low concentration of V under equilibrium condition, these
defects already contribute to the solubility limit of oxygen
in a ferrite solid solution [32]. Also, low concentrations
of interstitial solutes stabilize many vacancies in the solid
solution, and reduce the effective vacancy formation energy
in the system [33]. In both cases, vacancies and interstitial
solutes have a highly attractive binding energy, and because of
that they stabilize each other in the solid solution. Under out-
of-equilibrium steady-state conditions, the same mechanism
operates, except that the vacancy concentration is imposed by
some external driving force. Mathematically, the problem of
solute phase boundary shift can be solved in the framework of
constrained thermodynamics [1,4] because local equilibrium
can be assumed on a small volume of the material [5]. Earlier
work using the concept of constrained thermodynamics [1,4]
conclude that a large concentration of point defects is required
to shift phase boundaries significantly, because they consider
that each point defect increases the energy of the phase by
an amount equal to the point defect formation energy. This
conclusion is based on an oversimplified description of the
effect of point defects on the phase diagram. For example, the
results from Ref. [32] show that large vacancy concentrations
are not necessary to change the solubility limit for an equilib-
rium between a solid solution and a precipitate of interstitial
solutes, because the solute concentration in both phases differs
by orders of magnitude and the vacancy-solute interaction can
be very attractive. Moreover, previous models did not consider
the coupling between the thermodynamic and kinetic interplay
of vacancies and solutes: solute solubility limits depend on
the concentration of point defects, which themselves depend
on the kinetic average properties of point defects, hence on
solute solubility limits. This coupling requires a detailed and
consistent modeling of both the thermodynamic and diffusion
properties of the system.

The goal of this paper is to provide a general and quan-
titative methodology to compute the effect of both ballistic
mixing and vacancy-induced dissolution mechanisms in a
unified framework and identify the temperature/irradiation flux
region where each mechanism is most effective. Predictions
of solute-point defect thermodynamic and kinetic properties
and the solid solution/precipitate phase boundary shift in
steady-state out-of-equilibrium alloys are based on atomic
scale data computed from ab initio. We restrict this study to the
effect of vacancies and assume no interaction between solutes
and SIA. Section II presents the methods (low-temperature
expansion of the free energy based on ab initio data), and
Sec. III introduces the parameters used in our models for FeC,
FeN, and FeO solid solutions. In Sec. IV, the solubility limit
increase of solutes as a function of vacancy supersaturation is
obtained for three systems: FeC, FeN, and FeO (Sec. IV A). A
ballistic mixing model is derived for interstitial solutes, which

do not show radiation-enhanced diffusion and we provide an
assessment of the BAL and VID domains for the FeO system
(Sec. IV B). Finally, Sec. V presents potential applications
of these calculations: using a very simplified model for
ODS materials, our calculations display some features that
are in qualitative agreement with experimental observations
of radiation-induced precipitate dissolution (Sec. V A); we
also suggest a new experimental protocol for measuring
out-of-equilibrium vacancy concentrations from solute partial
pressures (Sec. V B).

II. DYNAMICAL PHASE DIAGRAM FROM LTE
FREE ENERGIES

Low-temperature expansion (LTE [32,34–40]) is a powerful
technique to compute equilibrium properties of alloys. A
reference state is chosen for the system, and then a series
of excitation states are considered, sorted by their energy
with respect to the reference system. If the latter is correctly
chosen as the most energetically favored state, then at 0 K
temperature, it is the only possible state. As temperature
increases, more and more excitation states have non-negligible
probability. The idea of LTE is to expand the partition function
of the system around the reference state, and to derive the
approximate free energy of the system from this truncated
partition function. Then, all thermodynamic properties are
obtained from this analytical expression of the LTE free energy,
for instance, cluster size distributions [40], phase diagrams
[36], and interface defects [39]. Despite its name, LTE may
give reliable results up to fairly high temperatures depending
on the energies of the excited states (at least 1100 K for C, N,
and O in Fe because of high binding energies with vacancies
[32]). For completeness, we derive below the LTE expression
of the free energy in the grand-canonical ensemble, and the
equation one has to solve to compute the equilibrium chemical
potential between two phases in multi-component alloys.

In the grand-canonical ensemble, the grand potential of
the system A is a function of the grand-canonical partition
function �:

A = −kBT ln (�), (1)

where T denotes the temperature, kB denotes the Boltzmann
constant, and � reads

� =
∑

i

exp

[−Ei + ∑
α nα(i)μα

kBT

]
. (2)

The sum runs over every state i of the system, having
energy Ei and containing nα(i) particles of species α, to
which is associated the chemical potential μα . The reference
state chosen for the system has energy E0 and contains nα(0)
particles of each species α. Now, the partition function is
factorized by the term corresponding to the reference state,
and the grand-potential reads

A =
(

E0 −
∑

α

nα(0)μα

)

− kBT ln

[
1 +

∑
i

Gζi
exp

(
ζi

kBT

)]
, (3)
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with

ζi = −(Ei − E0) +
∑

α

(nα(i) − nα(0))μα

= −�Ei +
∑

α

�nα(i)μα. (4)

The sum over all states i in Eq. (3) runs over states for
which ζi < 0 only (if not, then the reference state has not been
chosen properly as there exists at least one more stable state).
These configurations (ζi < 0) are called excited states. These
can be sorted by their ζi values, and Gζi

denotes the degeneracy
(number of equivalent states) of configuration ζi . We then set
a value ζM such that any states which verifies ζi > ζM has a
negligible influence on the thermodynamic properties of the
system at the temperature of interest. At low temperature, i.e.,∑

i exp [ ζi

kBT
] � 1, the logarithm function in Eq. (3) can be

expanded to first order:

A = A0 − kBT
∑

0<ζi�ζM

Gζi
exp

(
ζi

kBT

)
, (5)

where A0 = E0 − ∑
α nα(0)μα is the grand-potential of the

reference state. The concentration per lattice site (Ns lattice
sites in the system) is then obtained from Eq. (5):

[α] = − 1

Ns

∂A
∂μα

= nα(0)

Ns

+
∑

0<ζi�ζM

nα(ζi)Pζi
, (6)

where the probability Pζi
of each excited state ζi is

Pζi
= gζi

exp

[−�Eζi
+ ∑

α �nα(ζi)μα

kBT

]
, (7)

and gζi
= Gζi

/Ns is interpreted as the exponential of the
configurational entropy of this excited state.

To obtain equilibrium chemical potentials between two
phases, one needs to perform the LTE [Eq. (5)] for each
of the two phases independently (each one has a different
reference state), and then use the equilibrium condition, that
is, the equality of grand-potentials. If there are more than one
independent chemical potential in the system, the other ones
are found either considering other phases in equilibrium or
treating the corresponding species in the canonical ensemble
(fixed concentration) and using Eq. (6) to compute the
chemical potential.

Following this general presentation of LTE, we now
introduce the specific features of this paper. We aim at
investigating the effect of irradiation on the solubility limit
of interstitial impurities (C, N, and O) in α-Fe. Note that
this calculation of cluster concentrations is an equilibrium
calculation per se, but these relations are assumed to hold
when the system is driven out of equilibrium. This is the local
equilibrium assumption, which states that the local evolution
of the system is fast enough to reach a constrained equilibrium
state at each time. This assumption is thus likely to fail at low
temperature and high irradiation flux.

Point defects are created under irradiation, and diffuse,
recombine and eliminate at point defect sinks. It is known
that after some time, a steady-state concentration profile of
point defects in the solid solution is reached [8]. In this paper,
we focus on the interaction between vacancies and solute
impurities. As a simplifying assumption, interactions between
self-interstitial atoms and solutes are neglected and the effect
of irradiation will be approximately modeled by a steady-state
vacancy supersaturation (although self-interstitial atoms will
be considered in our rate theory model to compute the
steady-state vacancy supersaturation for a given temperature
and irradiation flux). Simple analytical expressions from rate
theory provide estimates of vacancy supersaturation as a func-
tion of irradiation and microstructure parameters [8]. On the
other hand, it has been shown that under equilibrium conditions
where vacancy concentrations are very low, vacancies need to
be accounted for in the calculation of the equilibrium solubility
limit, especially for the Fe-O alloy [32]. In the present work,
we investigate the effect of a steady-state out-of-equilibrium
vacancy concentration on solute solubility limits. Because the
steady-state vacancy concentration profile does not evolve
with time, vacancies will be treated as conservative species
(canonical ensemble).

The solubility limit is obtained considering the equilibrium
between the solid solution (containing interstitial species C,
N, and O) and some ordered structure of these solutes in
Fe (carbide Fe3C, nitride Fe4N, or oxide FeO and Fe3O4,
respectively). In order to simplify the parametrization of our
model, we choose to describe in fine details the free energy of
the solid solution (especially how it varies with interstitial
solutes and vacancy concentrations) and to adopt a semi-
phenomenological approach to estimate the free energy of
the solute ordered phase (assumed perfectly stoechiometric),
as explained in Ref. [32]. Ignoring the excited states of
the ordered phase (insertion of vacancies and/or antisites) is
justified by the following reasoning: the equilibrium chemical
potential of a solute is related to the difference between
the average solute formation energy in each phase, the solid
solution and the ordered compound; the solute concentration in
the solid solution being very low, the average solute formation
energy is easily altered when some of the solutes are close
to vacancies, with which they show attractive binding; in the
ordered phase containing 25%–50% solutes, concentration of
defects of the same order of magnitude would be needed
to significantly alter the average solute formation energy
in this phase. If such a high defect concentration existed
in the ordered phase, these defects should most probably
exist in the ground state configuration of this phase, which
means that the reference state for this phase has been badly
chosen.

With that in mind, let A(FepXq) be the grand-potential per
Fe atom of the ordered compound:

A(FepXq) = �F(FepXq)

p
− μFe − q

p
μX. (8)

In this work, chemical potentials are expressed with respect
to the isolated atom/defect in otherwise perfect bulk α-Fe. With
these references, the energy difference between the ordered
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compound and bulk α-Fe is

�F(FepXq)

p

= F[FepXq]
p

− F[NFeFe]

NFe
− q

p

(
F[NFeFe+X] − F[NFeFe]

)

= − q

p

(
F[NFeFe+X] − F[Fep/qX] − F[NFeFe] + p

q

F[NFeFe]

NFe

)

= − q

p

(
F[NFeFe+X] − F[Fep/qX] − F[(

NFe− p

q

)
Fe

])

= − q

p
Ff (X)|Fe/FepXq

. (9)

F[�] is the total free energy of a supercell containing �.
Ff (X)|Fe/FepXq

[later denoted simply by Ff (X)] is defined as
the solute formation free energy in α-Fe, the reference solute
state being the ordered phase FepXq .

If two phases are at equilibrium, their grand potentials must
be equal,

− q

p
Ff (X) − μFe − q

p
μX = −μFe − kBT

∑
ζi

Pζi
, (10)

which is rewritten in a more convenient form:

q

p

(
μX + Ff (X)

kBT

)
=

∑
i

gi exp

(
Ebt

i + niμV Fe + miμX

kBT

)
.

(11)

In this equation,Ff (X) is an input parameter, which leaves two
unknowns: μX and μV Fe = μV − μFe. The second equation
needed to close the system is Eq. (6) applied for vacancies,
and assuming that the total steady-state vacancy concentration
is fixed by irradiation conditions and microstructure. Using
these two equations [(6) and (11)], we are then able to study the
impact of a vacancy supersaturation on the solute concentration
in the solid solution, i.e., the solubility limit.

III. PARAMETRIZATION

Using Eq. (11), the equilibrium solute chemical potential
can be computed if one knows q/p,Ff (X), μ

eq
V Fe, and for

each excited state i considered: Ebt
i and gi . The ratio q/p

is known from the composition of the ordered compound.
The other parameters have already been described in depth
in Ref. [32]. Ebt

i is computed for each excited state using a
lattice Hamiltonian that was fitted to density-functional theory
(DFT) calculation of small vacancy-solute cluster binding
energies. Then an analytical method to explore configurational
space allows one to find the energetically most favored
configurations. From this method combined with cluster
symmetry analysis, the degeneracy of each excited state, gi , is
also obtained. Not too many excited states should be included
in the calculation, because of LTE convergence issues (as
discussed in Ref. [32]). μ

eq
V Fe and Ff (X) are computed with a

semi-analytical procedure, combining DFT calculations with
experimental data, in which Ff (X) is assumed linear with
respect to temperature:

Ff (X) = Ef (X) − T Sf (X). (12)

The energy contribution (T = 0 K) is obtained from DFT
calculations (FeO system) or fitted to experimental data (FeC
and FeN systems), and the entropy contribution is fitted to one
high temperature experimental solubility limit, as described
in Ref. [32]. The equilibrium chemical potential for replacing
one Fe atom by a vacancy μ

eq
V Fe is assumed to be a function of

temperature and magnetization, see Ref. [33], for details,

μ
eq
V Fe = −[Ff (V )|P + (Ff (V )|F − Ff (V )|P )M2], (13)

with Ff (V )|P and Ff (V )|F being linear functions of tem-
perature. P and F subscripts stand for paramagnetic and
ferromagnetic, respectively. M is the magnetization, a function
of the temperature and deduced from a mean-field model
[41]: M = tanh (−MTC/T ), and TC is the Curie temperature
(TC = 1043 K in Fe).

Table I summarizes the parameters needed to perform
the calculations in this paper. Let us mention that at low
temperature (T < 843 K), the iron oxide appearing on the
phase diagram is magnetite Fe3O4. The energy difference
in oxygen formation energy from these two possible oxides
(Fe3O4 and Fe0.947O) has been deduced from thermodynamic
assessments of this phase diagram [42] (in eV):

Ff (O)|Fe/Fe3O4
= Ff (O)|Fe/Fe0.947O + 1.769 × 10−8T 2

−2.829 × 10−4T + 0.22813. (14)

TABLE I. Summary of the parameters used in this study.

C N O

Ef (X) (eV) [32] 0.57 0.32 1.28
Experimental [X]|sol at T|fit [appm] 933 [43] 4000 [44] 13 [45]
T|fit [K] 1000 865 1154
Phase FepXq Fe3C Fe4N Fe0.947O
μ

eq
X (T|fit) [eV] −0.696645 −0.495085 −1.39554

Sf (X) [kB ] −1.47 −2.36 −0.68
Computed [X]|sol at T = 300 K (appm) 2 × 10−4 1 2 × 10−18

Maximum cluster size included in the LTE V3C7 V3N7 V3O5

Pure Fe: Ef (X)|P (eV) [32] 2.13
Pure Fe: Ef (X)|F (eV) [46] 1.98
Pure Fe: Sf (X)|P [kB ] [47,48] 5
Pure Fe: Sf (X)|F [kB ] [47,48] 4
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FIG. 1. C solubility limit increase factor as a function of the total
steady-state vacancy concentration in the solid solution (concentra-
tion per atomic site). The curves from left to right correspond to
increasing temperature (300 to 1000 K).

IV. STEADY-STATE SOLUBILITY LIMIT INCREASE
UNDER IRRADIATION

A. Vacancy induced dissolution mechanism

With the parameters from Table I, Eq. (11) can now be
solved (unknown is μX) as a function of the total vacancy
concentration in the solid solution, for three different systems:
Fe-C (Fig. 1), Fe-N (Fig. 2), and Fe-O (Fig. 3). As a general
piece of information, the binding energy between an interstitial
solute and a vacancy decreases from O to N to C (1.43, 0.73,
and 0.41 eV, respectively), while for a given temperature the
solubility limit decreases from N to C to O (∼1000, ∼100, and
∼0.1 appm at T = 800 K, respectively). Detailed information
on these systems can be found in Ref. [32].

If μV Fe = μ
eq
V Fe [Eq. (13)], then the equilibrium solubil-

ity limit is obtained ([X]eq
|sol). If instead the total vacancy
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FIG. 2. N solubility limit increase factor as a function of the total
steady-state vacancy concentration in the system (concentration per
atomic site). The curves from left to right correspond to increasing
temperature (300 to 1000 K).
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FIG. 3. O solubility limit increase factor as a function of the total
steady-state vacancy concentration in the system (concentration per
atomic site). The curves from left to right correspond to increasing
temperature (300 to 1000 K).

concentration is imposed in the system, and Eq. (6) with
α = V is solved to obtain μV Fe, then the constrained equi-
librium solubility limit is obtained ([X]cons

|sol ). “Constrained
equilibrium” refers to the fact that vacancies are driven out
of their equilibrium concentration by some external process
(irradiation, ball milling) but that their nominal concentration
does not vary with time (steady state), which allows to define
a “constrained” thermodynamic equilibrium between the solid
solution and solute precipitates, and thus to define steady-state
solubility limit for this constrained equilibrium. Let us define
δ = δ(T ,[V ]), the solute solubility limit increase factor δ at
temperature T due to the nominal vacancy concentration [V ]:

δ = δ(T ,[V ]) = [X]cons
|sol

[X]eq
|sol

. (15)

Considering an equilibrium between two phases (solid
solution and precipitate), the lever rule gives the volume
fraction of the precipitated phase as

vP

vtot
= ρnom − ρSS

ρP − ρSS

, (16)

where vP and vtot are the precipitate volume and total system
volume, respectively. ρnom is the nominal solute density
(average number of solute per unit volume in the whole
system), ρSS is the equilibrium solute solubility limit (per
unit volume of solid solution) and ρP is the solute density
in the precipitates. Out-of-equilibrium, the precipitate volume
becomes [using Eq. (15)]

vcons
P

vtot
= ρnom − δ × ρSS

ρP − δ × ρSS

. (17)

It is then possible to express the volume fraction of
precipitates that are dissolved due to the stabilization of solutes
in the solid solution by association with vacancies

vP − vcons
P

vP

=
(δ − 1)

(
ρP

ρnom
− 1

)
(
δ − ρP

ρSS

)(
ρSS

ρnom
− 1

) , (18)
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which is always positive. The key quantity in Eq. (18) is δ,
which has been computed for all three systems (FeC, FeN,
and FeO) as a function of temperature and steady-state vacancy
concentration (Figs. 1–3).

All curves show the same trend, whatever the temperature.
At low [V ], δ = 1, which means that the solubility limit is
the same as under equilibrium conditions. There are simply
not enough vacancies in the system to form a significant
amount of vacancy-solute clusters. At some point, the number
of vacancies in the solid solution becomes high enough so that
the average solute belonging to the solid solution is more stable
than in the equilibrium case. From a LTE perspective [Eq. (5)],
the contribution of the excited states to the grand-potential
increases, which means that for a given solute concentration,
the grand-potential actually decreases. Because two phases
in equilibrium must have equal grand-potential, there is a
thermodynamic driving force (i.e., a possibility to lower the
total energy of the system) by dissolving part of the solute
precipitates in the solid solution. Note that the solubility limit
increase can be several orders of magnitude, especially for the
FeO system.

For each system, the solubility limit increase δ shows a
linear trend after some threshold vacancy concentration. The
slope is close to 1 at room temperature (0.990, 0.944, and
0.993 for X = C, N and O, respectively), and decreases
as temperature increases (0.814, 0.626, and 0.980 at T =
1000 K for X = C, N, and O, respectively). This systematic
linear behavior can be qualitatively understood from the LTE
formalism, specifically from Eq. (6). Equation (6) tells us that
for a given solute chemical potential μX, the total vacancy
and solute concentration can be expressed as a power series
expansion of exp (μV Fe/kBT ):

[V ] =
∑
n�1

n(σV + σn) exp

(
nμV Fe

kBT

)
, (19)

[X] = σX +
∑
n�1

σ̃n exp

(
nμV Fe

kBT

)
. (20)

Here, σn coefficients represent the contribution of vacancy-
solute clusters containing n vacancies, and depend on T and
μX only. σ̃n coefficients differ from σn coefficients by the
weight attributed to each cluster contribution, which depends
on the number of vacancies in a cluster for σn, and on the
number of solutes in a cluster for σ̃n. σV (respectively, σX)
relates to pure vacancy (respectively, solute) clusters in the
solid solution. Now we have to make a couple of simplifying
assumptions, the main one being that there exists a type of
cluster which dominates both the nominal vacancy and solute
concentration, labeled m, and containing mV vacancies and mX

solutes. Also, we assume that vacancy-solute clusters do not
affect much the equilibrium solubility limit at room tempera-
ture (mostly true), but that under high vacancy supersaturation,
these clusters represent the main contribution to the solute
nominal concentrations. Equation (19) becomes

[V ] � mV σm exp

(
mV μV Fe

kBT

)
. (21)
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FIG. 4. The solubility limit increase in the FeO system is
represented as a function of the vacancy chemical potential μV Fe for
various temperatures. The symbols show the equilibrium vacancy
chemical potential at each temperature. With our definitions, an
increase in the vacancy chemical potential leads to an increase in
the total vacancy concentration in the system.

Equation (21) is inserted in Eq. (20),

δ = [X]cons
|sol

[X]eq
|sol

� 1 + σ̃m

σX

exp

(
mV μV Fe

kBT

)

� 1 + mXσm[V ]

mV σmσX

� mX[V ]

mV σX

, (22)

because when a single cluster m dominates the cluster
population, the following equality holds: σ̃m = mXσm. This
equation clearly shows that in order to have vacancy-induced
solubility limit increase, [V ] needs to be at least of the order of
magnitude of σX (solute solubility limit at equilibrium), else
the last equality is not valid anymore. Taking the logarithm of
Eq. (22), one ends up with the expected linear relation

ln (δ) = ln

(
mX

mV σX

)
+ ln ([V ]). (23)

It seems the above assumptions are correct because for
all tree systems and each temperature, a linear behavior is
observed with a slope close to unity. However, the slope of
this law is not exactly one, and decreases with temperature,
which is probably due to the fact that at least two clusters may
contribute to solute and vacancy concentrations. Additional
insight is achieved when [V ] in Eq. (23) is replaced by its
value in Eq. (21):

kBT ln (δ) = kBT ln

(
mXσm

σX

)
+ mV μV Fe. (24)

Figure 4 represents kBT ln (δ) as function of the vacancy
chemical potential μV Fe in the FeO system. If, for a given
vacancy concentration range, there is indeed one type of
vacancy-solute cluster that dominates the constrained solute
solubility limit, it can be found from a linear regression of
this plot. Such linear regions are observed and well defined
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at low temperature, with successive slopes 0, ∼1, and ∼2.7.
Let us discuss for instance the room temperature curve: in
the first linear region (slope = 0), vacancies do not affect
solute solubility limits. In the second linear region (slope ∼1),
vacancy-solute clusters containing one vacancy dominate and
explain the solute solubility limit increase. In the third linear
region (slope ∼2.7), it seems that a mix of vacancy-solute
clusters containing between 2 and 3 vacancies would explain
the solute solubility limit increase. The same trend is observed
when temperature increases, but the first region narrows, while
the transition between region 2 and 3 becomes smoother.
Above T = 800 K, it seems that the third linear region exists,
but not the other ones. This trend is somehow expected,
because as temperature increases, the relative stability of each
cluster get closer to each other, and it is thus more difficult for
one type of cluster to dominate among all others.

Note that previous models of constrained thermodynamics
for out-of-equilibrium steady-state systems conclude that large
amounts of point defects are required to shift phase diagram
boundaries [1,4,5]. Figures 1, 2, and 3 show that it is not
the case, because the solute concentration differs by orders of
magnitude between the solid solution and the precipitate phase.
Hence, a given vacancy concentration changes the average
solute energy differently for these two phases, which stabilizes
one phase over the other compared with the equilibrium
system. The attractive binding energy significantly stabilizes
solutes and vacancies in the solid solution, which is the
key ingredient to solute solubility limit increase upon V

supersaturation. Moreover, the effect on the free energy of the
solid solution is not proportional to the vacancy concentration,
because clusters larger than vacancy-solute pairs are partly
responsible for the stabilization, as evidenced in Fig. 4. Finally,
the interaction between vacancies and solutes will most of
the time decrease the average diffusivity of vacancies, hence
the total concentrations of point defects under irradiation will
increase in the alloy compared with the pure material.

Let us summarize and discuss the main result from this
section. Under irradiation (or any other vacancy-producing
process), we have shown that interstitial solutes (C, N, and
O) are stabilized in the solid solution because they form an
increased number (compared to equilibrium) of vacancy-solute
clusters. This way, solute solubility limits increase under
irradiation, and this increase (δ) has been computed as a
function of temperature and vacancy supersaturation using
LTE. If the system is closed with respect to these solutes
(canonical ensemble) then δ allows to predict precipitate
dissolution under irradiation [Eq. (18)]. This mechanism of
vacancy-induced precipitate dissolution (VID) is an alternative
to the well-known dissolution by ballistic effects [7,49,50],
and both are compared in the next section. The mechanism
presented in this paper is fully based on the mutual stabilization
of vacancies and solutes. This requires that solutes and
vacancies are able to diffuse to find each other, which requires
a not too low temperature. If the temperature is too high, then
association between vacancies and solutes does not stabilize
the system sufficiently. Hence the proposed mechanism of
precipitate dissolution under irradiation is expected to be most
efficient at intermediate temperatures, which might help in
understanding experiments (e.g., [12,13,15]). Moreover, the
LTE calculations are based on the local equilibrium hypothesis,

which should be valid at not too high irradiation flux. This
hypothesis simply states that it is always possible to define
a local volume in the system in which Boltzmann statistics
between various possible configurations is obeyed.

B. Comparison between vacancy induced dissolution
and ballistic mixing for an interstitial solid solution

In this section, we use simple models to get a quantitative
comparison of two solute solubility limit increase (or pre-
cipitate dissolution) mechanisms under irradiation: vacancy
induced dissolution (VID) and ballistic mixing (BAL). Each
of these creates a specific solute solubility limit increase (δVID

and δBAL, respectively) as a function of various parameters
that we introduce below. These two mechanisms are treated as
independent and are both operating under irradiation, creating
a total solute solubility limit increase δ = δVID + δBAL. As
previously, self-interstitial atoms are not treated explicitly
and their interaction with solutes is neglected. Their effect
only appears implicitly in the recombination term which
participates in establishing the total vacancy concentration in
the system for given temperature/flux conditions.

Following Martin [50], the solubility limit under irradiation
at temperature T is equal to the equilibrium solubility limit at
some (higher) effective temperature Teff defined as

Teff = T

(
1 + Dbal

D̄X

)
, (25)

where D̄X is the average solute thermal diffusion coefficient
at temperature T and Dbal is the ballistic diffusion coefficient,
which can be approximated as [50]

Dbal = φnrepd
2
rec. (26)

Here, φ is the irradiation flux (dpa/s), nrep is the number
of successive atomic replacement due to a single collision
(nrep � 10 for electron irradiation [51]), and drec is the recoil
distance, which we take equal to the first nearest-neighbor
distance of the body-centered cubic structure (drec = a

√
3/2,

a being the lattice parameter). Thermal diffusion of solute X

is either due to the diffusion of isolated solutes (for interstitial
solutes only) or to the diffusion of vacancy-solute clusters.
To simplify the model, it is assumed as in Eq. (22) that one
particular vacancy-solute cluster (cluster m containing mV

vacancies and mX solutes) provides the major contribution to
the whole population of vacancy-solute clusters. The average
solute thermal diffusion coefficient reads

D̄X = [X0]DX + mX[m]Dm

[X0] + mX[m]
, (27)

where DX and Dm are the diffusion coefficients of isolated
solute and cluster m, respectively, and [X0] and [m] are the
corresponding concentrations. Assuming local equilibrium,

[m] = [X0]mX [V0]mV Zm, (28)

where [V0] is the concentration of isolated vacancies, and Zm

is the exponential of the binding free energy of cluster m. Let
Ff (X) be the free formation energy of solute X in the solid
solution (from a given precipitated phase of this solute or solute
reservoir). Note that in principle Ff (X) can depend on the
vacancy concentration in the system. Then the isolated solute
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concentration is expressed as [X0] = exp (−Ff (X)/kBT ).
The vacancy monomer concentration [V0] is deduced from
the total vacancy concentration:

[V ] = [V0] + mV [m]. (29)

The solute supersaturation due to ballistic mixing is then

δBAL = [X]cons
|sol

[X]eq
|sol

= exp

(
−Ff (X)

kBTeff
+ Ff (X)

kBT

)
, (30)

which can be rewritten in a more convenient form

ln (δBAL) = Ff (X)

kBT

(
1

1 + D̄X/Dbal

)
. (31)

For the VID mechanism, we simply use Eq. (23) in which σX

is being replaced by [X]eq
|sol = exp (−Ff (X)/kBT ),

ln (δVID) = ln

(
mX

mV

)
+ Ff (X)

kBT
+ ln ([V ]), (32)

where [V ] is the total vacancy concentration in the system.
Following rate theory models (e.g., Refs. [5,8,51]), the total
steady-state vacancy concentration under irradiation can be
estimated as

[V ] = − k2�

8πrc

+
√(

k2�

8πrc

)2

+ φ�

4πrcD̄V

, (33)

where � = a3/2 is the atomic volume, rc is the capture
radius below which vacancy and self-interstitial spontaneously
recombine (estimated as rc = √

3a [51]), k2 is the sink strength
which depends on microstructure and irradiation conditions
(assumed unbiased for simplicity, typical values range between
1012 and 1019 m−2 [51]), and D̄V is the average vacancy
diffusion coefficient, defined similarly as Eq. (27):

D̄V = [V0]DV + mV [m]Dm

[V0] + mV [m]
. (34)

We now apply this model to the case of oxygen in α-Fe to
identify the temperature/irradiation flux regions where ballistic
mixing and/or vacancy induced dissolution is the dominant
mechanism. For the VID mechanism, the most probable
vacancy-oxygen cluster is V O2. In the FeO system, it has been
computed that the oxygen chemical potential does not vary
much with the vacancy supersaturation (the relative variation
is lower than 10−5 for T � 700 K), such that we assume [O0] =
[O]eq

|sol = exp (−Ff (O)/kBT ) for simplicity, where Ff (O) is
the equilibrium oxygen formation energy. Note that O diffuses
according to an interstitial mechanism in αFe, which, contrary
to substitutional solutes, does not require a vacancy. This is
a major difference compared to previous studies of ballistic
mixing (e.g., Refs. [50,51]). Table II lists the values of all
the parameters needed in Eqs. (26)–(34), and shows that V O2

clusters diffuse much slower than isolated O atoms; therefore,
increasing the concentration of point defects would actually
reduce the average diffusivity of interstitial solutes, whereas
it increases the average diffusivity of substitutional solutes.
Yet, most of the O atoms are isolated unless the vacancy
concentration is very large, such that the average O diffusivity
does not vary much under irradiation. Looking at Eq. (34)
and the values in Table II, O atoms will slow down vacancies,

TABLE II. List of the parameters used for the comparison
between VID and BAL mechanisms. Irradiation parameters have been
set to standard values for electron irradiation. All the kBT terms in
this table must be expressed in eV.

Parameter Units Value Reference

Ff (X) eV 1.51–3.47kBT [32,33]
mV – 1 This work
mX – 2 This work

Zm – 3 exp
(
− 3.04

kBT

)
[32]

a m 2.88 × 10−10 [32]

Dm m2/s 10−6 exp
(
− 2.06

kBT

)
[52]

DV m2/s 6.7 × 10−6 exp
(
− 0.67

kBT

)
[53,24]

DX m2/s 10−6 exp
(
− 0.54

kBT

)
[54,24]

nrep – 10 [51]
k2 m−2 1015 [51]

which leads to an increase in the total V concentration under
irradiation, and thus increases the stabilization of O atoms in
the solid solution.

Figure 5 shows the computed total vacancy concentration
in the system [Eq. (33)] as a function of temperature and
irradiation flux. The black lines define four regions (from left to
right): in the first region, the BAL mechanism dominates; in the
narrow second region, BAL and VID mechanisms are about the
same order of magnitude; in the third region, VID mechanism
dominates; in the fourth region, none of these mechanisms is
efficient. The VID mechanism requires a lot of vacancies,
so it is expected to be most efficient at low/intermediate
temperatures, which is observed. The BAL mechanism is
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FIG. 5. Total vacancy concentration [V ] in the system as a
function of temperature and irradiation flux obtained with the
parameters from Table II. In the “VID” (respectively, “BAL”) region,
vacancy induced dissolution (respectively, ballistic mixing) is the
main mechanism responsible for solute solubility limit increase. See
Fig. 6 for more details.
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most efficient at low temperature because thermal diffusion
is slower, so it is harder for atoms ejected from a given
equilibrium state to diffuse back to this state. Figure 5 also
enables to relate, at least roughly, the abscissa of Figs. 1–3, to
typical temperature/irradiation flux conditions.

Figure 6 shows the total solute supersaturation δ as a
function of temperature and irradiation flux. The black lines
define the same regions as in Fig. 5 (see previous paragraph).
The first plot [Fig. 6(a)] uses the parameters from Table II,
and the corresponding total vacancy concentration is the one
plotted in Fig. 5. At low temperature/high irradiation flux,
both mechanisms contribute significantly to solute solubility
limit increase, but the BAL mechanism is much more efficient.
Moreover, the VID contribution is probably overestimated in
this region because diffusion is slow, so it takes a significant
amount of time before local equilibrium is reached. At
intermediate temperatures and irradiation fluxes, the VID
mechanism dominates. The region in between where the
solute supersaturation coming from each mechanism is about
the same order of magnitude is narrow, which supports our
assumption that both mechanisms are independent. When
irradiation flux becomes too low and/or temperature too high,
then none of these mechanisms produces any significant solute
supersaturation.

It is shown in Ref. [51] that as irradiation goes on, more
and more point defect clusters form and grow, and this leads
to an increase in the overall sink strength. Higher sink strength
leads to lower point defect concentration in the system, and
thus to a reduced efficiency of the VID mechanism. To confirm
the effect of this microstructure evolution, Fig. 6(b) shows
the exact same calculation as previously except that the sink
strength has been increased from k2 = 1015 to 1019 m−2. The
BAL region is not much affected by this change [compared
to Fig. 6(a)], whereas the VID region is not as large as in the
previous case, and δVID is lower for a given temperature and
irradiation flux.

All this discussion has been made for interstitial solutes.
The main difference with substitutional solutes is that the latter
are immobile as isolated species (they need a point defect to
diffuse) while the former are mobile. To get a rough idea of
how the BAL/VID boundary evolves for substitutional solutes,
we used the same set of parameters as in Fig. 6(a), except that
the isolated solute diffusion coefficient DX was set to zero.
Figure 6(c) shows that the BAL region expands to much higher
temperatures and lower irradiation fluxes, which is expected:
setting DX to zero reduces the average solute diffusivity D̄X,
which explicitly appears in the calculation of δBAL [Eq. (31)].
Physically, it is harder for solute ejected by irradiation particles
to diffuse back to their equilibrium state. On the contrary, this
change should not have much effect on the δVID, except that
it might be harder to reach the required local equilibrium (but
this feature is not taken into account in this simple model).
Let us point out that Fig. 6(c) is not quantitatively relevant for
substitutional solutes, because these usually have much higher
solubility limits and much lower vacancy-solute binding than
oxygen. Similar graphs for substitutional solutes will be the
focus of a future paper.

Figure 6 provides a map to estimate the tempera-
ture/irradiation flux conditions in which BAL or VID mecha-
nisms would be relevant. As expected, BAL dominates at low
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FIG. 6. Total solubility limit increase under irradiation δ =
δVID + δBAL as a function of temperature and irradiation flux. (a) has
been computed with the parameters in Table II. In (b), the sink strength
was increased from k2 = 1015 to 1019 m−2. In (c), the sink strength
is set back to its original value but isolated solutes are considered
immobile (DX = 0). For each plot, there are four main regions: BAL
region (defined as δBAL � 10δVID); a narrow transition region where
both mechanism (VID and BAL) are of similar magnitudes; VID
region (defined as δVID � 10δBAL); the blue region in the bottom
right-hand side corner where none of these mechanisms affects the
system (δ � 1).

temperature/high flux while VID dominates at intermediate
temperature and irradiation flux.
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V. POTENTIAL APPLICATIONS

A. Assessment of ODS particles stability under irradiation

Oxide-dispersed strengthen (ODS) steels are candidates
for future nuclear reactor applications because of their good
mechanical properties at high temperature and their resistance
to swelling and creep deformation [11]. Schematically, they
consist of a ferritic-martensitic FeCr matrix in which a
homogeneous distribution of small oxide particles is inserted
by ball milling. These oxides are found to have the nearly
stoichiometric pyrochlore structure Y2Ti2O7, at least for the
ones larger than 5 nm [55]. For a sustainable use of these
materials in nuclear environment, it is crucial to assess the sta-
bility of the ODS microstructure under irradiation. From some
experimental observations, the nano-oxide particles seem to be
stable under irradiation [15,56] but other studies observe par-
ticles dissolution under irradiation [12–15,18–20,57,58], see
Ref. [16] for a review. These studies stress that ballistic mixing
models do not quantitatively account for the observed disso-
lution phenomenon. Also, it is much more efficient in electron
irradiation samples compared with ion irradiation samples,
which underlines the role of isolated point defects [12].

Unfortunately, it is not yet possible to assess whether the
VID mechanism fully accounts for experimental observations
using Eq. (18) and/or Fig. 6, because a number of issues
remains. (1) The steady-state of the system is often not reached
in experiments. (2) The measured oxygen concentration in the
solid solution is orders of magnitude above the experimen-
tal solubility limits, even before irradiation [59,60]. (3) A
correct assessment of precipitate dissolution should involve
five species (Fe-Cr-Y-Ti-O), either with canonical (fixed
concentration) or grand-canonical (fixed chemical potential)
conditions for each of them. Such a complete simulation of
ODS steels is beyond the scope of this paper, and more data
would be required. (4) The interface energy of the precipitates,
as well as their possible off-stoichiometry, will probably have
an important influence on precipitate dissolution [32].

From a qualitative point of view, and treating the ODS alloy
as an FeO alloy, Fig. 6(a) shows that the precipitate dissolution
stems from the VID mechanism in the following regions
where experiments where performed: 3 − 6 × 10−3 dpa/s and
573–823 K [12]; 1.4 × 10−3 dpa/s 773–973 K [13]; 1.4 ×
10−2 dpa/s 573–873K [18]; and 0.5 × 10−5 dpa/s 673K. To
simplify the discussion, we did not distinguish between various
types of irradiation particles, but the qualitative observation
that VID is the dominant dissolution mechanism is still valid
if irradiation rates are decreased by 1–2 orders of magnitude
to account for point-defect production efficiency. The fact that
precipitate dissolution occurs for electron irradiated samples
demonstrates that cascades are not part of the mechanism [12].
Yet, Monnet et al. [12] show that a threshold irradiation energy
is needed to observe the dissolution, which they interpret as the
energy needed to displace Y atoms. In our simplified model,
we consider only FeO precipitates and evaluate the tendency
for O to go into the solid solution. In a more realistic ODS
particle, the dissociation of O from the oxide raises the question
of changes in the stoichiometry, which might at some point
limit the dissolution. The dissociation of O atoms only could
explain the Y-enriched shell observed around some precipitates
after irradiation [58] and the change in oxide stoichiometry
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FIG. 7. Oxygen solubility limit increase δ as a function of the
steady-state concentration of vacancies (per atomic site) and the
oxygen formation free energy Ff (O) (eV). The latter is the energy
difference between an oxygen atom belonging to the oxide, and
an oxygen atom isolated in the solid solution. The oxide has the
stoichiometry Fe4O7. Temperature is set to (a) T = 600 and (b) 900 K.

[12,58]. Moreover, it has been shown that the dissolution rate
depends on the particle chemical composition [14], which
is represented as the oxygen formation energy in our model
(see Fig. 7 hereafter). The nonlinear effect of temperature on
precipitate dissolution is also a commonly observed feature
[12–14,18], and some author explain these variations by
a balance between ballistic effects and radiation-enhanced
diffusion [18]. Let us stress that there is no radiation-enhanced
diffusion for oxygen atoms because they diffuse as interstitial
species. Looking at Fig. 6, temperature has two contradictory
effects on the VID mechanism: as temperature increases, δVID

decreases because the formation of vacancy-solute clusters
is less probable; but higher temperatures favor the thermal
dissociation of an oxygen atom from the oxide, as well as its
diffusion in the solid solution, thus its probability to pair with a
vacancy. It is thus expected that precipitate dissolution would
be more kinetically effective at higher temperatures, even if
the steady-state precipitated volume fraction would be lower.

A first estimation of δ, the oxygen solubility increase can
be obtained from our calculations. Compared to the ODS
system, we have to make simplifying assumptions. First, we
assume that each substitutional atom has the same energy as
an Fe atom. The stoichiometry of the oxide is thus chosen as
Fe4O7 (from Y2Ti2O7). As the solubility limit of oxygen in
Fe at equilibrium with nano-oxides is unknown, and as the

014113-10



VACANCY-INDUCED DISSOLUTION OF PRECIPITATES . . . PHYSICAL REVIEW B 95, 014113 (2017)

steady-state vacancy supersaturation is unknown as well,
we perform a parametric study over these two parameters,
the former being derived from the oxygen formation energy
Ff (O). The results are plotted in Fig. 7 for two temperatures:
T = 600 and 900 K.

Figure 7(a) shows that at low Ff (O), the equilibrium
vacancy concentration (black, δ = 1) is already very high (a
few appm). As Ff (O) increases, the concentration of O atoms
in the solid solution decreases and it is less probable to form
vacancy-oxygen clusters. Thus vacancies are less stabilized by
oxygen and the equilibrium vacancy concentration decreases,
up to a point where oxygen atoms do not affect the equilibrium
vacancy concentration at all (Ff (O) � 1.7 eV), and all
vacancies in the system are isolated vacancies. For a given
value Ff (O), increasing the total vacancy concentration in the
system (irradiation) increases δ. At low Ff (O), high vacancy
concentrations are needed to increase δ because there is already
a high concentration of vacancy-solute clusters in the solid so-
lution at equilibrium. For higher Ff (O), it seems that vacancy
concentrations as low as 10−10 are sufficient to increase the
oxygen solubility limits by 2–4 orders of magnitude. Let us
emphasize that as Ff (O) increases, the equilibrium oxygen
solubility limit decreases, and δ is the solubility limit increase
with respect to this equilibrium O solubility limit.

Figure 7(b) shows the same data at a higher temperature
(T = 900 K). The trend is similar to the previous plot,
but equilibrium oxygen solubility limits are higher than at
T = 600 K, it is thus more difficult to create a high oxygen
supersaturation δ. This is reflected in the color scale, which
only goes up to five orders of magnitude (instead of 12
orders of magnitude at T = 600 K). The comparison between
these two graphs shows that for a given Ff (O) and vacancy
supersaturation, the solubility limit increase is very sensitive
to temperature. The solubility limit increase is obviously less
important at high temperatures. Nevertheless, one has to keep
in mind that the mutual stabilization of vacancies and oxygen
atoms is possible only if they are able to diffuse. In this sense,
higher temperatures make it easier for the system to reach the
steady-state microstructure.

B. Measurement of vacancy concentration
in out-of-equilibrium systems

The supersaturation of point defects in out-of-equilibrium
systems is a crucial quantity as it directly relates to the driving
force for point defect elimination. In the framework of the
thermodynamics of irreversible processes, the fluxes of point
defect, and the fluxes of solutes (because of flux coupling) are
proportional to these driving forces [25]. Thus knowing point
defect supersaturation is necessary to be able to predict solute
redistribution.

Yet, reliable measurements of point defect supersaturations
are scarce. Some attempts have been made using positron
annihilation spectroscopy, but the analysis of the results
remains difficult [61,62]. In pure metals, it seems that rate
theory models give an accurate description [8,63], but their
application to alloys is much more complicated.

Results from the previous section show that the free energy
curve of the solid solution depends on the interplay between
vacancies and solutes. In other words, it means that vacancy

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

Stationnary vacancy concentration 

10
-3

10
-2

10
-1

10
0

p N
co

ns
 / 

p N
eq

[N]=10
-6

 ; T=500 K

[N]=10
-6

 ; T=600 K

[N]=10
-6

 ; T=700 K

[N]=10
-4

 ; T=500 K

[N]=10
-4

 ; T=600 K

[N]=10
-4

 ; T=700 K

FIG. 8. LTE calculation of the ratio pcons
N /p

eq
N as a function of the

steady-state out-of-equilibrium vacancy concentration (per site) in
the system. Dashed curves are for low N concentration in the system
([N] = 1 appm), and solid curves are for higher concentrations
([N] = 100 appm). Colors relate to temperature: T = 500 (blue),
600 (black), and 700 K (red).

and solute chemical potentials affect each other, as it appears
in Eqs. (6) and (11). The solute chemical potential μX is in
some conditions measurable because it relates to the solute
partial pressure pX [64],

μX = μREF + kBT ln (pX), (35)

where μREF is the solute chemical potential in a given reference
state. The LTE calculations provide the link between μX and
μV Fe, so if we can measure μX we have an indirect estimation
of μV Fe. From this observation, we introduce the principle of
an experiment dedicated to the measure of out-of-equilibrium
point defect concentrations and point defect diffusion driving
forces. It is illustrated on the case of vacancy supersaturation
measurements in FeN alloys, because among the three solutes
studied in this paper, N is the one whose chemical potential is
most sensitive to the vacancy supersaturation.

Assume a closed system in equilibrium conditions: a
sample of ferrite in solid solution containing some amount
of nitrogen (below the solubility limit), at equilibrium with
the surrounding vacuum in which the partial pressure of N is
measured and equal to p

eq
N . Now the external force driving the

system out-of-equilibrium (e.g., irradiation) is turned on, and
one can follow the nitrogen partial pressure evolution, which
equals pcons

N once steady-state is reached. Using Eq. (35),

pcons
N

p
eq
N

= exp

(
μcons

N − μ
eq
N

kBT

)
. (36)

The system is closed, so the total N concentration is known.
The measurement of partial pressures is directly related to the
constrained equilibrium N chemical potential. Using Eq. (6)
for α = N, one can solve for the vacancy chemical potential
in out-of-equilibrium conditions, and from that use Eq. (6) for
α = V to compute the steady-state vacancy concentration in
the system.

Figure 8 shows a parametric study of the computed
evolution of the ratio pcons

N /p
eq
N as a function of the total
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vacancy concentration in the system. This kind of plot shows
that the measurement is sensitive to temperature and N nominal
concentration, and these dependencies are strongly nonlinear.
It can be provided as abacus plots to avoid going through
solving LTE equations for each measurement.

VI. CONCLUSION

In this paper, we presented a quantitative and consistent
method for computing both vacancy-induced and ballistic
precipitate dissolution with a unified formalism, starting from
the atomic scale. It is straightforward to extend the same
approach to other types of defects (self-interstitials, dislocation
loops, dislocations, etc.). If the point defect concentration
concentration is about the same order of magnitude as the
solute concentration, and if these point defects show an
attractive binding with solutes, then the solutes will be
stabilized in the solid solution by forming point defect-solute
clusters. The out-of-equilibrium dynamic solubility is then
higher than the equilibrium solubility limit, hence the partial
dissolution of equilibrium precipitates.

Assuming that the system obeys local equilibrium, LTE
calculations were used to compute the steady-state solubility
limit increase (up to several orders of magnitude) as a func-
tion of the vacancy nominal concentration and temperature.
Oxygen atoms were shown to be very sensitive to the vacancy
supersaturation in the solid solution, mainly due to the highly
attractive binding energy between a vacancy and an oxygen
atom in Fe (1.43 eV [32]). Therefore we expect the VID
mechanism to be very efficient on O-rich precipitates in α-Fe.
Larger vacancy concentrations would be needed to produce a
partial dissolution of N-rich and C-rich precipitates in α-Fe.

This mechanism is most likely to be effective at interme-
diate temperatures. (1) Temperature must be high enough so
that solutes and point defects can actually diffuse, dissociate
from solute precipitates and meet to form clusters in the solid
solution. (2) If the temperature is too high, then point defect
solute clusters will not form to minimize the overall free energy
of the system (comparison between the configurational entropy
gain of having isolated solutes and point defects separated and
the enthalpy gain of forming point defect solute clusters). The
VID mechanism is an alternative to the well-known ballistic
mixing effect. The latter has been shown to be the dominant
mechanism at low temperatures and high fluxes and it is

restricted to irradiation. Also, the VID mechanism is likely to
be effective in sustained out-of-equilibrium systems other than
irradiated materials, for instance, ball milling or severe plastic
deformation. For a given irradiation flux, the VID mechanism
has a lower effect on dynamic solubility limits than ballistic
mixing, but it operates at higher temperatures. Moreover, note
that the attractive interaction between vacancies and solutes
will in most cases decrease the average vacancy diffusivity and
thus increase the total vacancy concentration in the irradiated
solid solution, and this kinetic effect is taken into account in
our model.

We also discussed ODS particle stability. Quantitative
assessment would require a more complex model, but our
calculations show that the VID mechanism is much more
effective than ballistic mixing in the high temperature/high
irradiation flux region that corresponds to experiments where
ODS particles dissolution is observed under irradiation
[12–14,16,18]. Finally, we presented a potential application of
these calculations: the measurement of out-of-equilibrium va-
cancy concentrations and diffusion driving forces from solute
partial pressures, a quantity which lacks reliable experimental
measurements.

Future work should focus on two aspects. (1) The extension
of the LTE model and parametrization to ternary systems, to
clearly identify the thermodynamic forces for precipitate dis-
solution in out-of-equilibrium systems when these precipitates
are composed of two solutes. (2) Experimental verification
of our model is now desired on model systems, for instance
Al2O3, MgO and/or Y2O3 in pure Fe for which it is possible
to provide quantitative information, instead of the FeCr matrix
used in Ref. [14].
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